
Transforming Valid XML Documents into RDF via RDF Schema

Pham Thi Thu Thuy, Young-Koo Lee∗, Sungyoung Lee, and Byeong-Soo Jeong
Department of Computer Engineering, Kyung Hee University, Korea

{tttpham, sylee}@oslab.khu.ac.kr, {yklee, jeong}@khu.ac.kr

* Corresponding author

Abstract

Interpreting the XML data in a current web into
sources that can be used by the Semantic Web has
received great attention in recent years. In this paper,
we propose a procedure for transforming valid XML
documents into RDF by using vocabularies of RDF
schema. The first objective here is to obtain classes
and properties from labels in XML document exactly
by accessing the XML DTD. After that, we can
interpret XML data as RDF triples by using some
vocabularies of RDF schema. The main advantage of
our approach is that it ensures the integrity of the
structure and meaning of the original XML documents
while transforming them into RDF. This procedure can
be used for any kind of valid XML documents.

1. Introduction

Most of the web sites today are designed for human
reading, not for computer understanding. Computers
essentially play a role in parsing web pages for
displaying and processing jobs. They have no reliable
way to draw the semantics from a page [2]. The
Semantic Web will improve the meaningful content of
the web pages. It is not completely a new generation of
web, but an expansion of the current one. The meaning
in the Semantic Web is mostly represented by
Resource Description Framework (RDF). RDF
encrypts these meanings in the sets of triples that build
meaningful webs about related things. These are
recognized by the Universal Resource Identifiers
(URIs) which tie meanings to a unique definition so
that users can easily find them and their relationships
on the web [2].

However, a considerable amount of resources is
available in eXtensible Markup Language (XML)
rather than in RDF. The main success of XML is its
flexibility. Users can define their own tags to describe
elements in the XML document. Moreover, they can
also predefine the structure of XML documents by
writing a Document Type Definition (DTD). The XML

document, obeying the XML syntaxes, is called well-
formed XML document. If a well-formed XML
document is created based on the construction in a
DTD, it is called a valid XML document. Usually,
DTD is used as a standard mechanism to exchange
information on the web. For example, in the electronic
commerce, when the associates are unanimous in a
common DTD, they will produce valid XML
documents and carry out their communication. This
provides us a large number of valid XML documents.
Alternatively, users can draw DTD from a well-formed
XML document by following its construction and
labels. Otherwise, there is a tool helping to draw DTD
from XML documents, such as DTDMaker [3].

Although XML plays an important role in
structuring the document, it has disadvantages when
coming to the semantic interoperability. XML mainly
focuses on the grammar but there is no way to describe
the semantics of the document. Moreover, because
XML enables users to define their own tags, an object
can be described in different ways. For instance, we
label something as <price>@12.00</price> and
another organization labels the same field as
<cost>$12.00</cost>. In this case, a machine cannot
differentiate between two meanings unless Semantic
Web technologies such as RDF are added [4].
Furthermore, in the Semantic Web, the operability
requires not only the structured data but also the
semantic content [5]. Therefore, we cannot directly use
XML data for the Semantic Web, and need another
language to interpret this data.

Though, the general purpose language for
representing information in the Semantic Web is RDF,
it cannot describe classes and properties in structured
documents. Instead, they are depicted by the RDF
Vocabulary Description Language 1.0: RDF schema,
shortly, RDF schema [21]. Therefore, our procedure
interprets valid XML documents as RDF model and
uses vocabularies of the RDF schema. Our main
contribution is a set of rules that derive classes and
properties from XML DTD and interpret XML data as
RDF statements by using RDF schema vocabularies.

Third International Conference on Next Generation Web Services Practices

0-7695-3022-2/07 $25.00 © 2007 IEEE
DOI 10.1109/NWESP.2007.23

35

The remainder of the paper is organized as follows.
In section 2, we briefly introduce the related work.
Section 3 describes the role of XML, RDF and RDF
schema in representing knowledge on the web. This
will be followed by the algorithm of the procedure and
the corresponding example in section 4. Finally,
section 5 concludes this paper.

