
 
 

 

Semi-supervised Nearest Neighbor Editing 

 

Abstract—This paper proposes a novel method for data editing. 
The goal of data editing in instance-based learning is to remove 
instances from a training set in order to increase the accuracy of 
a classifier. To the best of our knowledge, although many 
diverse data editing methods have been proposed, this is the first 
work which uses semi-supervised learning for data editing. 
Wilson editing is a popular data editing technique and we 
implement our approach based on it. Our approach is termed 
semi-supervised nearest neighbor editing (SSNNE). Our 
empirical evaluation using 14 UCI datasets shows that SSNNE 
outperforms KNN and Wilson editing in terms of generalization 
ability.  

I. INTRODUCTION 

K-nearest neighbor (KNN) classifier has received 
considerable attention by the research community. The 
nearest-neighbor (NN) algorithm and its derivatives have 
been shown to perform well for pattern recognition in many 
domains. This classifier consists of finding the k nearest 
neighbors to each target instance according to a certain 
dissimilarity measure and making a decision according to the 
known classification of these k neighbors, usually by 
assigning the label of the most voted class among these 
neighbors [1]. When , each instance is assigned to the 
same class as its nearest neighbor.  

1k =

Compared with other classifiers, such as multi-layer 
perceptron and support vector machine, KNN learns more 
quickly because it need only read in the training set without 
much further processing. However, since the basic nearest 
neighbor algorithm stores all of the training instances, it has 
relatively large memory requirements. It must search through 
all available instances to classify a new input vector, so it is 
slow during classification. To produce more time-efficient 
KNN, much work has been done. For example, several 
condensing techniques have been proposed that replace the 
set of training examplesT by a smaller set such that 
all instances in T are still classified correctly by a KNN 
classifier that uses .  

cT T⊂
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On the other hand, data editing techniques aim at replacing 

training set with a, usually smaller, dataset with the goal 
of improving the accuracy of a KNN classifier. A popular 
technique in this category is Wilson editing [2]; it removes all 
instances that have been misclassified by the KNN rule from 

a training set. The idea of Wilson editing relies on the fact that 
one can optimally eliminate outliers and possible overlap 
among classes from a given training set, so that the training of 
the corresponding classifier becomes easier in practice. It has 
been shown by Penrod and Wagner [3] that the accuracy of a 
Wilson edited nearest neighbor classifier converges to Bayes’ 
error as the number of instances approaches infinity. Figure 
1.a shows a hypothetical dataset where instances that are 
misclassified using the 1-NN-rule are marked with circles 
around them. Figure 1.b shows the reduced dataset after 
applying Wilson editing.  
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a. Hypothetical Dataset                b. Edited Dataset 

Fig. 1.  Wison editing for a 1-NN classifier. 
 
Wilson editing edits each instance ix T∈ based on the 

label of its neighbor instances . Now suppose we 
have another labeled data set ( ). We edit the 
instances 

TN T⊂

newT newT T∩ = ∅

ix T∈ again based on its 
neighbors . Usually is closer 

(more similar) to 

(
newT T newN T∪ ⊂ ∪ )T

newT TN ∪

ix compared with and consequently it 
edits 

TN

ix more correctly. Let and denote the edited 

datasets of T that based on T and respectively. Our 
experiment results show that could achieve better 

generalization ability than .  
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However, in many cases, the additional training set is 

not available, and instead of it, many unlabeled data U exist. 
In machine learning, the learning with both labeled instances 
and unlabeled instances is called semi-supervised learning. 
Existing semi-supervised learning only focuses on 
semi-supervised classification. To the best of our knowledge, 
there is no work done for semi-supervised data editing.  

newT

In this work, we propose to utilize those unlabeled 
data for Wilson editing. Let denotes the edited 
dataset of T based onT . Although might be not 
good as , we argue that it should provide better 

generalization ability compared with .  
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We term our proposed approach semi-supervised nearest 



 
 

 

neighbor editing (SSNNE). We compared it with k-nearest 
neighbor and Wilson editing (NNE-nearest neighbor editing) 
using 14 UCI datasets. Experiment results show that in terms 
of classification accuracy, Wilson editing is worse than KNN; 
while, SSNNE outperforms KNN and Wilson editing.  
 

II. DATA EDITING WHEN AN ADDITIONAL TRAINING SET EXITS 
The Wilson editing rule is shown in Table 1:  
 

TABLE 1. WILSON EDITING 
Let . (T  is the original training set, and will 
be the edited set) 

eT T= eT

For each ix T∈ , do: 
 -- Discard ix from if it is misclassified using the 
k-NN rule with prototypes in  

T
/{ }iT x

 
Given the training setT , the similarity between instance 

ix and its neighbor instances, denoted by , plays an 
important role in editing. With smaller, the 
neighbor instances will be more similar with

( , )i Td x N
( , )i Td x N

TN ix and their 
editing on ix  will be more persuasively and correctly.  

