
Devising a Context Selection-Based Reasoning Engine
for Context-Aware Ubiquitous Computing Middleware

Donghai Guan, Weiwei Yuan, Seong Jin Cho, Andrey Gavrilov,
Young-Koo Lee and Sungyoung Lee*

Department of Computer Engineering, Kyung Hee University, Korea
{donghai,weiwei,babebear,avg,sylee}@oslab.khu.ac.kr

yklee@khu.ac.kr

Abstract. We propose a novel reasoning engine for context-aware ubiquitous
computing middleware in this paper. Our reasoning engine supports both rule-
based reasoning and machine learning reasoning. Our main contribution is to
utilize feature selection method to filter the low-level contexts which are not
useful for certain special high-level context reasoning. As a result, rules and
learning models in the reasoning engine’s knowledge base are refined since
useless context have been filtered. The merits of our proposed reasoning engine
are described in details in this paper.

1 Introduction

By gathering context data and adapting systems behaviors accordingly, context-aware
systems offer entirely new opportunities for application developers and end users.
Especially when combined with mobile devices, these systems are of high value and
are able to increase usability tremendously.

In order to adapt applications to different situations and be more receptive to users’
needs, a number of works have been done in trying to make applications context
aware in ubiquitous computing environments [1][2][3][4][5]. The design of these
applications needs to take account of heterogeneous devices, mobile users and rapidly
changing contexts. Hence, ubiquitous computing environments must provide
middleware support for context-awareness.

The role of middleware is to ease the task of designing, programming and
managing distributed applications by providing a simple, consistent and integrated
distributed programming environment; such middleware-based approach is quite
appealing in context-aware ubiquitous computing [2].

In last several years, we have developed our own context-aware ubiquitous
computing middleware (CAMUS) [6]. In the process of analyzing existing
middleware and devising our own middleware, we have identified a set of necessary
functional elements that a context-aware system needs to support essential context
aware mechanisms. These functional elements are shown in Table 1.

* Prof. Sungyoung Lee is the corresponding author.

Table 1. Necessary functional elements in context-aware middleware

Context Sensing Obtain the context data from diverse
context sources

Context Modeling Foundation for expressive context
representation and high-level context
interpretation

Context Repository Provide a persistent storage for
distributed context

Context Reasoning/Inferring Interpret low-level information and
derive additional, high-level context

Context Discovery/Delivery Searching appropriate context
aggregators and delivering them to the
applications.

Instead of describing all the elements in Table 1, in this paper, we focus on context

reasoning. We argue that context reasoning plays an important role in a context-aware
ubiquitous system. To truly understand the importance of context reasoning, first of
all, we need to know what is context.

Context is defined as any information that can be used to characterize the situation
of an entity. And entity could be the person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves [7]. Context can be divided into low-level context and high-
level context. In general, low-level context is simple and can be directly got from
sensors or other sources. While, high-level context is abstract and need to be inferred
from a piece of low-level context. This can be as simple as taking in a name and
returning the corresponding email address. It could be more complex and take in the
number of people in a room, the relative gaze directions, the audio level, and the time
of day, and return whether or not a meeting was occurring.

Most applications show more interest in high-level context. For example, many
smart spaces [8][9][10] would like to know the information about user’s activity,
which is a typical high-level context. Some adaptations will be made based on
activity.

After understanding what is high-level context and why it is so important. Now we
would like to present the reason why we should do the high-level context reasoning
task in the middleware. Why not in application? There are two main reasons. One
reason is that in ubiquitous environment, many applications are installed in mobile
devices (mobile phone, PDA). Due to the constrained nature of small mobile
computers in terms of processing power, memory and persistent storage, it is very
difficult for them to do the reasoning task. Context reusability is the other reason to
put the reasoning engine in middleware, not applications themselves.

