

Semi-supervised Nearest Neighbor Editing

Abstract—This paper proposes a novel method for data editing.
The goal of data editing in instance-based learning is to remove
instances from a training set in order to increase the accuracy of
a classifier. To the best of our knowledge, although many
diverse data editing methods have been proposed, this is the first
work which uses semi-supervised learning for data editing.
Wilson editing is a popular data editing technique and we
implement our approach based on it. Our approach is termed
semi-supervised nearest neighbor editing (SSNNE). Our
empirical evaluation using 14 UCI datasets shows that SSNNE
outperforms KNN and Wilson editing in terms of generalization
ability.

I. INTRODUCTION

K-nearest neighbor (KNN) classifier has received
considerable attention by the research community. The
nearest-neighbor (NN) algorithm and its derivatives have
been shown to perform well for pattern recognition in many
domains. This classifier consists of finding the k nearest
neighbors to each target instance according to a certain
dissimilarity measure and making a decision according to the
known classification of these k neighbors, usually by
assigning the label of the most voted class among these
neighbors [1]. When , each instance is assigned to the
same class as its nearest neighbor.

1k =

Compared with other classifiers, such as multi-layer
perceptron and support vector machine, KNN learns more
quickly because it need only read in the training set without
much further processing. However, since the basic nearest
neighbor algorithm stores all of the training instances, it has
relatively large memory requirements. It must search through
all available instances to classify a new input vector, so it is
slow during classification. To produce more time-efficient
KNN, much work has been done. For example, several
condensing techniques have been proposed that replace the
set of training examplesT by a smaller set such that
all instances in T are still classified correctly by a KNN
classifier that uses .

cT T⊂

cT
On the other hand, data editing techniques aim at replacing

training set with a, usually smaller, dataset with the goal
of improving the accuracy of a KNN classifier. A popular
technique in this category is Wilson editing [2]; it removes all
instances that have been misclassified by the KNN rule from

a training set. The idea of Wilson editing relies on the fact that
one can optimally eliminate outliers and possible overlap
among classes from a given training set, so that the training of
the corresponding classifier becomes easier in practice. It has
been shown by Penrod and Wagner [3] that the accuracy of a
Wilson edited nearest neighbor classifier converges to Bayes’
error as the number of instances approaches infinity. Figure
1.a shows a hypothetical dataset where instances that are
misclassified using the 1-NN-rule are marked with circles
around them. Figure 1.b shows the reduced dataset after
applying Wilson editing.

T eT

Donghai Guan, Weiwei Yuan, Andrey Gavrilov and Young-Koo Lee

Donghai Guan is with the Computer Engineering Department, Kyung Hee

University, Korea (email: donghai@oslab.khu.ac.kr).
Weiwei Yuan is with the Computer Engineering Department, Kyung Hee

University, Korea.
Andrey Gavrilov is with the Computer Engineering Department, Kyung

Hee University, Korea.
Young-Koo Lee is with the Computer Engineering Department, Kyung

Hee University, Korea.

a. Hypothetical Dataset b. Edited Dataset

Fig. 1. Wison editing for a 1-NN classifier.

Wilson editing edits each instance ix T∈ based on the

label of its neighbor instances . Now suppose we
have another labeled data set (). We edit the
instances

TN T⊂

newT newT T∩ = ∅

ix T∈ again based on its
neighbors . Usually is closer

(more similar) to

(
newT T newN T∪ ⊂ ∪)T

newT TN ∪

ix compared with and consequently it
edits

TN

ix more correctly. Let and denote the edited

datasets of T that based on T and respectively. Our
experiment results show that could achieve better

generalization ability than .

eT (newe T TT ∪)

T

)

)

)

)

newT ∪

(newe T TT ∪

eT
However, in many cases, the additional training set is

not available, and instead of it, many unlabeled data U exist.
In machine learning, the learning with both labeled instances
and unlabeled instances is called semi-supervised learning.
Existing semi-supervised learning only focuses on
semi-supervised classification. To the best of our knowledge,
there is no work done for semi-supervised data editing.

newT

In this work, we propose to utilize those unlabeled
data for Wilson editing. Let denotes the edited
dataset of T based onT . Although might be not
good as , we argue that it should provide better

generalization ability compared with .