2. Related work

The transforming XML into RDF is not new.
Sergey Melnik [6] was one of the pioneers proposing
an algorithm to extract RDF triples from XML
documents. This algorithm creates a version of RDF
that can process arbitrary XML document. However, it
mainly focuses on how to handle all XML elements
but does not concern about exploiting domain's
information. Therefore, the issues follow the structures
in XML but bear little meaning and do not fit well into
RDF model.

Another approach is presented in the C-Web project
[7]. This method uses XPath, an XML query language,
to map information in XML documents to domain
specific ontologies. This proposal exploits more
specific meaning and structure of the XML documents.
However, beside reference to XML document and its
DTD, it requires referring to another resource, the
specification of rules, which is not a requirement in our
approach.

In another paper, Michel Klein introduces a
procedure to interpret XML statements as RDF data
via RDF schema specification [8]. This approach is
close to our method. However, it does not transform all
XML elements. Instead it concentrates on translating
some pieces of information in the XML document.
Moreover, elements in XML document are decided to
be classes or properties depending upon user's opinion.
Therefore, the results of this approach could be
different among users' point of view. Our method bases
on XML DTD, it can transform every label in XML
statements, which is defined in DTD, into RDF.
Therefore, the results follow the data structure, and
maintain the meaning of the original XML documents.

There are several other approaches giving new
XML syntax for RDF. These approaches use XML to
define a language to represent the triples. For example,
there are the “strawman unstriped syntax” of Tim
Berners-Lee [9], and Jonathan Borden's syntax [10].
Similarity, authors in SIMILE project use XSLT to
convert XML to RDF/XML [11]. Our method does not
provide a new XML syntax for RDF, but uses DTD to
extract RDF statements from that XML document.

3. Knowledge representation

There are three essential requirements for arbitrary
language used for data interchange on the web:

1) Language should have the ability to describe any
form of data to satisfy all the potential need.

2) The represented data should be easily accessed
by other organizations and its supported software, such
as parsers or query APIs, should be reusable (syntactic
operability).

3) It should have definitions for mappings between
terms in the data (semantic interoperability) [5].

3.1. Using XML

XML is competent to describe any data by allowing
users to create their own tags and decide structures for
the document, thus satisfying the first condition. It also
meets the second requirement because XML parsers
can parse any XML data and they are reusable.
However, XML does not ensure the semantics of data.
It mainly concentrates on document’s grammar and
does not provide the relationship between data [1]. For
example, we need to exchange a piece of simple
information, a description (a name) of the product. It is
depicted in the form of a model in figure 1.

Figure 1. Model of information needed to be

exchanged, the relationship Description between
Product and Name.

From this model, a DTD or an XML schema can be
created. In this example we use DTD. Since DTD just
defines structures for the XML document, there are
several DTDs and the corresponding XML expressions
created for this model (Table 1). Because it is
impossible to recognize the relationship between
Product and Name from DTD, it is hard to rebuild the
model from this DTD. This is not a big problem if the
communication is one-to-one between two parties
since they can agree in a DTD before exchanging
information. However, the communication on the web
enables multiple partners and exchanged information
often changes during time. Every change in
information requires changes in DTD structure and
corresponding XML document, which is costly.
Moreover, since information can be described in
different ways by a DTD, every communication can
choose difference kinds of DTD. Therefore, it is
difficult to change the structure for all of them [5].
What we need is a common description of a resource.

Product Name
Description

36

Table 1. Possibility DTDs and XML encodings
Encoding DTD Example XML data

<!ELEMENT Product (Desc)>
<!ATTLIST Prod_id ID #REQUIRED>
<!ELEMENT Desc (Name)>
<!ATTLIST Name id ID #IMPLIED>

<Prod_id=”X”>
 <Desc>
 <Name id=”Y”>
 </Desc></Product>

<!ELEMENT Description (Prod, Name)>
<!ELEMENT Prod (#CDATA)>
<!ELEMENT Name (#CDATA)>

<Description>
<Prod>X</Prod>
<Name>Y</Name>
</Description>

<!ELEMENT Product (id, Description)>
<!ELEMENT id (#CDATA)>
<!ELEMENT Description (Name)>
<!ELEMENT Name (id)>

<Product><id>X</id>
<Description>
 <Name><id> Y
 </id> </Name>
 </Description>
</Product>

3.2. Using RDF

RDF satisfies all the requirement of representing
knowledge. It identifies items by using URIs and
describes resources in terms of subject, predicate, and
object. This enables RDF to represent any kind of data,
satisfying the first condition. The fact that RDF can be
passed by various independent and reusable parsers
ensures the second requirement1. For the last
requirement, RDF surpasses XML. With the
demonstrations like natural language, RDF can easily
describe the model (defining objects and their
relationships) of information, so it does not need to
translate the model into DTD and then the DTD into
XML. As RDF descriptions are independent of XML, a
change in XML syntax does not require a change in
RDF model [5].