This paper is organized as follows: in section 2, by introducing the related works
about the reasoning engines adopted by other ubiquitous middleware, we conclude
that all of them utilize rule-based reasoning and/or machine learning methods. This
drives us to propose multiple reasoning mechanisms in our middleware’s reasoning
engine. In section 3, we present the main characters of our reasoning engine: multiple
reasoning mechanisms, pluggable reasoning modules and ontology reasoning module.

Section 4 gives our proposed method on how to improve reasoning engine based on
our existing one. We propose to use feature selection method to filter the irrelevant
low-level context for a given high-level context. At last, we present conclusions and
future works in section 5.

2 Related Work

In this section, we will cover context reasoning mechanisms adopted by some well-
known ubiquitous computing middleware.

In Context Toolkit [1], Context Interpreters are responsible for interpreting or
converting context from one form to another. They maintain no state but simply take
context in and output new context information. While the Context Toolkit does
provide a starting point for applications to make use of contextual information, it does
not provide any generic mechanism for writing rules about contexts, inferring high-
level contexts or organizing the wide range of possible contexts in a structured format.

In Gaia [11], Context Synthesizer takes charge of reasoning. Context Synthesizers
are agents that provide high-level contexts based on simpler sensed contexts. A
Context Synthesizer gets source contexts from various Context Providers, applies
some sort of logic to them and generates a new type of context. Agents can reason
about context using rules written in different types of logic like first order logic,
temporal logic, description logic, higher order logic, fuzzy logic, etc. Instead of using
rules written in some form of logic to reason about context, agents can also use
various machine learning techniques to deal with context. Learning techniques that
can be used include Bayesian learning, neural networks, reinforcement learning, etc.

In SOCAM [12], the Context Reasoning Engine reasons over the knowledge base.
Multiple logic reasoners can be incorporated into the Context Reasoning Engine to
support various kinds of reasoning tasks. Currently RDFS reasoner, OWL reasoner
and a general rule-based reasoner are built in to SOCAM. Different inference rules
can be specified and preloaded into various logic reasoners. The interpreters is
implemented by using Jena2 [13], a semantic Web toolkit. The Context Interpreter
also acts as a context provider as it provides high-level contexts by interpreting low-
level contexts. It consists of a context reasoner and a context KB.

In CASS [14], deriving of high-level context is also based on an inference engine
and a knowledge base. The knowledge base contains rules queried by the inference
engine to find goals using the so-called forward chaining techniques. As these rules
are stored in a database separated from the interpreter neither recompiling nor
restarting of components is necessary when rules change. In Cobra [15], the
reasoning engine is responsible for reasoning with ontology knowledge and
contextual knowledge in the knowledge base. In addition, the inference engine will
apply learning algorithms and pattern recognition mechanisms to learn about high-
level context. In ECA [16], the reasoning engine determines when the left-hand-side
(LHS) of user specified rules are matched by the current set of facts stored in the
knowledge base of the engine. As a result of this process, the engine initiates the
actions specified in the right-hand-side (RHS) of rules.

By analyzing above context reasoning engines, we can see that although their
detailed implementation parts are different, the main reasoning methods they applied
are almost the same: rule-based reasoning and/or machine learning methods. Rule
based reasoning is the most common form of knowledge processing nowadays. User
pre-defined rules written in some form of logic are used to infer different contexts.
However, most developers find that building the rules is the most difficult task in
ubiquitous computing systems. Also rule-based reasoning is not flexible and can not
adapt to changing circumstances. Making use of machine learning techniques to
deduce the higher-level context enables us to get around this problem. In addition to
multiple reasoning methods, knowledge base is also needed. The knowledge base is
composed of two parts. One part is user-defined rules for rule-base reasoning. The
other part is learning models. These learning models are inferred by utilizing
inductive methods to analyze context history. In the next section, we will describe the
detailed structure and important characters involved in our reasoning engine.

3 Our Existing Reasoning Engine

3.1 Overview

Our context reasoning engine includes one to many reasoners which handle the facts
present in the repository as well as to produce composite contexts. The reasoners can
provide the entailed knowledge not formally present in the repository using various
kinds of logics to support inference; description logic, first order logic, temporal logic
and spatial logic to name a few. Moreover, many kinds of reasoning over uncertainty
such as Bayesian inference or fuzzy logic can also be applied.

