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Abstract - Received Signal Strength (RSS) based 
positioning systems are potential candidates to enable 
location aware computing spaces due to their economic 
viability. Fundamental requirement of such localization 
systems is to estimate location from RSS at a particular 
location. In this paper we present a location system based 
on Support Vector Machines (SVM). Characterization of 
different kernel functions is presented with respect to 
location estimation problem and accuracy of SVM based 
positioning is compared with other approaches. Results 
show that support vector machines obtain competitive 
accuracy in shortest model training time. 

Keywords: Indoor Positioning Systems, Kernel Methods, 
Pattern classification, Received Signal Strength. 

1 Introduction 
  Location information is an integral and crucial 

component of ubiquitous computing applications [3][5][7]. 
Location systems, especially for indoor environments, have 
been subject to costly infrastructure and special hardware 
devices mounted on the objects of interest [14][17]. 
Pervasive adoption of IEEE 802.11 (a/b/g) wireless Local 
Area Network (LAN, WiFi) has increased the potential of 
Location-Awareness technology to become a common 
service. Since signal strength measurements must be 
reported by the wireless network interface card as the part 
of standard compliance, positioning using the RSS of 
wireless LAN is both feasible and economical. WiFi RSS 
based location awareness applications include, but are not 
limited to, a wide range of services to the end user like 
automatic call forwarding to user’s location, robotic global 
localization, exploration and navigation tasks, Finder, 
guiding and escorting systems, first hop communication 
partners, liaison applications, location based advertisement 
and positioning of entities in large warehouses.  
An IEEE 802.11 (a/b/g) standard operates in two publicly 
available radio frequency spectrums, 5 and 2.4 MHz 
respectively. Indoor radio wave propagation follows a 
complex model due to Non Line of Sight (NLOS) multi-
path effects because of the building geometry, human body 
absorption, neighboring devices and dynamic nature of 
environments. Due to these limitations, RSS based location 
estimation becomes a difficult problem.  
Support Vector Machines (SVMs) have shown very 
competitive results in areas like pattern recognition, 

regression analysis and prediction in recent years [21]. 
Received Signal Strength (RSS) based location estimation 
is essentially a pattern recognition problem. Basic concept 
behind RSS based location estimation is the RSSs of 
different Access Points (APs) follow certain patterns, so 
called fingerprints, at a particular location. These patterns 
are captured at each location and stored in a database 
namely “Radio Map”. If the mapping of RSS patterns with 
corresponding locations can be formulated through 
machine learning techniques, then the location of certain 
mobile device can be recognized by RSS patterns received 
on it later. 
In this paper, we present our experiments to develop SVM 
based location estimation system. In next Section, we 
provide an overview of the related work. We present the 
overview of RSS based location-aware system 
development life cycle and its different phases from pattern 
classification standpoint in Section 3. The overview of 
SVMs, Learning Vector Quantization (LVQ) and Multi 
Layer Perceptron (MLP) is given in Section 4. The 
comparative performance analysis of these three machine 
learning methods on location estimation is presented in 
Section 5.   

2 Related Work 
There have been several efforts to develop location aware 

system based on RSS. Bayesian classification and filtering 
[4][8], Statistical learning theory [6], K-Nearest Neighbors 
(KNN) [1][2][9], GPS like triangulation [18] and Kalman 
Filtering [10] have been employed for solving this problem. 
Indoor wireless signal propagation follows a complicated 
propagation model that makes it hard to achieve and 
maintain reasonable accuracy level for indoor location 
estimation systems. 
GPS like triangulation methods provide poor performance 
due to multi-path propagation effects in indoor 
environments. Asim, et al [18] achieved accuracy with 4.5 
meter distance error in an area of 60 square meters. 
Probabilistic approaches like Bayesian networks based 
solutions achieve better performance, but they are 
computationally exhaustive and difficult to scale. Andrew, 
et al reported 1.5 meter distance error, but only for 30 
square meter area test bed. As the area and number of target 
locations and wireless APs increase, the computational 
complexity of Bayesian structures grows and become 
computationally hard. 



