
On Building a Reflective Middleware Service for Location-
Awareness*  

 
Uzair Ahmad1, Uzma Nasir2, Mahrin Iqbal2, Young Koo Lee1, Sung Young Lee1, Inook Hwang1 

Computer Engineering Dept. Kyung Hee University, 449-701 Suwon, Republic of Korea1 NIIT, Pakistan2 

{uzair, yklee, sylee}@oslab.khu.ac.kr,{54mahrin, 54uzma}@niit.edu.pk 

 

Abstract 
 
Location based services are becoming essential feature 
of context-awareness in ubiquitous computing. Reflective 
distribute component programming model is proposed to 
systematically provide location to Location Based Services 
(LBS). We integrate distributed component technology 
and reflection to develop localization capability as 
middleware service. Concept of Meta Object Protocols 
(Reflection) is used in different way than traditional 
reflective mechanisms.  It deals with the state of the 
component that is not inside the component rather 
resides outside of it, namely extrinsic. This component 
model provides the basis for middleware architecture to 
support location providing service at design, 
implementation and run time. We describe the methodology 
we used to build location-awareness as middleware service 
based upon our reflective component model. 

1. Introduction. 

Location based services need to tailor themselves 
based on the context triggers such as system’s location 
[2]. Problem of location-awareness, particularly in 
building, has produced very extensive research under the 
names of location determination, localization, 
positioning so and so forth. It is how ever observed [3] 
that current middleware support lack the kind of support 
needed for develo1pment of wide range of location 
driven autonomous mobile applications belonging to 
different domains. We believe that middleware capable 
of supporting the development of location driven 
applications will play a key role in the success of 
location based applications development, the same way 
traditional middleware did for wired distributed systems 
In this paper we present middleware service architecture 
as proof of our concept of “Extrinsic Reflection”. This 
service is complementary part of our previous work on 
Location based Autonomic Adaptation of mobile 
devices. [19]  

2. Extrinsic Reflection 

Reflection is a well established discipline to achieve 
intelligent flexibility in Object oriented databases [23] 
                                                 
* The research was supported by the Driving Force Project for the Next 
Generation of Gyeonggi Provincial Government in Republic of Korea. 

and Object-oriented programming [21, 22]. The 
protocols designed to achieve reflection are often 
referred to as the MetaObject Protocols or MOPs. So far 
reflection namely MOPs have been limited to inspecting 
and adapting the properties intrinsic to an object [5]. 
However we have extended reflection to capturion, an 
extrinsic property of an object. Using our MOPs a 
mobile object can inspect its location itself within the 
vicinity. We call this reflection “Extrinsic Reflection” 
and the protocols to achieve this reflection “Extrinsic 
Reflection MOPs (E-R MOPs)”. The MOPs for Extrinsic 
Reflection encourages a clean separation between the 
basic functionality of location determination of the 
application object from its representations and controls 
that lie in the Meta level objects. We give the 
responsibility of location estimation of a base level 
object, residing on a mobile device, to its Meta level 
objects. The goal of extrinsic reflection is to allow a base 
level location-driven object to reflect on its own location 
and eventually use this location information to alter its 
behaviors. For dynamic adaptation of the behaviors we 
developed other part of the middleware described in 
[19].   
 

 
Figure 1. Extrinsic Reflection Approach for location Aware 

component development framework 

3. Location via Reflection 

Location-driven applications require a middleware 
that provides development as well as run time support 
across different environments. We provide this through 
our reflective framework in a principled manner by 
providing a Meta Object Protocol (MOP) for “location 



monitoring, acquision and updation” on one hand and 
behavior adaptation at the other end [19] It facilitates the 
development of location aware components by providing 
standard vocabulary in the form of APIs that encapsulate 
in them the description of location awareness. 

This shields the programmer from the way underlying 
location determination technology is working. It enables 
a server component to control its extrinsic property as 
calling a reflection routine on itself in a seamless 
manner. 

3.1 Location-Aware Service Development Phases 

We provide a standard programming model for 
development of location aware server side components. 
Under this model an application developer has to follow 
the development steps in figure 2, for location aware 
components development .For each of the phase, we 
provide standard APIs that the programmer can use and 
develop the specific applications 
 

 
 
 
 
 
Active Space Modeling: Every application that needs 
location based services, require a location model that is 
an electronic representation of the actual world within 
which the device has to run and its location tracked. We 
call it an “active space”. We call the parts of the active 
space that are important for an application as “Points of 
Interest”(PoI). We provide standard vocabulary to model 
PoIs making up the active space. This vocabulary is 
called active space modeling language (ASML). Using 
ASML POI could be modeled in terms of absolute 
coordinates relative to some reference point. Such a 
model is called the physical model [16]. An active space 
can also be modeled in topological manner, which caters 
the containment, inclusion and proximity aspects [17] of 
each PoI. These PoIs are also expressed in human 
understandable form that we call the semantic form. In 
some cases the active space needs to be modeled in 
terms of more complex geometric shapes like polygons, 
rectangles ect. [18] ASML provides vocabulary for all 
these types of models. Since location model is the 
representation of the actual world, any change in the 
reality needs to be reflected in the model. Thus extension 
or alterations in the model is also needed. We also 
enable the application programmer to define as well as 
alter or extend the active space programmatically using 
extension APIs. 