Fig. 1. Reasoning engine in our middleware

REManager

Context
Aggregator

Jena Generic Rule

Bayesian network

Racer reasoner

Fuzzy logic reasoner

managess

Add/get
Reasoners

Invoke
reasoning

The reasoning service is used by some context mapping services and context
aggregators. They invoke the reasoners through a fixed API, providing the reasoners
with a context data which can be considered as a knowledge base containing all the
facts needed for inference. All new inferred facts will be inserted into that context
data for later queries. The use of a fixed interface for all kinds of reasoning engine
makes it possible to add and handle different reasoners. The developers can then use
any kind of reasoning they want.

3.2 Main Characters of Our Reasoning Engine

(1) Multiple Reasoning Mechanism. Considering different upper applications’
different reasoning requirements, multiple reasoning mechanisms are proposed.
Agents can reason about context using rules written in different types of logic like
first order logic, temporal logic, description logic (DL), higher order logic, fuzzy
logic, etc. Different agents have different logic requirements. Agents that are
concerned with the temporal sequence in which various events occur would need to
use some form of temporal logic to express the rules. Agents that need to express
generic conditions using existential or universal quantifiers would need to use some
form of first order logic (FOL). Agents that need more expressive power (like
characterizing the transitive closure of relations) would need higher order logics.
Agents that deal with specifying terminological hierarchies may need description
logic. Agents that need to handle uncertainties may require some form of fuzzy logic.

Instead of using rules written in some form of logic to reason about context, agents
can also use various machine learning techniques to deal with context. Learning
techniques that can be used include Bayesian learning, neural networks,
reinforcement learning, etc. Depending on the kind of concept to be learned, different
learning mechanisms can be used. If an agent wants to learn the appropriate action to
perform in different states in an online, interactive manner, it could use reinforcement
learning or neural networks. If an agent wants to learn the conditional probabilities of
different events, Bayesian learning is appropriate.
(2) Pluggable Reasoning Modules. To provide more help to developers so that they
can concentrate on developing rules or networks for reasoning and not be burdened
with the low-level details, our middleware defines wrappers for each reasoner type.
For example, a wrapper of Jena generic rule reasoner allows the developer to easily
add a new reasoner just by declaring the rule file name and some namespace
abbreviations. The following piece of code illustrates how to add and invoke a rule-
based reasoner.

/* add a new reasoner providing the rule file*/
ContextReasonerManager.addReasoner(“Location”,ReasonerType.GENERIC_REASONER,

“etc/contel.rules”) ;
/*declare some statements*/
sms=new ContextStatement[] {PastLocationDescription, hasLocation};
/*invoke the reasoner to do reasoning, providing the reasoner name, the context data name and the
required statements*/
cdm.invokeReasoning(“Location”, “Data”, sms);

(3) Ontology Reasoning Mechanisms. Ontology reasoning helps us to find
subsumption relationships (between subconcept-superconcept), instance relationships

(an individual i is an instance of concept C), and consistency of context knowledge
base, provided by Racer Server. In the design phase of formalizing the context
entities, OWL reasoning services (such as satisfiability and subsumption) can test
whether concepts are non-contradictory and can derive implied relations between
concepts.

Let us take an example to see how ontology reasoning can help deducing implied
context. In location ontology, the property locatedIn is a TransitiveProperty, and
isPartOf is subProperty of locatedIn. So when knowing that Bilbo is locatedIn Bed,
and Bed is a part of BedRoom which is part of Home, the system can deduce that
Bilbo is locatedIn BedRoom and Home.

4 Improvement on Our Reasoning Engine

In this section, we will present our idea on how to improve our existing reasoning
engine described in last section.

