
CompoNet: Programmatically Embedding Neural Networks into AI
Applications as Software Components

Uzair Ahmad*, Uzma Nasir†, Sungyoung Lee*, Young-Koo Lee*

* Associated with UC Lab, Kyung Hee University, Korea; Primary Author email uzair@ieee.org
† Associated with Air University, Pakistan

Abstract
The provision of embedding neural networks into
software applications can enable variety of Artificial
Intelligence systems for individual users as well as
organizations. Previously, software implementation of
neural networks remained limited to only simulations
or application specific solutions. Tightly coupled
solutions end up in monolithic systems and non
reusable programming efforts. We adapt component
based software engineering approach to effortlessly
integrate neural network models into AI systems in an
application independent way. As proof of concept, this
paper presents componentization of three famous
neural network models i) Multi Layer Perceptron ii)
Learning Vector Quantization and iii) Adaptive
Resonance Theory family of networks.

1. Introduction
Artificial Neural Networks are biologically inspired

clusters of highly connected parallel processing nodes.
Their remarkable ability to tolerate noise and adapt to
unseen situations, wide scale application of neural
networks has been carried out in many areas such as
manufacturing [1], intelligent control systems [2],
power engineering [3], pattern recognition [4] [5],
speech recognition [6] and Ubiquitous Computing
Systems [29] [30] to name a few. Mostly, the practical
implementation considerations for neural network
based AI systems are studied from hardware point of
view [18]. However, several software applications
demand incorporation of neural networks as well. This
requirement holds for building hybrid intelligent
systems based on combination of neural networks and
knowledge-based system [9]. Moreover, AI researchers
often need to verify and test their application of neural
networks on novel problems in real life but software
environment. Advanced software environments for
neural network development and training are limited
only to simulation of neural networks in a restricted
simulation environment e.g. MATLAB Neural

Network Toolbox [17]. Therefore, In order to train a
model and verify the results, AI researchers have to
bring training and test data from real life environment
into a simulation environment. After the neural
network model is optimized and trained, the
integration of this model into real-life environment
remains a secondary task and left to domain specific
software programs which results in non-reusable
effort.

Main premise of this paper states that the
integration and deployment of neural networks into
production environments in an application independent
way can be greatly facilitated by employing
component based software engineering approach. The
CompoNet (Componentized-neural-Networks) facilitates
development of neural network based software systems
by designing and implementing neural networks as
software components. These components can be
reused effortlessly across different application and,
thus, shipping of trained models from simulation to
production environment is possible with minimal
programming effort. Essentially CompoNet functions
as binary unit of composition into larger systems. It
can encapsulate arbitrary size and structure of
underlying neural network models and exposes
programmatic interfaces in order to i) embed a neural
network into external software application and ii)
persist neural network on permanent storage and
restore it later. Section 3 explains the integration and
deployment perspective of CompoNet into software
systems, particularly an AI system middleware. For the
sake of realization of the concept and in order to
provide variety of choices to developer community, we
componentized three famous neural network models.

i) Multi Layer Perceptron
ii) Learning Vector Quantization
iii) Adaptive Resonance Theory networks

Each of these models and its corresponding CompoNet
implementation are described in section 4 by Unified
Modeling Language (UML) and sample code snippets.
Section 5 presents a feature wise comparison of

CompoNet and similar approaches for object oriented
modeling of neural networks.

2. Related Work
Several researchers have proposed object-oriented

modeling of neural networks to achieve
expressiveness, reusability and efficiency.
Albuquerque and El-Emam have outlined
fundamental abstractions and elaborated strong
structural relationship between object oriented
modeling and neural networks in [7] and [8]. Daikui
developed high level procedural language, object
oriented neural network language, in order to describe
large scale neural networks simulation systems [9].
Leber presented design and implementation of an
interactive object-oriented neural network simulator
for recognition of acoustic signals [10]. Cedric et al
presented an object oriented simulation kernel for
feedforward neural networks [19].

The practical utility of previous work is limited to
build neural network simulations using novel and
useful programming constructs. Instead shipping the
neural network model from simulation to production
environment and integrating it neural network into
larger AI software systems is equally important. Main
contribution of this paper is to extend state of the art
research on object-oriented modeling of neural
networks, based on component technology, in such a
way that neural networks could be composed into
larger artificial intelligence systems as software
components.