One intuitive idea of reducing is to adding the 
size of training set. Suppose we get another training set 

and . In , the neighbor instances of 

( , )i Td x N

newT '
newT T T∪ = 'T ix is 

. Since , . In this case, the 
editing performance is usually improved. It should be noted 
that we will not edit any instance of . The existence of 

is only used for editing datasetT . ’s Wilson editing 
based on  is shown in Table 2.  
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TABLE 2. WILSON EDITING WITH ANOTHER TRAINING SET 
Given another training set ( ) newT newT T∩ = ∅
Let . (T  is the original training set, and will 
be the edited set) 

eT T= eT

For each ix T∈ , do: 
 -- Discard ix from if it is misclassified using the 
k-NN rule with prototypes in  

T

( )/{ }i nT x T∪ ew

 
The function of can also be explained by Figure 2. In 

Fig. 2, the black points and white points belong to different 
classes.  

newT

When we editing T  using Wilson editing (1-NN), 
Instance 1x will not be removed since its nearest neighbor 
among  has the same label with it. Instance T 2x will be 
removed since its nearest neighbor among T  has different 
label with it. However, when exist, the editing result of newT

1x and 2x will be changed. Now 1x will be removed and 

2x will be kept. 

 
Fig. 2. The function of additional training set for data editing 

 
We further compare the performance of data editing with 

and without the additional training set.  Fourteen data sets 
from the UCI Machine Learning Repository [4] are used in 
this experiment, where missing values on continuous 
attributes are set to the average value while those on binary or 
nominal attributes are set to the majority value. Information 
on these data sets is tabulated in Table 3. 

 
TABLE 3. UCI DATA SETS 

Data set  Attribu
te 

Size Class Class  
distribution 

iris 4 150 3 50/50/50 

bupa 6 345 2 145/200 
breast 9 1000 2 700/300 

glass 9 214 6 70/76/17/13/9/30 

australian 14 690 2 383/307 

diabetes 8 768 2 500/268 

echo 7 131 2 88/43 

german 24 1000 2 700/300 

heart1 13 303 2 164/139 

heart2 13 294 2 188/106 

horse 15 368 2 232/136 

wine 13 178 3 59/71/48 

image 19 210 7 30/30/30/30/30/30

sonar 60 208 2 111/97 

 
Each data set will be randomly divided into two parts: 
 andU . In this part, the ratio of  is 50% (

D
L L / 0L D = .5

e T TT ∪

T

). 
Ten-fold cross-validation on L was used to evaluate the 
performance of Wilson editing. At each trial, 90% of L is 
used as training set (T ). The remaining 10% of was used 
as test set which evaluates the generalization ability ofT ’s 
edited sets through classification accuracy. Let and 

denote the edited datasets of T that based on T and 

respectively. is the additional training set which 
is randomly selected from U with 

L

eT

( )new

newT ∪ newT

newT T= . The average 
accuracy over 10 such trials is calculated. To get a fair result, 
above experiment is repeated for 5 times. In each time, the 
division of L and is different. Finally we will get 5 
accuracies. The average accuracy over them is reported in 
Table 4.  
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TABLE 4. PERFORMANCE COMPARISON BETWEEN AND  eT ( )newe T TT ∪

Data set  KNN Wilson 
Editing (T) 

Wilson 
Editing  
(T+Tnew) 

iris 0.9269 0.9212 0.9343 
bupa 0.5932 0.6214 0.6385 
breast 0.9695 0.9725 0.9725 
glass 0.6453 0.6076 0.6217 
australian 0.8319 0.8548 0.86 
diabetes 0.7265 0.7354 0.748 
echo 0.67 0.72 0.72 
german 0.6932 0.7088 0.7192 
heart1 0.8062 0.8259 0.8284 
heart2 0.7952 0.7943 0.8067 
horse 0.8081 0.8341 0.833 
wine 0.954 0.9465 0.9477 
imageseg 0.8167 0.75 0.7867 
sonar 0.795 0.7094 0.7883 
 
To make a clearer view of the relative performance 

between KNN (T ), Wilson editing  and , we use a 

scoring mechanism.  
eT ( newe T TT ∪ )

)

)

( ) (SCORE Number Best Number Worst= −  
Initially the scores of them are all zero. Then for each data 

set, the performances between this three methods are 
compared and consequently the score of them ( , and 

) which gives the best result is incremented by one. 