U (e T UT ∪

U∪ (e T UT ∪

(newe T TT ∪

eT

We term our proposed approach semi-supervised nearest

neighbor editing (SSNNE). We compared it with k-nearest
neighbor and Wilson editing (NNE-nearest neighbor editing)
using 14 UCI datasets. Experiment results show that in terms
of classification accuracy, Wilson editing is worse than KNN;
while, SSNNE outperforms KNN and Wilson editing.

II. DATA EDITING WHEN AN ADDITIONAL TRAINING SET EXITS
The Wilson editing rule is shown in Table 1:

TABLE 1. WILSON EDITING
Let . (T is the original training set, and will
be the edited set)

eT T= eT

For each ix T∈ , do:
 -- Discard ix from if it is misclassified using the
k-NN rule with prototypes in

T
/{ }iT x

Given the training setT , the similarity between instance

ix and its neighbor instances, denoted by , plays an
important role in editing. With smaller, the
neighbor instances will be more similar with

(,)i Td x N
(,)i Td x N

TN ix and their
editing on ix will be more persuasively and correctly.

One intuitive idea of reducing is to adding the
size of training set. Suppose we get another training set

and . In , the neighbor instances of

(,)i Td x N

newT '
newT T T∪ = 'T ix is

. Since , . In this case, the
editing performance is usually improved. It should be noted
that we will not edit any instance of . The existence of

is only used for editing datasetT . ’s Wilson editing
based on is shown in Table 2.

'T
N 'T T⊂ '(,) (,)i iT

d x N d x N≤ T

T

newT

newT T

newT ∪

TABLE 2. WILSON EDITING WITH ANOTHER TRAINING SET
Given another training set () newT newT T∩ = ∅
Let . (T is the original training set, and will
be the edited set)

eT T= eT

For each ix T∈ , do:
 -- Discard ix from if it is misclassified using the
k-NN rule with prototypes in

T

()/{ }i nT x T∪ ew

The function of can also be explained by Figure 2. In

Fig. 2, the black points and white points belong to different
classes.

newT

When we editing T using Wilson editing (1-NN),
Instance 1x will not be removed since its nearest neighbor
among has the same label with it. Instance T 2x will be
removed since its nearest neighbor among T has different
label with it. However, when exist, the editing result of newT

1x and 2x will be changed. Now 1x will be removed and

2x will be kept.

Fig. 2. The function of additional training set for data editing

We further compare the performance of data editing with

and without the additional training set. Fourteen data sets
from the UCI Machine Learning Repository [4] are used in
this experiment, where missing values on continuous
attributes are set to the average value while those on binary or
nominal attributes are set to the majority value. Information
on these data sets is tabulated in Table 3.

TABLE 3. UCI DATA SETS

Data set Attribu
te

Size Class Class
distribution

iris 4 150 3 50/50/50

bupa 6 345 2 145/200
breast 9 1000 2 700/300

glass 9 214 6 70/76/17/13/9/30

australian 14 690 2 383/307

diabetes 8 768 2 500/268

echo 7 131 2 88/43

german 24 1000 2 700/300

heart1 13 303 2 164/139

heart2 13 294 2 188/106

horse 15 368 2 232/136

wine 13 178 3 59/71/48

image 19 210 7 30/30/30/30/30/30

sonar 60 208 2 111/97

Each data set will be randomly divided into two parts:
 andU . In this part, the ratio of is 50% (

D
L L / 0L D = .5

e T TT ∪

T

).
Ten-fold cross-validation on L was used to evaluate the
performance of Wilson editing. At each trial, 90% of L is
used as training set (T). The remaining 10% of was used
as test set which evaluates the generalization ability ofT ’s
edited sets through classification accuracy. Let and

denote the edited datasets of T that based on T and

respectively. is the additional training set which
is randomly selected from U with

L

eT

()new

newT ∪ newT

newT T= . The average
accuracy over 10 such trials is calculated. To get a fair result,
above experiment is repeated for 5 times. In each time, the
division of L and is different. Finally we will get 5
accuracies. The average accuracy over them is reported in
Table 4.