3. CompoNet Framework
Primary objective of the CompoNet framework is to

ship neural network models from simulation
environments to production environments by applying
component-based approach on development of neural
network based AI systems. The distinguishing features
of CompoNet can be viewed as essential services
offered by the componentization of neural network
models to AI system developers.

Parameterization: It refers to ability of software to
change its internal structure according to certain
parameters. In the context of neural networks
parameterization enables a CompoNet to encapsulate
arbitrary size and structure of underlying neural
network models by means of topology parameters (e.g.
size, structure and connectivity). CompoNet allows
software developers to specify these parameters
through programmatic interfaces.

Reusability: Black-box reusability refers to the
ability of software component to provide cohesive,
loosely coupled module that could be reused without

accessing its internal implementation. This capability
makes software components as binary units of
independent production, acquisition, and deployment
that interact to form a functioning system [13]. Modern
software systems are in fact flexible compositions of
“software components” that work together in a well
defined component framework [11]. CompoNet
achieves reusability by encapsulating the internal
structure, functionality, configuration and execution of
underlying neural network models into pluggable
software modules.

Plug-ability: is related to the ease of replacement
that is supported by the software modules. In real life,
non-simulation applications; the dynamics of execution
environment and usage context impose the need to
replace certain modules with others. This replacement
can be done either offline or at runtime during the
execution. CompoNet framework allows both offline
as well as runtime plug-ability of underlying neural
network models.

Persistence: Refers to the ability of components to
persist their state on permanent storage and reload it at
later time when required. The state of a neural network
is comprised by network topology, synaptic
connections and their weights and preprocessing/post-
processing parameters. CompoNet allows persistence
functionality by means of input output interfaces.

3.1 Deployment View
Deployment view provides the architectural details

regarding the placement of different entities in a neural
network based intelligent system by using a layered
model. Figure 1 shows different layers of an AI
software system, deployment of CompoNet and
interaction of different layers with each other.

Figure 1: Deployment view of CompoNet in AI system

End user applications reside at the intelligent
systems application layer and collect data from
external environment and users. This data is passed

down to the neural network based decision engine.
Before inputs are fed into neural network an optional
preprocessing step is carried out in order to normalize,
filter and homogenize data for the network. The
‘CompoNet ANN’ depicts an embedded neural
network in the form of a software component. This
component encapsulates the execution of a whole
neural network in an application independent way.
Outputs of neural network model go through post-
processing step for de-normalization and semantic
mapping on system’s knowledge base.

3.2 Execution View
Execution view explains operational aspects of

CompoNet in the context of an AI software system. In
order to model neural networks as software
components, we identified a common set of higher
level abstractions. These abstractions provide reusable
structures for developing CompoNet across different
neural network models. Two broad generic elements
present in all neural models: static elements and
dynamic elements. Static elements constitute topology
and arrangement of synaptic connections and their
respective weights. Static elements are responsible for
representation and accessibility of neural network
knowledge at execution time. Dynamic elements
comprise mathematical formulation of how network
learns the problem and maps the features to given
classes or clusters corresponding features. Each of
these elements has three modes of operation from
execution perspective. All these elements and their
respective functional descriptions are presented in
Table 1.

Table 1. Modeling Neural Network Elements for CompoNet

Elements Operational
Modes Static Dynamic

Synaptic Weights
Thresh hold values
Learning Functions

Training Topology
parameters*

Input/Error
Propagation Method C

on
fig

ur
at

io
n

Load Configuration from
Persistent storage

State
Persistence

Neural Network
Knowledge
Representation
Method

Save Configuration to
persistent storage

C
om

po
N

et

Execution Neural Network
Configuration

Propagation Method

Figure 2 graphically shows three operational modes of
a neural network software component. Particularly it
explains deployment of CompoNet in Middleware
system that provides context-aware services to users
through environment controller. System observes
context parameters by means of environmental sensors.
The sensor measurements contain discriminatory
information about the surrounding context such as

mobility and location of users. Once deployed, a
component is available either for training, execution or
persistence for later use. In simulation mode the
CompoNet learns the patterns in training sensory
measurements and how to map them onto specific
outputs. In production mode, real time sensor inputs
are provided to the CompoNet and based upon its
outputs different context-aware services are realized
using environment controllers and actuators. The
dotted line shows the persistence capability of a neural
network which allows storing both the static as well as
dynamic information of neural network.