Nearest Neighbors based pattern recognition technique and 
its derivates have been used traditionally by many 
researchers. RADAR system reported 2.65 meter distance 
error. K. Pehlavan, et al also used KNN technique and 
achieved 2.8 meter distance error [9]. Nearest Neighbor and 
its variants require a database of sample RSS readings at 
the estimation time for pattern matching. As the area and 
number of target locations grow, this size of the database 
dramatically increased and it becomes impractical to 
achieve sufficient scalability. 
Such systems require costly the operation of searching 
radio map database at location estimation time. On the 
other hand, machine learning techniques, such as kernel 
methods and neural networks, provide a model of system 
that stores location to RSS mapping which is more suitable 
for the large scale deployment of RSS based systems. 
Battiti, et al [11] employed feed forward back propagation 
network that takes the RSS of three wireless APs to cover 
624 square meter area. 200 samples were used to train 
neural network for each target location. They reported 
median estimation distance error of 1.75 meters. Ogawa, et 
al reported their experiments with LVQ machine learning 
technique for building RSS based location system [19]. 
SVMs have been employed by Xuanlong, et al for RSS 
based localization in densely distributed sensor networks 
[21]. 

3 RSS Based Positioning  
A generic schematic of development life cycle, which is 
divided in two stages, of RSS based location-aware. During 
positioning system development stage, a location estimation 
algorithm is constructed. RSS based positioning is a typical 
classification problem where data collection and 
preprocessing tasks are performed in site calibration phase. 
Training and tuning the classifier algorithm is performed in 
offline training phase and location estimation task is done 
online in execution phase. In following subsections, we 
explain each phase of positioning system development 
stage along with design details of our experiments. 

3.1 Site Calibration Phase for Sensor Data Collection 

The process of capturing the RSS of wireless APs at 
particular locations in a site is called “Site Calibration”. 
Resulting Radio Map contains RSS vectors recorded in 
signal space corresponding to respective position vector in 
location space. Once a Radio Map is built, it is used to 
develop a mapping function between target locations and 
respective RSS values. This function is later employed to 
estimate the location of a device given RSS values. We 
conducted experiments in 1240 square meter area of 
Engineering Building as shown in Figure 1 in which Target 
locations are marked are filled circles. This area is covered 
by eight wireless LAN APs. For sensor data collection, we 
employed HP iPAQ pocket PC devices equipped with 
inbuilt wireless network interface card. IEEE 802.11 (a/b/g) 
standard specifies that the signal strength measurement 

must be reported by the network interface card as part of 
standard compliance [15]. 
 

 
Figure 1: Location Map and Target Locations 

 
The RSS is measured in dBm and normal values for the 

RSS value may be between -10 and -100 dBm. We 
collected 150 samples of RSS from all available APs at 
each location in calibration phase for training the classifier. 
The same size of testing data was collected for testing the 
location estimation performance. In order to effectively 
capture noisy characteristics of radio channel due to several 
environmental factors, both sets of data were collected in 
five days at different times of each day. 
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Figure 2: Partial Radio Map showing the RSS patterns of three APs 

The noisy characteristics of RSS values can be seen in 
Figure 2 which shows the signal strength of three APs 
recorded at the subset of target locations. Location IDs are 
listed on X-axis and RSS values on Y-axis. It can be seen 
that the device at two different locations can sometimes 
report same RSS readings, and can report very different 
readings while at the same location. 

3.2   Model Training Phase 

Target classifier takes the RSSs of visible APs as input and 
generates location as output. This mapping is learned 
through training phase using training Radio Map. Training 
phase comprises several processes including data 
preprocessing, classifier training, post processing, error 
analysis and tuning classifier for optimal results. Figure 3 
shows the processes that are involved in training phase.  