However, RDF only provides simple descriptions
about resources and their values, so to depict classes of
resources or specific properties of these resources RDF
schema is used. It is mentioned in the second last
paragraph of section 1.

4. Procedure description

Our procedure has two main steps. The first one
presents the strategy to derive classes and properties
from XML DTD. The second uses this strategy to scan
the XML document and produce RDF statements.

4.1. Extraction of classes and properties

In this stage, we create the collection of classes and
properties from the given DTD as an input. This
collection will be used to model data in the next step.
The general idea of this step is as follows:

1 http://infolab.stanford.edu/~melnik/rdf/api.html

• Element being declared by <!DOCTYPE> is the
root-class of document.

• For each sub-element (elements in brackets or
following the first element), we decide whether
they are subclasses or properties of the class.

• For data type definition of every element, we can
predict the format of data in XML.

A DTD is made up of three main building blocks:
ELEMENT, ATTLIST, and ENTITY. ELEMENT is
the main building block of XML documents. In the
DTD, XML elements are declared with an ELEMENT.
An element definition has the following syntax:

<!ELEMENT element-name (element-content)>
element-content may be EMPTY, or data type, or
sequences of children. Because ELEMENT is used to
describe elements of a document and each element can
contain children elements [12], the function of these
elements is like a class in a structure program,
therefore, we will treat element-name as a class-name
in our procedure. If the element-content contains
sequences of children, our procedure considers these
children as subclass of the element-name.

ATTLIST provides extra information about
elements. Its function is to describe the property of a
class, so we consider it as a class property. Following
is a general syntax of an ATTLIST element:

<!ATTLIST element-name attribute-name attribute-
type default-value>

element-name is the name of element (class) for which
we declare an attribute. Attribute-name is a name of the
attribute we want to declare, in our procedure it is a
name of the property. Attribute-type is a data type and
default-value specifies default value of the attribute.

Finally, ENTITY is used to define a shortcut for a
common text in XML. Its syntax is as follows:

<!ENTITY name definition>
In this case, name is the name of ENTITY and

definition is its definition. For example, <!ENTITY
today “July 22, 2007”>. In XML document,
it is referred between “&” and “;”, such as
<DATE>&today;</DATE>. Because of the function
in the DTD, our procedure handles name as a variable
and definition as its value. When our procedure meets
this variable in the document, its value will be called.

Besides these there are some declarations in DTD,
such as CDATA, PCDATA, #REQUIRED,
#IMPLIED, etc. Their purpose is to declare the data
type or the displaying conditions of elements or
attributes in the document [12]. Our procedure is not
concerned about these declarations because when it
finds the values of a class or property, it takes whole
values without parsing them, unless these values are
declared as an ENTITY.

37

4.2. XML transformation

After deriving classes and properties from a DTD,
we continue to examine the valid XML document. The
result is RDF triples to interpret these XML data. The
URI of the XML document will be the subject of the
first statement. The algorithm starts traversing from the
beginning of the XML document and finishes when it
meets the close tag of root element. The comments are
skipped during the transformation process.