U

TABLE 4. PERFORMANCE COMPARISON BETWEEN AND eT ()newe T TT ∪

Data set KNN Wilson
Editing (T)

Wilson
Editing
(T+Tnew)

iris 0.9269 0.9212 0.9343
bupa 0.5932 0.6214 0.6385
breast 0.9695 0.9725 0.9725
glass 0.6453 0.6076 0.6217
australian 0.8319 0.8548 0.86
diabetes 0.7265 0.7354 0.748
echo 0.67 0.72 0.72
german 0.6932 0.7088 0.7192
heart1 0.8062 0.8259 0.8284
heart2 0.7952 0.7943 0.8067
horse 0.8081 0.8341 0.833
wine 0.954 0.9465 0.9477
imageseg 0.8167 0.75 0.7867
sonar 0.795 0.7094 0.7883

To make a clearer view of the relative performance

between KNN (T), Wilson editing and , we use a

scoring mechanism.
eT (newe T TT ∪)

)

)

() (SCORE Number Best Number Worst= −
Initially the scores of them are all zero. Then for each data

set, the performances between this three methods are
compared and consequently the score of them (, and

) which gives the best result is incremented by one.

Conversely, the score of it is decreased by one if it gives the
worst result. It is noted that moderate result (neither best nor
worst) does not change the score.

T eT

(newe T TT ∪

For above Table, 1 6SCORE = − ,
and . denotes the score

of KNN without editing. denotes the score of data
editing based on T and denotes the score of data
editing based on .

2 3SCORE = − 3 9SCORE = 1SCORE

2SCORE

3SCORE

newT T∪
This experiment results verify that when another training

set is used for T ’s Wilson editing, the edited data set
will achieve better generalization ability.

newT

eT T⊂

III. SEMI-SUPERVISED LEARNING
Above section shows that when editing T , better edited

result could be achieved if an additional training set is
available. However, in most cases, the additional training set

is not available, and instead of it, many unlabeled data
exist. The reason is that labeled instances are often

difficult, expensive, or time consuming to obtain, as they
require the efforts of experienced human annotators.
Meanwhile unlabeled instances may be relatively easy to

collect. In this paper, we propose to utilize these unlabeled
data to boost the performance of data editing.

newT

newT
U

How to use unlabeled data U for data editing is the main
issue we should address. Through the experiment in Section 2,
an intuitive idea of solving this issue is to find a way to
convert these unlabeled data to labeled data. Much work on
semi-supervised learning has been done. Although most of
them are used for semi-supervised classification, some ideas
of them can also be used to solve our problem.

Semi-supervised classification includes many methods
such as generative models [5][6][7], self-training[8],
co-training[9], graph-based methods[10][11] and so on.
Among them, self-training and co-training are good
candidates to solve our problem. Both of them convert some
data from unlabeled dataset to label dataset somehow. This
labeled set can be used as in Section 2. newT

In self-training a classifier is first trained with the small
amount of labeled data. The classifier is then used to classify
the unlabeled data. Typically the most confident unlabeled
points, together with their predicted labels, are added to the
training set. The classifier is re-trained and the procedure
repeated. Note the classifier uses its own predictions to teach
itself.

For co-training, it has strict requirement on the data. It
requires that features can be split into two sets; each sub-set is
sufficient to train a good classifier; The two sets are
conditionally independent given the class. Initially two
separate classifiers are trained with the labeled data, on the
two sub-feature sets respectively. Each classifier then
classifiers the unlabeled data, and ‘teaches’ the other
classifier with the few unlabeled examples (and the predicted
labels) they feel most confident. Each classifier is retrained
with the additional training examples given by the other
classifier, and the process repeats.

As explained above, both of self-training and co-training
have their own limitations. For self-training, on one hand, the
classifier requires some measures to evaluate the
“confidence” of unlabeled data. Actually most classifier can
not give this measure easily. On the other hand, even the
classifier could measure the confidence, its own prediction on
the unlabeled data might not be correct. Co-training is lack of
generality since it only works for the datasets which can be
represented by two views.

Through combing self-training and co-training, we
propose to use ensemble-based co training (En-Co-training)
methods. As shown in Table 5, three classifiers (algorithms)
are used instead of individual classifier of self-training and
two classifiers of co-training. En-Co-training overcome the
limitations of self-training and co-training. Through majority
voting of these three classifiers, explicit measure of
confidence is not required. In addition, in co-training, the
diversity of each classifier is achieved by using different sets
of features which requires two views of features. In
En-co-training, the diversity of each classifier is achieved by
using different algorithms. Hence, En-co-training has not any
requirement on the data set. In the beginning of
En-Co-training, small number of examples is randomly 'U

selected fromU . Then at the end of each iteration, more
examples will be replenished into . Many related work
show that this kind of setting is better than dealing with the
wholeU directly.