  
Figure 3: Model Training Phase 

During preprocessing step, we apply a clustering technique 
that extracts the prior probabilities of visibility of APs on 
the set of locations from Radio Map. Resulting visibility 
clusters are used to de-sparse feature space as presented in 
[13]. RSS vectors are then normalized in order to make all 
values fall in -1 to 1 range. Results show that range 
normalization improves the estimation accuracy of SVM 
and MLP classifiers. We also applied smoothing filters to 
remove outliers from RSS patterns. Real RSS values 
exhibit temporal spikes due to environmental factors. 
Figure 4 shows spikes (outliers) in the signal strength of AP 
received at stationary device observations in real data. In 
order to filter out such timely non-regular spikes from 
training data, we employed a histogram based technique. 
This technique provides mapping that counts the number of 
observations that fall into various disjoint categories (bins). 
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Figure 4: Temporal Spikes in RSS at one location 

 
Let N denote the total number of observations and n be 

the total number of bins, the histogram is defined as: 

1
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k
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=

=∑  

where fk is the frequency of occurrence of the RSS value in 
the kth bin. Let the variable r denote the RSS value. Then, 
rmax is defined as the largest RSS value and rmin is defined 
the smallest occurrence of signal strength at a given 
location. The size of the bins, b , is then defined as: 

m a x m inr r
b

σ
−

=  

where σ is the standard deviation of RSS values at a given 
location. In next, we define a threshold frequency fthres such 
that all frequencies below this frequency are assigned zero 
values. We then have a new set of frequencies {fi | fi ≥ fthres} 

of size m ≤ n, with the corresponding bins denoted by bi. 
After preprocessing Radio Map, the training sets are 
presented to classifier along with actual target location for 
learning.  

3.2 Location Estimation Phase 

After training phase live data from the environment need to 
be tested with trained classifiers. In estimation phase, RSS 
captured on mobile device is presented to the location 
estimation model. Different preprocessing components are 
implemented to filter, scale and normalize data as shown in 
block diagram Figure 5.  
 

 
Figure 5: Location Estimation Phase 

 
Outlier filter component is implemented to remove spikes 
from RSS data at run time. Normalization component is 
responsible to scale inputs in a given range. Once 
normalized, RSS readings are presented to the appropriate 
Neural Network module. The output of neural network is 
post processed (De-normalized) to get the Location ID 
estimate. In next section, we shall present performance 
some results. 

4 Overview of SVM, MLP and LVQ 

4.1   Support Vector Machines (SVMs) and RSS based 
Positioning 

Seminal work on SVMs has been rigorously characterized 
by V. Vapnik [1]. SVM belongs to kernel based machine 
learning techniques. SVM have showed superior results in 
various applications of face detection, object recognition, 
handwritten character recognition, speck recognition, time 
series prediction and biometric identification system [21]. 
The basic idea in SVMs is to construct a special hyper 
plane between classes that separates them with largest or 
optimal margin. In simplest two class problem having input 
vectors xi (i = 1 ,…, n) in a N-dimensional input space Rn 
with corresponding class labels yi ∈ {-1, 1}, a SVM 
classifier is based on class of hyper planes, defined in (1), 
where is the weight vector, w x  is the training vector and 

is bias. b
( ) 0=+⋅ bxw          (1)  

The decision function takes form as described in (2). 
        ))sgn(()( bxwxf +⋅=       (2) 

The geometric measure of optimal margin becomes 
1/2(wTw). The optimal hyper plane can be found by 



minimizing 1/2(wTw) subject to yi(w⋅xi + b) ≥ 1∀i. Lagrange 
multipliers are used to solve this optimization problem. 
That formulates optimal hyper plane finding problem as 
maximizing following. 
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The generalized form of SVM solves multi class problems 
with non-linear separating hyper planes. It is realized by 
mapping the input space xi into a higher dimensional space 
also referred to as augmented space.  Different kernel 
functions, shown in Table 1, are used to achieve this 
mapping: 
         )()(),( jiji xxxxK φφ ⋅= .  

Table 1. Different Kernel Functions 
Kernel Formulation 

Linear uv  

Polynomial ( ) reecuv deg⊕γ  

Radial Basis Function ( )2uve γ  

Sigmoid ( )cuv ⊕γtanh  

 
Depending on kernel choice, the input space can be 
transformed into a feature space with linearly separable 
classes which were non-separable in original space. Even if 
classes are not completely separable in new feature space, 
SVM still can construct optimal margin separating hyper 
planes by allowing error penalty variables which relaxes 
the hard margin condition. Tradeoff among different 
training errors is regularized by 