Conversely, the score of it is decreased by one if it gives the 
worst result. It is noted that moderate result (neither best nor 
worst) does not change the score.   

T eT

( newe T TT ∪

For above Table, 1 6SCORE = − , 
and . denotes the score 

of KNN without editing. denotes the score of data 
editing based on T  and denotes the score of data 
editing based on . 

2 3SCORE = − 3 9SCORE = 1SCORE

2SCORE

3SCORE

newT T∪
This experiment results verify that when another training 

set is used for T ’s Wilson editing, the edited data set 
will achieve better generalization ability. 

newT

eT T⊂

III. SEMI-SUPERVISED LEARNING 
Above section shows that when editing T , better edited 

result could be achieved if an additional training set is 
available. However, in most cases, the additional training set 

is not available, and instead of it, many unlabeled data 
exist. The reason is that labeled instances are often 

difficult, expensive, or time consuming to obtain, as they 
require the efforts of experienced human annotators. 
Meanwhile unlabeled instances may be relatively easy to 

collect. In this paper, we propose to utilize these unlabeled 
data to boost the performance of data editing.  

newT

newT
U

How to use unlabeled data U for data editing is the main 
issue we should address. Through the experiment in Section 2, 
an intuitive idea of solving this issue is to find a way to 
convert these unlabeled data to labeled data. Much work on 
semi-supervised learning has been done. Although most of 
them are used for semi-supervised classification, some ideas 
of them can also be used to solve our problem.  

Semi-supervised classification includes many methods 
such as generative models [5][6][7], self-training[8], 
co-training[9], graph-based methods[10][11] and so on. 
Among them, self-training and co-training are good 
candidates to solve our problem. Both of them convert some 
data from unlabeled dataset to label dataset somehow. This 
labeled set can be used as in Section 2.  newT

In self-training a classifier is first trained with the small 
amount of labeled data. The classifier is then used to classify 
the unlabeled data. Typically the most confident unlabeled 
points, together with their predicted labels, are added to the 
training set. The classifier is re-trained and the procedure 
repeated. Note the classifier uses its own predictions to teach 
itself.  

For co-training, it has strict requirement on the data. It 
requires that features can be split into two sets; each sub-set is 
sufficient to train a good classifier; The two sets are 
conditionally independent given the class. Initially two 
separate classifiers are trained with the labeled data, on the 
two sub-feature sets respectively. Each classifier then 
classifiers the unlabeled data, and ‘teaches’ the other 
classifier with the few unlabeled examples (and the predicted 
labels) they feel most confident. Each classifier is retrained 
with the additional training examples given by the other 
classifier, and the process repeats.  

As explained above, both of self-training and co-training 
have their own limitations. For self-training, on one hand, the 
classifier requires some measures to evaluate the 
“confidence” of unlabeled data. Actually most classifier can 
not give this measure easily. On the other hand, even the 
classifier could measure the confidence, its own prediction on 
the unlabeled data might not be correct. Co-training is lack of 
generality since it only works for the datasets which can be 
represented by two views.  

Through combing self-training and co-training, we 
propose to use ensemble-based co training (En-Co-training) 
methods. As shown in Table 5, three classifiers (algorithms) 
are used instead of individual classifier of self-training and 
two classifiers of co-training. En-Co-training overcome the 
limitations of self-training and co-training. Through majority 
voting of these three classifiers, explicit measure of 
confidence is not required. In addition, in co-training, the 
diversity of each classifier is achieved by using different sets 
of features which requires two views of features. In 
En-co-training, the diversity of each classifier is achieved by 
using different algorithms. Hence, En-co-training has not any 
requirement on the data set. In the beginning of 
En-Co-training, small number of examples is randomly 'U



 
 

 

selected fromU . Then at the end of each iteration, more 
examples will be replenished into . Many related work 
show that this kind of setting is better than dealing with the 
wholeU directly.  

'U

 
TABLE 5. ENSEMBLE-BASED CO-TRAINING ALGORITHM 

Given: 
 , A set of labeled training examples L x , consists 

of M classes 
 , A set of unlabeled examples U

Create a pool of examples by choosing u examples 
at random from U  

'U

Loop for iterations: k
(1) Use to train a classifier ,  and 

respectively 

L 1h 2h

3h

(2) For each class C , pick the unlabeled data which 

classifier ,  and agree with that its class label is 
 and add it to the collection of labeled examples 

cn

1h 2h 3h
C

(3) Randomly choose examples from U to 

replenish  
1

M

c
c

n
=
∑

'U
 Output: The new labeled data generated from step 

(2).  
 