Knowledge base is an indispensable part of our reasoning engine. For rule-based
reasoning, the knowledge base provides many user-made rules. As for machine
learning reasoning, many learning models are required to be loaded into the
knowledge base. These learning models are deduced by analyzing context history
using machine learning methods. Since both rule-based and machine learning
reasoning are supported by our reasoning engine, the knowledge base of our system
includes two parts: user-defined rules and learning models. The process to construct a
knowledge base is shown in Fig. 2.

Knowledge base plays an important role in knowledge-based reasoning systems.
The content quality in knowledge base directly influences the reasoning result. So
improving the quality of rules and models in our knowledge base is urgently needed.
Currently, there are some potential problems with our knowledge base.

Context
Database

ML models

Machine Learning

Knowledge
Base

User-defined
Rules

Fig. 2. Knowledge base of our reasoning engine

4.1 User-defined Rules in Knowledge Base

Rule-based reasoning has proved itself effective decision makers for many types of
problems. However, the accuracy of such systems is highly dependent upon the
accuracy of the user’s domain theory. When users learn or create a set of rules, they
are subject to a number of hindrances. As a result, the user-defined rules are always
incomplete or erroneous. In ubiquitous environment, the rules for high-level context
reasoning usually follow this format: if =1lc 1x and/or =2lc 2x ….and/or =nlc nx ,

then =hc M , in which (i=1,2,...n) represents low-level context and represents

high-level context. It is easy to see that is determined by the value of . In
ubiquitous environment, the number of different types of low-level context is huge. In
some simple cases, it is feasible for users to manually choose which low-level context
should be used to deduce a given high-level context. However, as for some complex
high-level context reasoning, such as activity and mood reasoning, users are not able
to exactly determine which low-level context should be selected. As a result, many
useless low-level contexts are mistakenly selected to deduce a given high-level
context, which makes the rules used for some high-level context reasoning is not
correct.

ilc hc

hc ilc

To solve the above problem, rules refinement is urgently needed. In this paper, we
propose to use feature selection method to analyze context history, so that those low-
level context, which has more weight to deduce a give high-level context, could be
figured out. Then, these extracted low-level contexts could be used to compare with
those provided by users to improve user-defined rules’ quality.

4.2 Learning Models

We got learning models by utilizing machine learning methods to analyze context
history. Compared with user-defined rules, the accuracy of learning models is
improved. However, one potential problem still exits.

Here, we take user activity as an example of high-level context. In general, activity
could be divided into several classes. Hence, this high-level context deduction could
be treated as a classification problem.

Classification systems depend upon having the best set of input features from
which a classification decision can then be made. This is true both for the classifiers
themselves and for the learning models might be used to classify. This drives us to
select the “relevant” low-level contexts for training, instead of all the low-level
contexts.

To achieve this function, firstly, we still utilize feature selection method to find the
most relevant low-level context for a given high-level context. Then, different
inductive learning methods could be used to deduce the learning models. Many work
[17][18] showed that the learning models deduced from relevant features (low-level
context) could be much improved. Now the process to build a knowledge base for
reasoning engine can be depicted by Fig. 3.

ML models Machine Learning

Knowledge
Base User-defined

Rules

Context
Database

Feature Selection

Refined Rules

Fig. 3. Knowledge base construction based on feature selection

In addition to refine rules and learning models, other advantages using feature
selection method include:
1) Saving sensors. Since useless low-level contexts could be detected by using

feature selection method. So in real ubiquitous environment, only those useful
sensors need to be deployed. As a result, the cost to build a smart environment is
reduced.

2) Reducing human’s burden. Now many experiments are based on the sensors
attached to human. Human’s burden could be reduced by filtering those useless
sensors.

3) Saving context database size. Most algorithms in reasoning engine are supervised
learning method, which need to analyze historical context data to design an
accordingly model. In a ubiquitous environment, effectively mining useful low-
level context can avoid data explosion.

4) Easy to see the relationship between low-level context and high-level context.
Since most irrelevant features have been filtered by feature selection, it is easy to
make human-understandable rules.

5) Reducing reasoning uncertainty. As we all know that sensors have their inherent
uncertainty. The more sensors used for reasoning, the more uncertainty will arise.