∑
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where C is regularization constant. By substituting constant 
C and respective kernel function, problem equation (3) 
becomes as maximization of following. 
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We employed the LIBSVM as SVMs that allows the 
programmatic customization of two support vector 
classification techniques, i) C-SVC, ii) nu-SVC, as well as 
the configuration of four kernel functions [20]. It also 
supports multi class problems by employing “one-against-
one” algorithm. In this method total k(k – 1)/2 classifiers 
are actually generated for classes, where each training 
vector is compared against two different classes and the 
error (between the separating hyper plane margins) is 

minimized. The classification of the testing data is 
accomplished by a voting strategy, where the winner of 
each binary comparison increases a counter. The class with 
the highest counter value after all classes have been 
compared is selected. The RSS based location system 
development life cycle can be defined in three distinct 
phases. 

k

4.2   Multi Layer Perceptron (MLP) and RSS based 
Positioning 

MLP neural network is one of most frequently applied 
neural network for modeling non-linear systems due to 
their universal approximation capability. As Hornik, et al 
showed such networks are the capable of approximating 
any continuous function with high 
accuracy, provided that sufficiently many hidden units are 
available [25]. There have been several neural processing 
models based on the concept of back propagation. Typical 
MLP network consists of a set of input neurons forming the 
input layer, one or more hidden layers of computation 
nodes, and an output layer of nodes. The input signal 
propagates through the network layer-by-layer. Previously 
Multilayer Perceptron based RSS positioning systems have 
been reported by [11] and [12].  

mn RRf →:

 

 
Figure 6: Application of MLP for RSS based positioning 

 
Figure 6 shows an arbitrary structure of a MLP network in 

the context of RSS based location estimation. A trained 
MLP model takes RSS vector as input and produces an 
estimate of most likely location of the device which is 
reporting these RSS values. We conducted several 
experiments with the different choices of MLP tuning 
parameters in order to achieve best possible accuracy on 
test Radio Map. The final selection of MLP had eight 
neurons at input layer, only one hidden layer of seventy 
neurons and thirty five neurons at the output layer. The 
Secant Conjugant Gradient algorithm was used to train this 
network in 2000 epochs. The Detailed location estimation 
results of this network are presented in Section 5. 

4.3   Learning Vector Quantization (LVQ) 

LVQ networks employ non-parametric nearest neighbor 
classification algorithm based on Kohonen's work on self 
organizing maps [22][23]. Figure 7 shows the application 
of an arbitrary structure of a LVQ network for location 



estimation. The network takes the individual components of 
RSS vector as input and produces an estimate of most likely 
location of the device which is reporting these RSS values. 
The design of LVQ networks specifies three layers of 

neurons. Input layer contains as many neurons as 
components of input vector. Once the input vector is 
classified at competitive layer, the third layer, also called 
linear transformation layer, transforms the output of 
competitive layer into target classification vectors.  
 

 
Figure 7: Application of LVQ network for RSS based positioning 

This transformation involves competition among 
competitive layer neurons in order to select the ‘winner’ 
neuron; closest matching neuron which best represents the 
class of current input. We developed several LVQ networks 
with different structures and learning function. The best 
location estimation results on test Radio Map were 
achieved with one hundred neurons at hidden layer. 

5 Comparative Performance Results  
We trained SVM models with different kernel and 
parameter choices. All models were trained using both 
scaled and unscaled Radio Map feature space. Figure 8 
shows classification, here location estimation, performance 
of SVM with radial bases function and polynomial kernels 
on unscaled training and test data sets. Radial basis kernel 
function successfully classified training Radio Map with 
100% accuracy but with testing Radio Map its performance 
was very poor. Polynomial kernel improved SVM 
performance during testing phase with 78 % accuracy. The 
affect of changing degree of polynomial on SVM 
performance is shown later.  
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We tried to train SVM model with sigmoid kernel, but it 
took exceptionally long time and consumed 100% CPU and 
memory resources during that time until we killed training 
process. Training with sigmoid kernel was problematic only 
with unscaled Radio Map. Figure 9 shows training and 
testing results with scaled Radio Map. 
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The location estimation performance of radial basis kernel 
based model improved with scaled data set. 

