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Abstract. In context-aware systems, one of the main challenges is how to 
model context uncertainty well, since perceived context always yields 
uncertainty and ambiguity with consequential effect on the performance of 
context-aware system. To handle uncertainty in context-aware systems, firstly, 
we should know from where uncertainty comes. In this paper, we argue that 
uncertainty comes from several sources for each context level in context-aware 
systems. Based on this argument, we propose a hierarchical method to deal 
with context uncertainty in different levels, with the aim of reducing 
uncertainty and, developing a pattern to better understand this uncertainty. This 
will, in turn, helps in improving the system’s reliability.   

1 Introduction 

Context plays an important role in ubiquitous computing systems. A lot of work has 
been done in trying to develop applications in ubiquitous computing environments 
context aware [1] [2] [3] [4] [5] [6].  

One of the main challenges in context-aware systems is how to tackle context 
uncertainty well, since perceived context always yields uncertainty and ambiguity 
with consequential effect on the performance of context-aware systems [7] [8]. To 
handle context uncertainty well, first, we need to get the knowledge about the origins 
of uncertainty.  

Fig. 1 shows typical information flow in a context-aware ubiquitous system. In this 
architecture, we argue that information flow from lower level to higher level will 
inevitably generate uncertainty so that we should analyze it in different phases: 

 Phase 1: Raw sensor data to low-level context (S-LC)  
The main factor that promotes uncertainty in S-LC is the often inherent inaccuracy 

and unreliability of many types of low-level sensors, which may lead to contradicting 
or substantially different reasoning about low-level context. In this phase, we propose 
to apply Dempster-Shafer Evidence Theory to handle uncertainty.  

 Phase 2: Low-level context to high-level context (LC-HC) 
                                                           

* Prof. Youngkoo Lee is the corresponding author.  



This phase is always referred to “Context Aggregator” or “Context Synthesizer”. In 
this phase, reasoning is always in the uncertain conditions. In this regard, we propose 
to use Bayesian Networks to infer high-level context.  

 

 
 

Fig. 1. Information flow in context-aware systems 

2 S-LC Uncertainty 

Sensor’s inherent uncertainty is the main source of this phase’s uncertainty. To 
handle this problem, sensor redundancy is usually applied. Sensor redundancy could 
improve system’s reliability, however, at the same time, it always generates sensor 
competition problem [9]. Sensor competition means the results of sensors 
representing the same measurement are competitive. Let us consider the following 
scenario:  

The sensors here are three RFIDs (A, B and C). The output of each RFID is a 
Boolean variable (true or false). True means a user (Bob) is in room, while, false 
means it isn’t. Suppose the three RFIDs’ outputs are different. Two RFIDs shows that 
Bob is room, while, another one shows Bob is not in room. This is a typical sensor 
competition problem. In the following part, we will describe how to solve it.   

The authors in [10] propose to use high-level and other same-level context to deal 
with this problem. However, we argue that it is not always useful. If high-level or 
same-level context is not available, this method can not work well. In this paper, we 
propose to use mathematical method to solve it.   

2.1 Dumpster-Shafer Theory 

The advantage of Dempster-Shafer theory is that it can work well even in the case of 
lack of knowledge of the complete probabilistic model required for other methods 
such as Bayesian inference. The Dempster-Shafer theory of evidence represents 
uncertainty in the form of belief functions. It is based on two ideas: the idea of 
obtaining degrees of belief for one question from subjective probabilities for a related 



question, and Dempster’s rule for combining such degrees of belief when they are 
based on independent items of evidence [11]. 

Dempster-Shafer theory starts by assuming a universe of discourse, also called a 
frame of discernment, which is a set of mutually exclusive alternatives (similar to a 
state space in probability), denoted byΩ . Any hypothesis A will refer to a subset of 

 for which observers can present evidence. The set of all possible subsets of Ω , 
including itself and the null set
Ω

∅ , is called a power set and designated as . Thus, 
the power set consists of all possible hypothesis  

2Ω

2Ω ={ , 1A Ω , }.  nA
We can assign hypothesis to any of the three types of values. Basic probability 

numbers are a mapping of each hypothesis A to a value m(A) between 0 and 1, such 
that 

 the basic probability number of the null set ∅  is ( )m ∅ =0, and 

 the sum + … + =1. 1( )m A ( )nm A
The second type of assignment is a belief function that maps each hypothesis B to a 

value bel(B), between 0 and 1, define as  

:
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The belief function represents the weight of evidence supporting B’s provability.  
The third type of assignment is a plausibility function that maps each hypothesis B 

to a value pls(B) between 0 and 1, defined as  

:
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= ∑                                                                                     (2) 

The plausibility function is the weight of evidence that doesn’t refute B, and belief 
and plausibility are related by  

( ) 1 ( ),pls B bel B= −                                                                                            (3) 

Where B  is the hypothesis “not B”. Shafer showed that a one-to-one 
correspondence exists between basic probability numbers, belief, and plausibility, 
meaning that any of the three functions is sufficient for deriving the other two.  