The data editing process of Wilson, Wilson with additional 
training set and Wilson with semi-supervised learning 
can be compared using Fig. 3. 

newT

 

 
Fig. 3 (a) standard Wilson editing (b) Wilson editing when another training 
set is available (c) semi-supervised Wilson editing 
 

The result that is better than has been shown in 
Section 2, however, it should be noted that

( )e bT ( )e aT

( ) ( )e c e bT T≠ . The 
reason is that is generated by semi-supervised learning 
which might include mislabeled data. While, is the real 
data without noise. We argue that although there might be 
some noise in , when its number is not big, will 
still be useful for Wilson editing.  

( )new cT

( )new bT

( )new cT ( )new cT

 

IV. EXPERIMENTAL RESULTS 
In this section the experiment is similar with that done in 

Section 2. Each data set will be randomly divided into two 
parts:  andU .The only difference is the labels of here 
are generated from semi-supervised learning as shown in Fig. 
3(c). In addition, considering that the ratio of L , 

D
L newT

/L D , 
might influence the experiment results, different labeled 
ratios are tested including 50%, 40%, 30% and 20%. As 
shown in the following tables, each column gives the 
classification accuracy. Let T and represent the original 
data set and edited data set respectively. Finally the scoring 
mechanism is same with that used in Section 2. NNE denotes 
Wilson editing (nearest neighbor editing). SSNEE denotes 
semi-supervised nearest neighbor editing. 

eT

 
TABLE 6 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 50% 

 
Table 6 shows that when label ratio is 50%, the score of 

KNN is -6; the score of NNE is -3; while the score of SSNNE 
is 9. Hence SSNEE is best in term of classification accuracy 
(generalization ability).  

Table 7 gives the comparison when label ratio is 40%. At 
this ratio, SSNEE’s score is 9, which is much better than 
KNN (-5) and NNE (-4).  

Table 8 shows the comparison result when label ratio is 
30%.  The result is: SSNEE’s classification accuracy is best 
(score is 9); while NNE is the second best (score is -3); KNN 
is worst (score is -6). 

In Table 9, label ratio is 20%. The result shows that SSNEE 
is best in term of classification accuracy. And it should be 
noted that KNN is better than NNE in this Table. Hence it 
shows that NNE cannot provide consistent improvement over 
KNN.  

 
 
TABLE 7 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 40% 

Labeled data ratio=50% 
Data set  KNN NNE SSNNE 
iris 0.9269 0.9212 0.9343 
bupa 0.5932 0.6214 0.6385 
breast 0.9695 0.9725 0.9725 
glass 0.6453 0.6076 0.6217 
australian 0.8319 0.8548 0.86 
diabetes 0.7265 0.7354 0.748 
echo 0.67 0.72 0.72 
german 0.6932 0.7088 0.7192 
heart1 0.8062 0.8259 0.8284 
heart2 0.7952 0.7943 0.8067 
horse 0.8081 0.8341 0.833 
wine 0.954 0.9465 0.9477 
imageseg 0.8167 0.75 0.7867 
sonar 0.795 0.7094 0.7883 
SCORES -6 -3 9 



 
 

 

 
TABLE 8 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 30% 

 
 

Table 6-9 show that for most data sets used in our 
experiment, data editing could generate improvement over 
KNN. And SSNNE could make more improvement than 
NNE. 

For other data sets, such as wine, imageseg and sonar, data 
editing will decrease the classification accuracy. In these 
cases, the bad influence generated by SSNEE is less than 
NNE.  

In summary, when data editing is useful, SSNEE, using 
unlabeled data, could generate more improvement in terms of 
classification accuracy. When data editing is harmful, 
SSNEE could decrease the bad influence through using 

unlabeled data.  
 

TABLE 9 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 20% 

 

V. CONCLUSIONS AND FUTURE WORK 
In this work, we propose a novel data editing approach. 

The core idea is to boost the generalization ability of data 
editing through using unlabeled data. To the best of our 
knowledge, it is the first work in data editing which utilizes 
unlabeled data. 

The experimental results show that the classification 
accuracy of our proposed semi-supervised nearest neighbor 
editing outperforms Wilson editing and k-nearest neighbor. 
Although we present our approach based on Wilson editing, it 
can also be used by other data editing methods.  

Our future work mainly includes two parts: 1) testing the 
performance of our approach in the real applications 
developing by our lab, such as activity recognition and 
location recognition. 2) testing our approach using other data 
editing methods.  
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