For every tag in the XML document, we verify
whether it is a name of a class or a property. If it does
not match with any class or property in our database,
we skip it and continue to the next tag. Furthermore, all
texts describing between quotation marks in tags or
between open and close tags are values of a class or a
property. Based on this, our procedure decides what
RDF statements should be created.
1. If the tag matches with a class, following three cases
should be considered:
 a) If this is the root-class, create the first statements:

URI of document rdfs: Resource root-class
Root-class rdf: hasClass class-name

These statements are used once in our procedure.
Since in an XML document, there is only one root-
class and all other classes are its children, when we
meet the root-class we use rdfs: Resource to connect
the resource of XML document (URI) to the root-class
of the document. rdf: hasClass is defined to connect
two classes. In this case it describes that root-lass has a
class-child, class-name.
 b) This class can be a child of root-class or another
class. If the previous statement is unfinished (statement
with only two elements: subject and predicate are
filled, the object is empty), we complete this statement
by supplementing the parent class of considered class
in the object and add one more statement to describe
this class.
 parent-class-name
parent-class-name rdf:hasClass Class-name
 c) Create the new statement (simple case of b):
parent-class-name rdf: hasClass Class-name

It means when we find out a class, we have to
specify its parent.

2. If the element matches with a property, we verify the
class this property describes and predict the value of
this property. However, because our RDF statements
are sometimes unfinished, we consider two cases:

a) If the previous statement is unfinished,
complete it with the name of class this property
belongs to, and create new unfinished statement:

 Class-name
Class-name rdf: Property property-name
property-name rdf: value

rdf: Property used to describe an attribute is a
property of a class (class-name), and rdf: value is
declared for the value of this property.

 b) It is a simple case of a, we also describe which
class this property depicts and create an unfinished
statement:

Class-name rdf: Property property-name
property-name rdf: value

3. If it does not match a class or property, we check
whether it is a value of a class/property or not. It is a
value if it is placed between quotation marks or
between the open and the close tag. Furthermore, we
have to verify whether it is a declaration of an
ENTITY or not. If it is a description of ENTITY, we
replace this value by its definition. Therefore, we only
consider that this value belongs to a class or property.

a) If pervious statement is unfinished, it is surely a
value of a property. Because in previous statements,
only statements describe for a property is always
unfinished statements, we add this value to this empty
column:

 value
b) Else, so this value is belong to a class. We

describe which class has this value by following
statement:

Class-name rdf: value value

4.3. Example

In order to illustrate for our procedure, we use
sample files at http://www.vervet.com/. This website
supports free download of the XML editor, XMLPro.
After installing this software, we have several data
samples. We choose files describing product, because
these kinds of files are so popular on the web as well as
in the electronic business. A DTD file, “Catalog.dtd”,
defines the structure for the XML file as following:
<!DOCTYPE Catalog [
<!ELEMENT Catalog (Product+)>
<!ELEMENT Product (Specifications+,
Options?, Price+, Notes?)>
<!ELEMENT Specifications (#PCDATA)>
<!ELEMENT Options (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Notes (#PCDATA)>
<!ATTLIST Product Name CDATA #IMPLIED>
<!ATTLIST Category (HandTool|Table|Shop-
Professional)"HandTool">
<!ATTLIST Partnum CDATA #IMPLIED>
<!ATTLIST Plant (Pittsburgh|Milwaukee|
Chicago)"Chicago"><!ATTLIST Inventory
(InStock|Backordered| Discont)"InStock">

38

<!ATTLIST Specifications Weight CDATA
#IMPLIED><!ATTLIST Power CDATA #IMPLIED>
<!ATTLIST Options Finish (Metal|Polished|
Matte) "Matte">
<!ATTLIST Options Adapter (Included|
Optional|NotApplicable)"Included">
<!ATTLIST Options Case (HardShell| Soft|
NotApplicable) "HardShell">
<!ATTLIST Price MSRP CDATA #IMPLIED>
<!ATTLIST Price Wholesale CDATA #IMPLIED>
<!ATTLIST Price Street CDATA #IMPLIED>
<!ATTLIST Price Shipping CDATA #IMPLIED>
]>

Using rules in section 4.1, we derive classes and
their corresponding properties as below:
 Root class: Catalog, Subclass: Product (Properties:
name, category, partnum, plant, inventory)
 Subclass of Product: Specification, Options, Price
and Notes.
 Properties of Specification: weight, power
 Properties of Options: finish, adapter, case
 Properties of Price: MSRP, wholesale, street,
shipping