Location Extractor: For every instance of a mobile 
application one Location Extractor object is provided 

that constantly interacts with the underlying sensor 
driver software and hardware through the sensing APIs. 
Using these APIs a Location Extractor can configure it 
self with the underlying sensor and extract raw position 
data. The APIs encapsulate all the complexities of 
interaction with the sensors. 

Translating Agent: The translating agent is responsible 
for translation of the data provided by the Location 
Extractor object into a higher-level form as mentioned in 
the Active Space Model. Translation APIs are provided 
by the middleware to define translating agents. 
By keeping the implementation of all of these 
components open, a generic programming environment 
is provided that is usable in a variety of places. This 
leads to a cross environment solution 

Service Initialization: It includes initializing the Meta 
space, which includes pooling the   appropriated Meta 
objects needed for location service 

3.2. Core Components of Run Time Location 
Servicing 

The core components that make run time location 
reflection possible for server components are described 
below 
Autonomic Component: These are the components that 
are client’s representative at the server. They need to be 
location aware but are completely isolated from location 
related complexities. All autonomic components need to 
extend a standard autonomic Component class that keeps 
the application developer away from handling many 
complexities. It consist of special method(s) called 
extrinsic method which is used to reflect on extrinsic 
property. The property it self lies at the Meta level where 
there is a Meta class with exactly the same extrinsic 
method 

Figure 3. Core Components of   Run time location Servicing 
 
Meta Controller: 

 It acts as a mediator between the Meta space and the 
autonomic component at the base level that wants to 

Base level 

Figure 2. Location Aware App. development Phases 

Meta Level 

Container 

Active 
Space 

Modeling 

Define 
Translating 

Agent 

Define 
Location 
Extractor 

 
Service     

Initializat-
ion 



reflect on its external property. It manages the run time 
aspects of seamless and active location servicing 
including call interception, monitoring and intimation. 
Besides it also provides network transparency. 

Anatomy of Environment Meta-Space:  
The environment Meta space holds all the Meta objects 
that are required to seamlessly serve an autonomic 
component with its extrinsic property like location in our 
case it includes Meta objects for sensing, Meta objects 
for translation and run time servicing objects. Each Meta 
object knows the Meta space it is a part of and thus 
interaction among various Meta objects is done via the 
Meta space. Based upon the different functionalities that 
these Meta objects perform, we give a layered view of 
our environment Meta space. It consist of the sensing 
layer with meta objects responsible for sensing raw 
position, the translation layer with meta objects that do 
raw to appropriate level translation and servicing layer 
that consist of extrinsic service objects like location 
service object in our case .The location service object 
serves the location seamlessly to the client 

Meta Objects at Sensing Layer: At the sensing layer 
there are dedicated sensing Meta objects, one for each 
registered client. These objects are responsible for 
constantly interacting with the underlying sensor and 
extracting the client’s movement data in the active space 
for as long as the client remains registered .In our 
approach, the sensing layer is intelligent enough to keep 
a track of the state of the clients. If the client is inactive 
and thus the movements are not detected, then for such 
clients, the sensing Meta objects do not invoke the 
translation Meta object at the translation layer. This is 
because, for an inactive client, translation and then the 
behavior switching is not needed at the same place again 
and again. By doing so translation only occurs when 
there is a noticeable change in the position of a mobile 
object. 

Meta Objects at Translation Layer: The Meta objects 
at this layer are called translating agents. These objects 
are responsible for taking the raw data extracted from 
sensing Meta object and converting into a form 
understandable by the mobile applications. For all the 
instances of once particular application, same translation 
objects are needed. In such case, there is no need for 
dedicated Meta objects at this layer. The sensing Meta 
objects invoke the translation Meta objects automatically 
when change in position is detected. The numbers of 
objects at the translating layer expand or shrink 
depending upon the frequency of   requests from the 
sensing layer. Thus the layer adapts it self according to 
the need .By doing so memory can be saved in case 
frequency of request is low and time can be saved when 
frequency is high by expanding it self to accommodate 
increasing translation requests 

Meta Objects at Servicing Layer: At this layer lie the 
Meta objects that are responsible for extrinsic servicing. 
It includes Meta location service objects for location 
servicing, one for each autonomic component. The 
extrinsic property, like location, of a server component is 
obtained from Meta objects at this layer. These Meta 
objects consist of both the extrinsic property and the 
extrinsic method corresponding to the autonomic 
component 

Pooling in Environment Meta-Space: To make the 
process of location servicing real time and robust we 
have adopted the approach of pooling of the Meta 
objects mentioned above inside the Meta space. 
Depending upon the application need the size of the 
objects pool is mentioned. There are separate pools of all 
the Meta objects containing their ready-made instances 
to serve the future application instances. When an 
autonomic component wants to get location aware these 
Meta objects are fetched from the respective pools  

Container: Lastly we would mention the Middleware 
container that is a place holder for all the components 
that make up the location Service It encapsulates both 
the base objects as well as the Meta spaces .The Meta 
Controller instance is also created by the container for 
each client. It acts as an execution environment for run 
time location servicing .It is responsible for initialization 
of both Meta and Base level components.                                 