'U

TABLE 5. ENSEMBLE-BASED CO-TRAINING ALGORITHM

Given:
 , A set of labeled training examples L x , consists

of M classes
 , A set of unlabeled examples U

Create a pool of examples by choosing u examples
at random from U

'U

Loop for iterations: k
(1) Use to train a classifier , and

respectively

L 1h 2h

3h

(2) For each class C , pick the unlabeled data which

classifier , and agree with that its class label is
 and add it to the collection of labeled examples

cn

1h 2h 3h
C

(3) Randomly choose examples from U to

replenish
1

M

c
c

n
=
∑

'U
 Output: The new labeled data generated from step

(2).

The data editing process of Wilson, Wilson with additional
training set and Wilson with semi-supervised learning
can be compared using Fig. 3.

newT

Fig. 3 (a) standard Wilson editing (b) Wilson editing when another training
set is available (c) semi-supervised Wilson editing

The result that is better than has been shown in
Section 2, however, it should be noted that

()e bT ()e aT

() ()e c e bT T≠ . The
reason is that is generated by semi-supervised learning
which might include mislabeled data. While, is the real
data without noise. We argue that although there might be
some noise in , when its number is not big, will
still be useful for Wilson editing.

()new cT

()new bT

()new cT ()new cT

IV. EXPERIMENTAL RESULTS
In this section the experiment is similar with that done in

Section 2. Each data set will be randomly divided into two
parts: andU .The only difference is the labels of here
are generated from semi-supervised learning as shown in Fig.
3(c). In addition, considering that the ratio of L ,

D
L newT

/L D ,
might influence the experiment results, different labeled
ratios are tested including 50%, 40%, 30% and 20%. As
shown in the following tables, each column gives the
classification accuracy. Let T and represent the original
data set and edited data set respectively. Finally the scoring
mechanism is same with that used in Section 2. NNE denotes
Wilson editing (nearest neighbor editing). SSNEE denotes
semi-supervised nearest neighbor editing.

eT

TABLE 6 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 50%

Table 6 shows that when label ratio is 50%, the score of

KNN is -6; the score of NNE is -3; while the score of SSNNE
is 9. Hence SSNEE is best in term of classification accuracy
(generalization ability).

Table 7 gives the comparison when label ratio is 40%. At
this ratio, SSNEE’s score is 9, which is much better than
KNN (-5) and NNE (-4).

Table 8 shows the comparison result when label ratio is
30%. The result is: SSNEE’s classification accuracy is best
(score is 9); while NNE is the second best (score is -3); KNN
is worst (score is -6).

In Table 9, label ratio is 20%. The result shows that SSNEE
is best in term of classification accuracy. And it should be
noted that KNN is better than NNE in this Table. Hence it
shows that NNE cannot provide consistent improvement over
KNN.

TABLE 7 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 40%

Labeled data ratio=50%
Data set KNN NNE SSNNE
iris 0.9269 0.9212 0.9343
bupa 0.5932 0.6214 0.6385
breast 0.9695 0.9725 0.9725
glass 0.6453 0.6076 0.6217
australian 0.8319 0.8548 0.86
diabetes 0.7265 0.7354 0.748
echo 0.67 0.72 0.72
german 0.6932 0.7088 0.7192
heart1 0.8062 0.8259 0.8284
heart2 0.7952 0.7943 0.8067
horse 0.8081 0.8341 0.833
wine 0.954 0.9465 0.9477
imageseg 0.8167 0.75 0.7867
sonar 0.795 0.7094 0.7883
SCORES -6 -3 9

TABLE 8 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 30%

Table 6-9 show that for most data sets used in our
experiment, data editing could generate improvement over
KNN. And SSNNE could make more improvement than
NNE.

For other data sets, such as wine, imageseg and sonar, data
editing will decrease the classification accuracy. In these
cases, the bad influence generated by SSNEE is less than
NNE.

In summary, when data editing is useful, SSNEE, using
unlabeled data, could generate more improvement in terms of
classification accuracy. When data editing is harmful,
SSNEE could decrease the bad influence through using

unlabeled data.

TABLE 9 . PERFORMANCE COMPARISON WHEN LABELED RATIO IS 20%

V. CONCLUSIONS AND FUTURE WORK
In this work, we propose a novel data editing approach.

The core idea is to boost the generalization ability of data
editing through using unlabeled data. To the best of our
knowledge, it is the first work in data editing which utilizes
unlabeled data.

The experimental results show that the classification
accuracy of our proposed semi-supervised nearest neighbor
editing outperforms Wilson editing and k-nearest neighbor.
Although we present our approach based on Wilson editing, it
can also be used by other data editing methods.