Figure 2: Operation modes of a CompoNet

Our current implementations of three neural networks
use specific descriptive formats, so called netconfig
file. It is a simple comma separated file which provides
a standard mechanism to persist, parse and load/reload
neural networks to and from stable storage at runtime.
Moreover, this provision allows downloading and
invoking a neural network on a network using regular
data networks. Table 2 presents semantic structure of
an example netconfig file.

Table 2. Netconfig File for CompoNet
Element Description Example

Structure Topological information
of network

2,0,4,2,2,2,1,2;

Synaptic
Weights

Weights of every
connection starting from
1st Neuron of 1st layer
onwards

1,3.5,-3.9,-
0.4,3.4,0.05,1.4,-
0.9,3.1,-0.8,2.6,-
2.9,-5.5,2.8,-
2.1,0.1,7.3,7.9;

Biases Bias values of each
neuron

-1.3,2,0.1,-
4.6,0.6,2.5,-7.2;

Preprocessing Normalization values 9,11,9,11;
Post
Processing

De-normalization values 0,1;

Example column of Table 2 presents actual values of
corresponding elements of a multi layer perception
neural network trained for solving XOR problem. As
specified in the example column of structure row the
topology of this network comprises 2 hidden layers
with 4 neurons at the first and 2 neurons at the second

hidden layer. The input and output layers contain 2 and
1 neuron respectively. The activation functions at the
hidden neurons are specified as tan-sigmoid, which is
represented as 2, and output neuron is log-sigmoid,
represented as 1.

4. CompoNet Implementation

Apart from the high level common abstractions
detailed in previous section, CompoNet framework
offers object oriented modeling and componentized
implementation of three neural network models. These
components can be utilized using standard application
programming interfaces (API). Here we present the
OO design of CompoNet and example code to
illustrate the programmatic usage of API. Current
implementation of CompoNet is targeted for Microsoft
.Net framework using C# language. We share our
source code, binaries and demo applications as open
source project [12]. CompoNet modeling and
implementation of all three operational modes of
underlying neural network is presented in following
sections.

4.1 Multilayer Perceptron
Multilayer Perceptron (MLP) network is one of most

frequently used neural network models. It uses back
propagation training algorithm to learn arbitrarily
nonlinear class boundaries in a feature space.
Typically, these networks are employed for supervised
learning of pattern recognition problems. Figure 3
shows topological structure of Multi Layer Perceptron
(MLP) network. MLP networks are composed have
three layers i) One input layer ii) Arbitrary number of
hidden layers iii) One out put Layer.

Figure 3: Topological structure of Multi Layer Perceptron

In order to represent arbitrary size and structure of
MLP network in a software component, UML class
structure is shown in Figure 4. Each Layer of an MLP
is modeled as Layer class which can contain an

arbitrary number of Neurons. Neuron class provides
high level abstraction which specifies the operations
that a neuron should perform. The InputNeuron and
OutputNeuron are specialized neurons which provide
extra functionality other than the basic neuron
provides. Input layer may contain m neurons
depending on dimensions of feature space. All hidden
layers can have arbitrary number of neurons in each
layer. Interconnectivity of different layers and their
respective neurons is modeled by Synapse class. All
input neurons are connected to every neuron of first
hidden layer. Similarly, every hidden layer neurons
have synaptic connections to the next layer neurons.
The NeuralReader class provides the loading and
persistence operations to the programmers. It
implements parsing logic of a netConfig file which
allows a loading a neural network from local storage or
even from network. The Feed Forward execution
mechanism is implemented in NeuralNetExe class
which receives the flow of inputs and executes the
underlying neural network. Final output an MLP is
provided to the system by means of API.

Figure 4: Class structure of MLP.NET CompoNet

Listing 1 presents the example code to create, load and
execute a multilayer perceptron neural network
programmatically. Please notice that only C# language
code snippets are presented in this paper. Nevertheless
the application developers can choose their own
implementation language within .Net framework.
These components can easily be implemented in other
platforms using Java by virtue of object oriented

models presented here. Detailed object interaction
models are not presented here because of limited
space, however interested readers can freely access
them as open source [12].

Listing 1: Example code for embedding MLP into System

The composing system feeds input vectors using
feedInput(inputVector) function and receives the output
of MLP using getOutput() function of the
NeuralNetExe class. The internal operations involve
preprocessing the input vector by means of normalize()
operation and then feeding the individual components
of input vector to the appropriate neurons layer by
layer. MLP.NET encapsulates all of these complexities
and provides neural network outputs to the external
system.