After having the set of classes and properties from
the previous step, we scan the XML file,
“Catalog.xml”, to produce RDF statements by using
algorithm in section 4.2. Because the file is quite long
with four products but they are the same in structure,
we just pick the first product to analyze. Following is
XML file with the first product:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Catalog SYSTEM "catalog.dtd">
<Catalog>
<Product Name="Speed Drill Pro" Partnum=
"123XYZ" Plant="Pittsburgh" Inventory=
"Backordered" Category="Shop-Professional">
 <Specifications Weight="8lbs."
Power="120v"/><Options Adapter="Included"
Case="HardShell"/>
 <Price MSRP="$149.95" Wholesale="$99.95"
Street="$129.95" Shipping="$15.00"/>
<Notes>Professional Version of the top
selling from the consumer line.</Notes>
</Product>...</Catalog>

The above XML document is interpreted to RDF
triples in the table 2.

Table 2: RDF statements from the XML data
Subject Predicate Object

http://www.vervet.com rdfs: Resource Catalog
Catalog rdf:hasClass Product
Product rdf: Property Name
Name rdf: value “Speed Drill Pro”
Product rdf: Property Partnum
Partnum rdf: value “123XYZ”
Product rdf: Property Plant
Plant rdf: value “Pittsburgh”
Product rdf: Property Inventory
Inventory rdf: value “Backordered”
Category rdf: value “Shop-Professional”
Product rdf: hasClass Specifications
Specifications rdf: Property Weight
Weight rdf: value “8lbs”
Specifications rdf: Property Power
Power rdf: value “120v”
Product rdf: hasClass Options
Options rdf: Property Adapter
Adapter rdf: value “Included”
Options rdf: Property Case
Case rdf: value “HardShell”
Product rdf: hasClass Price
Price rdfs:domain MSRP
MSRP rdf:value “$149.95”
Price rdfs:domain Wholesale
Wholesale rdf:value “$99.95”
Price rdfs:domain Street
Street rdf:value “$129.95”
Price rdfs:domain Shipping
Shipping rdf:value “$15.00”
Product rdf: hasClass Notes

Notes rdf: value
“Professional Version of
the top selling from the
consumer line.”

These above RDF statements keep the structure as
well as the relationship of every element in XML.
Moreover, they represent the meaning of the data as
well as the relationship between data. For example,
Name is a property of Product and its value is Speed
Drill Pro. The graph description of the above RDF
triples is presented in the figure 2.

http://www.vervet.com

Catalog

rdfs: Resource

(2)
Product

Name Partnum Plant Inventory Category

Speed Drill Pro 123XYZ Pittburgh Backordered Shop-Professional
Specification Options Price Notes

Weight Power Adapter Case MSRP Wholesale Street Shipping

8lbs 120v Included HardShell $149.95 $99.95 $129.95 $15.00

Professional Version of
the top selling from the

consumer line.

(1) rdf: Property
(2) rdf: hasClass
(3) rdf: value

(2) (2) (2) (2)

(1) (1) (1) (1)
(1)

(1) (1) (1) (1) (1) (1) (1) (1)

(3)

(3)

(3) (3) (3) (3) (3)

Figure 2. The result RDF statements are presented in the graph

(3) (3) (3) (3) (3) (3) (3)

39

5. Conclusions

In this paper we have proposed a procedure to
transform valid XML documents into RDF statements
by using RDF schema vocabularies. Our proposed
method enables lots of XML data available in Internet
to be used in the next generation of web, the Semantic
Web. We choose valid XML documents to translate
because most of the XML documents, used in the
current web, are in valid forms. Moreover, based on
their DTDs, we can anticipate the structure of the XML
documents as well as the relationship of elements in
these documents. Furthermore, DTDs helps us to
decide which labels in XML documents are important
and what is their role as class or property. Based on
their role and relationship, our procedure interprets
XML data into an RDF model.

Our procedure outperforms the existing methods
due to the following three reasons. Firstly, it
transforms all the elements of an XML document into
RDF retaining the original structure and the meaning
of the document. Secondly, elements in XML are
clarified in classes or properties based on their
definition in DTD, making the result independent from
the users’ point of view. Finally, languages used in our
procedure do their jobs as their original functions.
DTD is used for defining XML structure, XML for
describing data, RDF for providing triple statements
about data, and RDF schema for supporting
vocabularies to describe the relationship among data. If
this procedure is executed, a large amount of the XML
data will be interpreted into RDF statements which are
useful for the Semantic Web.