Dempster’s Rule for combination is a procedure for combining independent pieces 
of evidence. Suppose  and  are the basic probability numbers from 
two independent observers. Dempster’s rule for combination consists of the 
orthogonal sum 
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We can combine more than two belief functions pairwise in any order.  



2.2 Using Dempster-Shafer theory in our scenario 

In our scenario, { , }T TΩ = , where T means Bob is in room, and T  is the 
compliment event meaning Bob is not in the room. For this Ω , the power set has 
three elements: hypothesis H={T} that Bob is in room; hypothesis H={T } that Bob 
is not; and hypothesis U=Ω  that Bob is in room or not. Suppose the probability of 
RFID A being trustworthy isα . If RFID A claims that Bob is in room, then its basic 
probability assignment will be 

1( )m H α=  1( ) 0m H =  1( ) 1m U α= −                                                 (5)
If RFID A claims that Bob in not in room, its basic probability assignment will be  

1( ) 0m H = 1( )m H α=  1( ) 1m U α= −                                                             (6) 
Likewise, given prior probabilities for the trustworthiness of RFID B and C, we 

would construct their basic probability assignments  and  similarly. 2m 3m
Next, the combined belief of A, B, and C in H is  

1 2 3( ) ( ) ( ) ( ) ( )bel H m H m H m H m H= = ⊕ ⊕  
Following Dempster’s rule for combination (Equation 4), We can compute this by 

combining any pair of arguments and then combining the result with the remaining 
third argument. For example, let’s first combine and : 1m 2m
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1( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( )m H m H m H m H m H m U m U m H
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Where 
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We can similarly combine the result from Equation 7 with . 3m
To use Dempster-Shafer theory, A, B and C’s reliability must be known. We 

calculate initial reliability of each sensor by keeping a malcount for each of them and 
then comparing the malcounts to a set of thresholds; a malcount exceeding higher 
thresholds lowers the sensor’s reliability rating.  

3 LC-HC Uncertainty 

In our paper, we propose to use Bayesian networks. Bayesian networks are a 
powerful way of handling uncertainty in reasoning. A Bayesian network is a directed 



acyclic graph of nodes. Nodes represent variables and arcs representing dependence 
relations among variables. For example, if there is an arc from node A to another 
node B, then A is a parent of B. In Bayesian networks, for each node, the conditional 
probability on its parent-set is stored. These locally stored probabilities can be 
combined using the chain rule [12] to construct the overall joint probability 
distribution P.  

Two main merits of Bayesian networks drive us to adopt it.  
One is that Bayesian networks can handle incomplete data sets. This point is very 

important as context-aware system is always partially-observable. The other one is 
that using Bayesian networks, we can learn causal relationships between low-level 
context and high-level context. So if only one or two kinds of low-level are available, 
we can select the most important one by causal relationships so as to improve 
reasoning accuracy.   

Let’s see an example of Bayesian network. Considering the case in which the 
system needs to infer whether the user is having lunch or not. For inferring such an 
activity it is needed that we have some data about the location of the user, time of the 
day, and some data about his actions.. Through prior knowledge, we may construct a 
Bayesian network shown in Fig. 2. Then activity can be deduced from this network.  

 

 
Fig.2. Bayesian network for activity reasoning 

4 Conclusions and Future Work 

In this paper, we propose a hierarchical method to deal with uncertainty in context-
aware systems. Two different methods: Dempster-Shafer Theory and Bayesian 
Networks are applied in two different phases in our paper. We argue that this 
hierarchical method is feasible from the viewpoint of mathematical model. However, 
when using mathematical methods in real applications, many other aspects, such as 
hardware feasibility, time delay etc. should also be considered. The involve matter of 
these aspects in our current model is a topic of our future research. We are currently 
studying the application of different approaches on our test bed—CAMUS [13] and 
comparing their performance.  
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