Figure 9. Different Kernels (Scaled Radio Map) 

Table 2. Location estimation performance of SVM Models 

 Kernel Training Testing 

RBF 100% 4.07% Without 
Scaling Degree 5-P  100% 77.34% 

RBF 100% 74.58% 

Degree 2-P 100% 75.69% 
With 
Scaling 

Sigmoid 12% 13.25% 
P : Polynomial Degree 

 
Polynomial provided marginally better accuracy but lower 
than it produced with unscaled data set. SVM model built 
with sigmoid kernel demonstrated no problem during 
training or testing in contrast to unscaled Radio Map data 
sets, but location estimation accuracy of this SVM model 
remained very low. Table 2 presents the summarized results 
of location estimation performance of SVM models with 
different settings. We employed several parametric settings 
for each kernel but only best performance configuration 
results are presented here. 
SVM models trained with polynomial kernel provided 
comparatively better location estimation accuracy. We 
trained several such models based on the different degrees 
of polynomial kernel in order to reach the best 
performance. Figure 12 shows the affect of changing 
degree of polynomial on SVM model’s performance during 
training and testing with unscaled Radio Map. Figure 13 
shows same information for scaled Radio Map feature 
space. 

Figure 8. Different Kernels (Unscaled Radio Map) 
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Figure 11: SVM (RBF Kernel) Performance on Testing Radio Map 

 
Similarly, figure 12 shows location estimates and actual target 
locations of SVM (with polynomial kernel). Figure 13 shows 
multilayer perceptron model location estimates for individual 
target locations. 
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Figure 12: SVM (Polynomial Kernel) Performance on Testing Radio Map 
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 Figure 12. Affect of Polynomial Degree (Unscaled Radio Map) 
Figure 13: MLP Performance on Testing Radio Map 
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Figure 13. Affect of Polynomial Degree (Scaled Radio Map)

Figure 14: LVQ Performance on Testing Radio Map 
 

 Learning Vector Quantization network model’s location estimates 
are shown in figure 14. Now we present the comparative 
performance of SVMs, MLP and LVQ based location 
estimation. Figure 14 shows SVM (RBF Kernel) model 
location estimates at individual locations in target area. The 
number of test RSS vectors is listed on X-axis and 
corresponding location ID is shown on Y-axis. 
Similarly, Figure 15 shows location estimates and actual 
target locations of SVM with Polynomial Kernel. Figure 16 
shows MLP model location estimates for individual target 
locations. 

Table 3: Comparative performance of different models 

      Error 
Model MAE 

<= 1 <= 2 <= 3 
SVM(PK) 0.65 0.78 0.84 0.96 

SVM(RBFK) 0.71 0.75 0.84 0.96 

MLP 0.71 0.74 0.78 0.90 

LVQ 2.60 0.54 0.68 0.79 

PK : Polynomial Kernel, RBFK : RBF Kernel  
 
The location estimation of LVQ network model is shown in 
Figure 17. Although location estimation performance on 
individual locations provides detailed information about 
weaknesses and the strengths of model, but quantifiable 
comparison is difficult. Therefore, we evaluate the location 
estimation accuracy of each model over all target locations 
in both absolute and relative terms. The absolute deviation 
of location estimate from actual target location is measured 
as Mean Absolute Error (MAE). Relative error in location 



estimate is measured as the average of all deviations less 
than a particular threshold. Table 3 presents the summary of 
comparative performance of all three models employed for 
location estimation. 

6 Conclusions 
We presented a machine learning approach for received 
signal strength positioning systems in this paper. Prototype 
location estimation system performance is evaluated in 
terms of both overall and location specific measures. On the 
basis of these results, we conclude that SVM and MLP 
models produce comparable results in absolute error terms, 
but LVQ model gives poor estimation performance. SVM 
models, based on polynomial and RBF kernel, gave 
superior accuracy results in terms of relative location error. 
Training time for SVM model is very short in comparison 
with MLP and LVQ model training. Besides better 
estimation accuracy, fast training time gives competitive 
edge to SVM based location systems. Furthermore machine 
learning based approaches do not require runtime searching 
of nearest neighbors in huge backend radio map database, 
as is the case in KNN based work. This results in 
significant improvement in performance and resources 
utilization. 
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