5 Conclusions

In this paper, we propose to utilize feature selection method in our context-aware
middleware reasoning engine. Our reasoning engine supports both rule-based
reasoning and machine learning reasoning. The main advantages using this engine are
described in our paper.

Feature selection method is used to filter those low-level contexts which do not
contribute a lot for a given high-level context reasoning. The direct effect is that
fewer sensors are required. As a result, context database occupation is reduced.

Our plan for future work is to assess our reasoning engine in our smart office. We
are currently deploying different sensors in our office and will use them for collecting
empirical data. Finally more high-level contexts will be inferred to further prove the
feasibility of our reasoning engine.

Acknowledgement

This research was supported by the MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology Research Center)
Support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2006-(C1090-0602-0002))

References

1. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications. In J. of Human-Computer
Interaction (HCI), Vol. 16. (2001) 97-166

2. Jason I. Hong and James A. Landay: An Infrastructure Approach to Context-Aware
Computing. In J. Human-Computer Interaction (HCI), London, UK (2001) 287-303

3. Steven AN Shafer, Barry Brumitt and JJ Cadiz: Interaction Issues in Context-Aware
Interactive Environments. In J. Human-Computer Interaction (HCI), London, UK (2001)
363-378

4. Pascoe, J., et al.: Issues in Developing Context-Aware Computing. In Proc. of the
International Symposium on Handheld and Ubiquitous Computing. Springer-Verlag,
Heidelberg, Germany (1999) 208-221

5. Schilit, W. N.: A Context-Aware System Architecture for Mobile Distributed Computing.
PhD Thesis. Columbia University (1995)

6. Hung, N.Q., Shehzad, A., Kiani, S. L., Riaz, M., Lee, S.: A Unified Middleware Framework
for Context Aware Ubiquitous Computing. In the 2004 IFIP International Conference on
Embedded And Ubiquitous Computing , EUC2004, Japan (2004) 672-681

7. Dey, A. K.: Understanding and Using Context. In Personal and Ubiquitous Computing,
(2001) 4-7

8. Kulkarni, A.: A Reactive Behavioral System for the Intelligent Room. Master’s Thesis in
Computer Science and Engineering at the Massachusetts Institute of Technology.
Cambridge, MA (2002)

9. Brumitt, B. L., Meyers, B. and Krumm, J.: EasyLiving: Technologies for Intelligent
Environments, In Proc. of Handheld and Ubiquitous Computing, (2000) 12-27

10. Elrod, S., Hall, G., Costanza, R., Dixon, M., and Des Rivieres, J.: Responsive Office
Environments. In Proc. of ACM Communications, (1993) 84–85

11. Gaia Project (2005). http://gaia.cu.uiuc.edu/
12. Gu, T., Pung, H. K., and Zhang, D. Q.: A middleware for building context-aware mobile

services. In Proc. of IEEE Vehicular Technology Conference (VTC 2004), Italy, (2004)
2656-2660

13. Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/
14. Fahy, P. and Clarke, S.: CASS – a middleware for mobile context-aware applications. In

Proc. of the Workshop on Context Awareness, MobiSys, (2004)
15. Chen, H., Finin, T., and Joshi, A.: An ontology for context-aware pervasive computing

environments. In Proceedings of the Workshop on Ontologies in Agent Systems, (2003)
197-207

16. Ipina, D. and Katsiri, E.: An ECA Rule-Matching Service for Simpler Development of
Reactive Applications. In Proc. of Middleware 2001 at IEEE Distributed Systems Online,
(2001) Vol. 2, No. 7

17. Huan Liu and Lei Yu: Toward Integrating Feature Selection Algorithms for Classification
and Clustering. In IEEE Transactions on Knowledge and Data Engineering, (2005) 1-12

18. Nojun Kwak and Chong-Ho Choi: Input Feature Selection for Classification Problems. In
IEEE Transactions on Neural Networks, (2002) 143-159