Acknowledgment

This work is supported by Ubiquitous Computing

and Network (UCN) grants Z1500-0603-0004, the
Ministry of Information and Communication (MIC)
21th Century Frontier R&D Program in Korea.

Preferences

[1] Stefan Decker, Sergey Melnik, Frank Van Harmelen,

Dieter fensel, Michel Klein, Jeen Broekstra, Michael
Erdmann, and Ian Horrocks, “The Semantic Web: The
roles of XML and RDF”, IEEE, 2000.

[2] Tim Berners-Lee, James Handler, and Ora Lassila, “The
Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities”, Scientific American, 2001.

[3] Michael Erdmann, Rudi Studer, “How to structure and
access XML documents with Ontologies”, April 2000.

[4] Tim Berners-Lee, “Semantic Web – A guide to the
future XML web services and knowledge management”,
Weaving the Web, Harper San Francisco, 1999.

[5] Stefan Decker, Frank van harmelen, Jeen Broekstra,
Michael Erdmann, Dieter Fensel, Ian Horrocks, Michel
Klein, and Sergey Melnik, “The Semantic Web – on the
respective roles of XML and RDF”, 2000.

[6] Sergey Melnik, “Bridging the gap between RDF and
XML”, Dec 1999.

[7] B.Amann, I.Fundulaki, M.Scholl, C.Beeri, and A-
M.Vercoustre, “Mapping XML fragments to community
Web ontologies”, Fourth International Workshop on the
Web and Databases (WebDDB’2001).

[8] Michel Klein, “Interpreting XML via an RDF Schema”,
Database and Expert Systems Applications, 2002.

[9] Tim Berners_Lee , “A strawman unstriped syntax for
RDF in XML”, W3C, March 2007.

[10] Jonathan Boden, “Simplified XML syntax for RDF”,
June 2001, available at:
http://www.openhealth.org/RDF/RDFSurfaceSyntax.html

[11] Mark H.Butler, John Gilbert, Andy Seaborne, and Kevin
Smarthers, “Data conversion, extraction and record
linkage using XML and RDF tools in Project SMILE”,
2004.

[12] Refsnes Data, “Introduction to DTD”, 1999-2007, at:
http://www.w3schools.com/dtd/dtd_intro.asp

[13] Michel Klein, Dieter Fensel, Frank van Harmelen, and
Ian Horrocks, “The relation between ontologies and
XML Schemas”, 2001.

[14] Ivan Herman, ”Semantic Web”, W3C, available at:
http://www.w3.org/2001/sw/

[15] Peter Patel-Schneider, and Jérôme Siméon, “The
Yin/Yang Web: XML syntax and RDF Semantics”, 11th
International WWW conference, Hawaii, 2002.

[16] T.Bray, J. Paoli, and C.M. Sperberg-McQueen,
“eXtensible Markup Language (XML) 1.0”, W3C
Recommendation, Feb.1998; available at
http://www.w3.org/TR/REC-xml

[17] Dan Brickley, R.V. Guha, and Brian McBride, “RDF
Vocabulary description language 1.0: RDF schema”,
W3C, 10 Feb 2004, available at
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[18] Tim Berners_Lee, “Why RDF model is different from
the XML model”, Sep 1998, available at:
http://www.w3.org/DesignIssues/RDF-XML.html.

[19] Tim Furche, François Bry, and Oliver Bolzer, “XML
Perspectives on RDF querying: Towards integrated
access to data and metadata on the Web”, 2005.

[20] Pronab Ganguly, Fethi A. Rabhi and Pradeep K.Ray,
“Bridging Semantic Gap”, Third Asian Pacific
conference on Pattern languages of Program, 2002.

[21] Frank Manola, Eric Miller, “RDF Primer”, W3C
Recommendation,February 2004, available at:
http://www.w3c.org/TR/REC-rdf-syntax/

[22] Peter Patel-Schneider and Jérôme Siméon, “The
Yin/Yang Web: XML syntax and RDF
Semantics”, The Eleventh International World
Wide Web conference, Honolulu, Hawaii, May
2002.

40