4.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) networks are
widely employed for supervised classification tasks.
Fundamental work on LVQ is formulated and
described by Kohonen [14]. Figure 6 shows general
topological structure of Learning Vector Quantization
networks. Design of LVQ networks specifies three
layers of neurons. Input layer contains as many
neurons as components of input vector.

UML class diagram of LVQ.NET component is
shown in Figure 7. InputPattern class represents this
layer. Neurons of hidden layer, also called competitive
layer, determine distance of input vector from
codebook vectors based on any of several nearest

neighbor rules. HiddenLayer class performs this
function.

// Creating an MLP Neural Network model

NeuralNetExe exe= new
NeuralNetExe();
// Loading a Neural Network model from
Persisten Storage

try
{

exe.loadNeuralNet(netconfigFilePa
th);
}
catch (Exception er)
{

MessageBox.Show(

Figure 6: Topological structure of LVQ Network

Figure 7: Class structure of LVQ.NET CompoNet

Once the input vector is classified at competitive
layer, the second layer, also called linear layer,
transforms the output of competitive layer into target
classification vectors defined by developers. This
transformation involves competition among
competitive layer neurons in order to select the
‘winner’ neuron; closest matching neuron which best
represents the class of current input.

"This is not a
valid .net file)"
}
// Feeding Input Vector to Neural Network
exe.feedInput(input);
// Executing Neural Network to classify
the input
exe.runNeuralNet();
// Getting Neural Network classification
decision
exe.getNNOutput();

Listing 2: Example code for embedding LVQ into System

Figure 8 diagram shows sequence of interaction
LVQ.NET objects in order to classify input vector
given by composing systems.

4.3 Adaptive Resonance Theory
Adaptive Resonance Theory (ART) based neural

networks were developed by Grossberg and Carpenter
[15], [16]. These networks are widely used for
supervised learning, pattern classification, and
unsupervised learning, clustering, problems especially
where online and incremental learning is required.
Several variants of both types of ART neural networks
exist but here we present componentization of only the
basic ones.

4.3.1 ART-1 and FuzzyART

ART-1 network is widely used for unsupervised
clustering of distinct classes in a feature space. Both
ART-1 and FuzzyART have same topological
structure, shown in Figure 9, and learning mechanism.
The only difference is that FuzzyART network can
handle analog input vectors but ART-1 can accept only
binary features. In order to be able to recognize analog
patterns, the FuzzyART employs fuzzy logic.

Figure 9: Topological structure of ART and FuzzyART

ART systems can utilize an optional preprocessing step
called complement coding. It prevents category
proliferation problem in FuzzyART networks as
described in [16]. This preprocessing technique is
internalized by CompoNet and can be invoked by
using appropriate parameters. F1 Layer contains n
input neurons each of which are connected to m
category neurons in F2 Layer. Bottom up synaptic
connections contain analog valued weights are used to
perform distance measurement among different
categories stored in F2 Layer. Each of F2 Layer
neurons is connected to input neurons in F1 Layer.
Top down synaptic perform selection of candidate
category that current input is assigned to. After a
category neuron is selected, vigilance mechanism
checks if current input passes resonance threshold or
not. If resonance pass is cleared, weights of both
Bottom UP and Top Down connection are updated.
Otherwise a new category node is created in order to
represent current input. The UML class diagram of
ART-1 and FuzzyART networks is presented in Figure
10.

// Creating an LVQ Neural Network
model

LVQ.NET.LVQExe exe = new LVQExe();
// Loading a LVQ model from
Persistent Storage

exe.loadLVQNet(netconfigFilePath);
// Creating an Input Vector

InputPattern i = new
InputPattern(input);
// Executing the LVQ model

OutputPattern o = exe.feedInput(i);

Figure 10: Class structure of ART.NET CompoNet

Building blocks of ART.NET CompoNet are modeled
as LayerF2 and LayerF1 classes. Each of these classes
can have associations with multiple F1Neuron and
F2neuron, forming a 1 to many relationship. Dynamic
elements of ART networks are encapsulated in ART
class. Example code for embedding a FuzzyART
neural network in a software application is shown in
Listing 3.

Listing 3: Example code for embedding FuzzyART

Figure 11 shows a sequence of operations that takes
place inside ART.NET CompoNet in order to assign a
given input vector to most suitable existing clusters.