Our future work mainly includes two parts: 1) testing the
performance of our approach in the real applications
developing by our lab, such as activity recognition and
location recognition. 2) testing our approach using other data
editing methods.

ACKNOWLEDGMENT
This work is financially supported by the Ministry of

Education and Human Resources Development (MOE), the
Ministry of Commerce, Industry and Energy (MOCIE) and
the Ministry of Labor (MOLAB) through the fostering
project of the Lab of Excellency.

REFERENCES
[1] B.V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques. Los Alamitos, Calif: IEEE CS Press, 1991.
[2] Wilson, D.L., “Asymptotic Properties of Nearest Neighbor Rules Using

Edited Data”, IEEE Transactions on Systems, Man, and Cybernetics, 2:
408-420, 1972.

Labeled data ratio=40%
Data set KNN NNE SSNNE
iris 0.9167 0.9133 0.9333
bupa 0.5528 0.5798 0.6015
breast 0.9624 0.9661 0.9668
glass 0.5346 0.5214 0.533
australian 0.8189 0.8271 0.8358
diabetes 0.7137 0.7147 0.7309
echo 0.615 0.654 0.659
german 0.6935 0.7035 0.704
heart1 0.795 0.8202 0.8152
heart2 0.7807 0.8152 0.8207
horse 0.8107 0.8196 0.8287
wine 0.9505 0.9139 0.9283
imageseg 0.81 0.7175 0.7442
sonar 0.7583 0.6958 0.7317
SCORES -5 -4 9

Labeled data ratio=30%
Data set KNN NNE SSNNE
iris 0.9269 0.9212 0.9343
bupa 0.5932 0.6214 0.6385
breast 0.9695 0.9725 0.9725
glass 0.6453 0.6076 0.6217
australian 0.8319 0.8548 0.86
diabetes 0.7265 0.7354 0.748
echo 0.67 0.72 0.72
german 0.6932 0.7088 0.7192
heart1 0.8062 0.8259 0.8284
heart2 0.7952 0.7943 0.8067
horse 0.8081 0.8341 0.833
wine 0.954 0.9465 0.9477
imageseg 0.8167 0.75 0.7867
sonar 0.795 0.7094 0.7883
SCORES -6 -3 9

Labeled data ratio=20%
Data set KNN NNE SSNNE
iris 0.9 0.86 0.8933
bupa 0.598 0.574 0.568
breast 0.9436 0.9539 0.9539
glass 0.6621 0.5086 0.5421
australian 0.8648 0.8737 0.8719
diabetes 0.6985 0.6934 0.7185
echo 0.67 0.6522 0.66
german 0.687 0.691 0.694
heart1 0.7567 0.7624 0.7862
heart2 0.796 0.7828 0.795
horse 0.7597 0.7857 0.7961
wine 0.9333 0.8044 0.8222
imageseg 0.675 0.625 0.6667
sonar 0.7283 0.6617 0.665
SCORES 2 -6 4

[3] Penrod, C. and Wagner, T., “Another look at the edited nearest
neighbor rule”, IEEE Transactions on Systems, Man, and Cybernetics,
7: 92-94, 1977.

[4] UCI Machine Learning Repository,
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[5] Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T., “Text
classification from labeled and unlabeled documents using EM”,
Machine Learning, 39, 103-134.

[6] Balujia, S., “Probabilistic modeling for face orientation discrimination:
Learning from labeled and unlabeled data”, Neural Information
Processing Systems.

[7] Fujino, A., Ueda, N., & Saito, K., “A hybrid generative/discriminative
approach to semi-supervised classifier design.” AAAI-05, The
twentieth National Conference on Artificial Intelligence.

[8] Riloff, E., Wiebe, J., & Wilson, T., “Learning subjective nouns using
extraction pattern bootstrapping.” Proceedings of the Seventh
Conference on Natural Language Learning (CoNLL-2003).

[9] Blum, A., and Mitchell, T., “Combining labeled and unlabeled data
with co-training”, COLT: Proceedings of the Workshop on
Computational Learning Theory.

[10] Blum, A., Chawla, S., “Learning from labeled and unlabeled data using
graph mincuts”, Proceeding of 18th International Conference on
Machine Learning.

[11] Pang, B., Lee, L., “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts”, Proceedings of
the Association for Computational Lingustics.

	I. INTRODUCTION
	II. data editing when an additional training set exits
	III. semi-supervised learning
	IV. Experimental results
	V. conclusions and future work