4. Extrinsic Reflection MOP (ER-MOP) 

To enable server side components to reflect on their 
external properties that lie at the Meta level we have 
coined a Meta object protocol called “Extrinsic 
Reflection MOP abbreviated as E-R MOP.  

For each autonomic application instance that wishes 
to reflect on its location, a Meta controller is created. 
The Meta controller interacts with the Meta space; loads 
the appropriate Meta objects; activate the Meta objects, 
which start working for the specific client. Finally it 
makes autonomic component aware of its Meta level 
service object. 

After configuring the Meta level for the base 
autonomic component, the Meta controller constantly 
calls extrinsic method of the base autonomic component. 
Since, the Meta Location service has been configured for 
the autonomic component, the call goes go the extrinsic 
method at the Meta service which is being updated with 
the extrinsic property value (Location here) from the 
Meta objects lying at the sensing and translation layer. 
Meta Service is always provided with the updated 
extrinsic property since comparison is done as we 
explained before by the sensing Meta objects .So the 
updated extrinsic property is returned to the Meta 
controller. The Meta controller then notify base 
autonomic component of its extrinsic property.  The 



Meta controller keeps calling extrinsic method of the 
base component and getting updates. In this way a server 
side autonomic component is able to find a property that 
is out side it self. 
 

 
Figure 4. E-R MOP for location Awareness of a server 

component 

5. Discussion and conclusion 

We observe that using Extrinsic MOP for location 
services in reflective middle-ware, a server component 
can reflect on its location property. The process works 
actively and based upon these changing location 
behaviors adaptation can be done very efficiently. 

An alternate approach to this could have been where 
the client would get its raw location it self through some 
sensing mechanism like blue tooth for example and send 
this raw information as a parameter inside the method 
call to the middleware. Comparison of this approach to 
the extrinsic MOPs reveals that in case the location 
sensing is embedded within the client, the client code 
will become more complex .In our case client gets its 
location, and is still independent of how sensing is done. 
Secondly in case the location is sent as a parameter in 
the method call, the interpretation of raw location has to 
be done at the time of the call and once that is done then 
the appropriate behavior against that location needs to be 
instantiated. This can take a lot of time Extrinsic MOP 
on the other hand provides active location information 
irrespective of whether method is called or not. Thus 
using Extrinsic MOPs, the location is achieved in an 
efficient manner and thus adaptation process also 
becomes fast. 

By dividing the system into a simple base level, a 
location encapsulating meta level and Meta Controller 
that mediates between the two levels, any location based 
application developer can get location services in a 
principled manner without worrying about defining the 
detailed underlying mechanism. By simply calling an 

extrinsic method location can be obtained. This makes 
the applications development quicker and easier. 
Additionally pooling, session management, autonomous 
sensing and adaptive translation layer gives added 
performance and efficient resource management.  

In this paper we discussed our idea of “Extrinsic-
Reflection” for designing a reflective middleware service 
for location-Awareness. Extrinsic-Reflection enables an 
object to inspect its extrinsic properties, location in our 
case. To provide efficient run time support, the container 
uses object pooling both at base level and meta-level. 
The future work also involves provision of group 
location services where mobile clients could dynamically 
form groups and be informed of group member’s 
locations.  
 
References 
 
[1] L. Capra et al "Exploiting Reflection in Mobile Computing 

Middleware". In ACM SIGMOBILE Mobile Computing and 
Communications Review. 

[2] G. Kiczales, J. des Rivires, and D.G. Bobrow. The Art of 
the Metaobject Protocol. MIT Press, 1991 

[3] A.K. Dey, M. Futakawa, D. Salber, and G.D. Abowd. The 
Conference Assistant: Combining Context-Awareness with 
Wearable Computing. In Proc. of the 3rd International 
Symposium on Wearable Computers (ISWC ’99), pages 21–
28, San Franfisco, California, October 1999. IEEE Computer 
Society Press. 

[4] Licia Capraa Gordon S. Blair, Cecilia Mascolo,Wolfgang 
Emmerich. Paul Grace;Exploiting Reflection in mobile 
computing middleware Mobile Computing and 
Communications Review, Volume 1, Number 2 

[5] Mahrin et al, Reflective Middleware for Location-Aware 
Application Adaptation, UWSI 2005 

[6] P Maes Concepts and Experiments in Computational 
Reflection OOPSLA 87, Sigplan Notices Vol 22 No pp 147-
155  

[7] S Matsuoka, T Watanabe,Y. Ichisugi, and A Yonezawa, 
Object Oriented Concurrent Reflective Architectures 1992  

[8] B.Smith. Reflection and Semantics in a Procedural 
Language  MIT TR 272 1982 