4.3.2 ARTMAP and Fuzzy ARTMAP

ARTMAP or predictive ART [25] extends basic ART
model in order to serve the purpose of pattern
classification of binary patterns. Similar to ART,
ARTMAP has its counterpart Fuzzy ARTMAP [26]
model for analog valued inputs and Fuzzy ARTMAP
has same complement coding option as FuzzyART in
order to control category proliferation. Simple
ARTMAP introduces a category layer on top of basic
ART model. F2 Layer neurons are connected to each
category neuron in category layer as shown in Figure
12.

Figure 12: Topological structure of ARTMAP and FuzzyARTMAP

Like other pattern classification methods, ARTMAP
has two modes of operation
i) Learning new pattern-class pairs
ii) Recalling best matching pattern stored in

ARTMAP for given input pattern.

// Creating a FuzzyART Neural Network
model

FuzzyART.NET.FuzzyART artexe =
new
FuzzyART.NET.FuzzyART(3,.8700001,1,.5,tru
e);

// Preprocessing Input vector

trg = normalize(trg);

// Feeding input vector to FuzzyArt

object[,] o = artexe.feedInput(trg);

Figure 13: Class structure of ARTMAP.NET CompoNet

Figure 13 shows CompoNet class diagram model of
ARTMAP networks. Since ArtMAP network can be
built on ART-1, as can be seen from Figure 11,
CompoNet reuses ART.NET internally to implement
ARTMAP networks. Figure 12 class diagram has three
extra classes other than those already present in
ART.NET, Rest of the elements are being reused
inside CompoNet. Although FuzzyARTMAP neural
network is not presented here due to space limitation, it
has similar structure but different dynamics for
learning analog pattern-class pairs. Listing 4 shows
example program snippet to embed a FuzzyARTMAP
neural network into an online learning application.

Listing 4: Example code for embedding FuzzyART Map

FuzzyARTMAP.NET.FuzzyARTMAP artMAPExe;
artMAPExe = new
FuzzyARTMAP.NET.FuzzyARTMAP(
/* inputsize */ 4,
/* rho */ .8,
/* rhoInc */ .8,
/* aplha */ .1,
/* beta */ .5,
/* Complement Coding*/ true,
/* Dalay Update*/ false);

trg = normalize(trg);
int output = artMAPExe.learn(trg, tgt);

5. Comparative View
The object oriented modeling and programming of
neural networks is not a new idea itself but the scope
of previous approaches is limited to only finding the

useful abstractions to facilitate the object-oriented
artificial neural network programming or building
object oriented ANN simulation engines. CompoNet
framework leverages the strengths of component
technology and enables neural network models to be
trained in simulation environment as well as to be
embedded into real life production environments as
software components. Table 3 summarizes a
comparative perspective of CompoNet and related
works with respect to the features that each approach
offers to the developers. MATLAB provides similar
features to CompoNet but it has one major
disadvantages. The target machine should have
MATLAB installation or MATLAB component
runtime environment in order to achieve plug-ability in
production environments. On the other hand
CompoNet approach is lightweight enough to be used
even on resource constrained hand held devices such a
PDA.

Table 3. Feature comparison of different approaches

 Param* Sim
Env**

Prod
Env+

Plug
ability

Persist
ability

Code
Reuse

CompoNet √ √ √ √ √ √
MATLAB[17] √ √ √ √ √ √
OOP [7] √ √ x x x √
NSK [19] √ √ x x √ √
OONL [9] √ √ x x x x

* Parameterization ** Simulation Environment + Production Environment

6. Conclusions and Future Work
In this paper we presented novel application of

component technology on development of neural
networks based AI systems. Until now software
implementations of neural models are restricted to
simulation environments or weaved into target
application logic. Unlike other neural network training
and development methods, CompoNet neural network
models are designed as software components. This
enables AI system developers to embed neural
networks in target software platform as plug in. This
approach provides: i) flexible development of neural
networks based or hybrid intelligent systems ii) Easy
learning and relearning of neural network during
exploitation of system iii) Flexibility in replacement of
neural network by other one during exploitation of
system iv) Relative independence between
implementation languages of neural network and
software connecting with it. Our current
implementation is targeted for Microsoft’s .Net
platform. In future, we plan to provide CompoNet
solutions for J2EE component framework. Currently
our neural network components store their state in flat
files. We also plan to incorporate structural strengths

and rich express-ability of XML into CompoNet
persistence mechanisms.

Acknowledgements
This work is financially supported by the Ministry of
Education and Human Resources Development (MOE), the
Ministry of Commerce, Industry and Energy (MOCIE) and
the Ministry of Labor (MOLAB) through the fostering
project of the Lab of Excellency.

7. References
[1] Huang, S.H. Hong-Chao Zhang, “Artificial neural networks in
manufacturing: concepts, applications, and perspectives” IEEE
Transactions on Components, Packaging, and Manufacturing
Technology
[2] Vitthal, R.; Durgaprasada Rao, C.; “Process control via artificial
neural networks and learning automata” Industrial Automation and
Control, 1995 (I A & C'95), IEEE/IAS International Conference on
(Cat. No.95TH8005) 5-7 Jan. 1995 Page(s):329 – 334
[3] Bretas, A.S.; Phadke, A.G.;, “Artificial neural networks in power
system restoration”, Power Delivery, IEEE Transactions on Volume
18, Issue 4, Oct. 2003 Page(s):1181 – 1186
[4] Javad Haddadnia, KarimFaez, Majid Ahmadi. N-Feature Neural
Network Human Face Recognition.
[6] Polur, P.D.;et al “Isolated speech recognition using artificial
neural networks”, Engineering in Medicine and Biology Society,
2001. Proceedings of the 23rd Annual International Conference of
the IEEE, Volume 2, pp.1731 - 1734 vol.2
[7]Albuquerque et al, “The adherence of the object oriented
programming paradigm on the simulation of artificial neural
networks” IEEE World Congress on Computational Intelligence.,
1994 Volume 6, Issue , 27 Jun- 2 Jul 1994 Page(s):3900 - 3904 vol.6
[8] El Emam, K. et al,”Object oriented neural networks”,
International Conference on Control 1991. Control, 25-28 Mar 1991
pp: 1007-1010
[9] Daikui Shouren Hu, “An object-oriented neural network
language” IEEE International Joint Conference on Neural Networks,
18-21 Nov 1991, pp: 1606-1611 vol.2
[10] Leber, J.F. Moschytz, G.S. “An interactive object-oriented
neural network simulator applied to the recognition of acoustical
signals”, IEEE International Symposium on Circuits and Systems,
10-13 May 1992, pp: 2937-2940 vol.6
[11] Jean-Guy Schneider and Jun Han, “Components: Past, Present
and Future”, WCOP 2004
[12] CompoNet Open Source project: http://componet.sourceforge.net/
[13] Clemens Szyperski, Dominik Gruntz and Stephan Murer,
“Component Software – Beyond Object-Oriented Programming
Second Edition”, Addison-Wesley / ACM Press, 2002 ISBN 0-201-
74572-0
[14] Kohonen, T.; The Self-Organizing Map, Procs. IEEE, 78, 1464
ss, 1990.
[15] Carpenter, G.A., Grossberg, S., & Reynolds, J.H. ARTMAP:
Supervised real-time learning and classification of nonstationary data
by a self-organizing neural network, Neural Networks (Publication),
4, 565-588
[16] Carpenter et al, Fuzzy ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional
maps, IEEE Transactions on Neural Networks, 3, 698-713
[17] MATLAB Neural Networks ToolBox: http://www.mathworks.com
[18] Teresa Serrano et al “Adaptive resonance theory
microchips”. Boston : Kluwer Academic Publishers, c1998.
[19] Cédric Gégout, Bernard Girau, Fabrice Rossi: “NSK, an Object-
Oriented Simulator Kernel for Arbitrary Feedforward Neural
Networks.” pp: 95-104 ICTAI 1994: New Orleans, Louisiana, USA

http://componet.sourceforge.net/

	The provision of embedding neural networks into software applications can enable variety of Artificial Intelligence systems for individual users as well as organizations. Previously, software implementation of neural networks remained limited to only simulations or application specific solutions. Tightly coupled solutions end up in monolithic systems and non reusable programming efforts. We adapt component based software engineering approach to effortlessly integrate neural network models into AI systems in an application independent way. As proof of concept, this paper presents componentization of three famous neural network models i) Multi Layer Perceptron ii) Learning Vector Quantization and iii) Adaptive Resonance Theory family of networks.
	1. Introduction
	2. Related Work
	3. CompoNet Framework
	3.1 Deployment View
	3.2 Execution View
	
	4. CompoNet Implementation
	4.1 Multilayer Perceptron
	4.2 Learning Vector Quantization
	4.3 Adaptive Resonance Theory
	4.3.1 ART-1 and FuzzyART
	4.3.2 ARTMAP and Fuzzy ARTMAP

	5. Comparative View
	6. Conclusions and Future Work
	Acknowledgements

	7. References

