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Abstract

Estimating location of mobile devices based on Received Signal Strength (RSS) patterns is an attractive method to
realize Indoor Positioning Systems. Accuracy of RSS based location estimation, particularly in large target sites, is ef-
fected by several environmental factors. Especially the temporal or permanent absence of radio signals introduces null
values rendering sparsity and redundancy in feature space. We present a Visibility Matrix based modular classification
model which systematically caters for unavailable signals. This model is practically realized on two eminent classifi-
cation methods: 1) Multi Layer Perceptron and 2) Learning Vector Quantization. In order to confirm robustness and
applicability of this model, we developed two location systems at different sites. Experimental results in real-world
environments demonstrate that modular classification model consistently achieves superior location accuracy.
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1. Introduction

Location information is an integral and crucial
component of ubiquitous computing applications.
Indoor location estimation has been subject to
costly infrastructure and special hardware devices
mounted on the objects of interest [5],[14] and
[17]. Received Signal Strength based indoor posi-
tioning systems can enable several location based
applications in future ubiquitous computing envi-
ronments. This technology offers economic viability
and prospects of wide scale adoption due to per-
vasive availablity of wireless networks and modern
personal computing devices (e.g. PDA, notebooks)
equipped with built in wireless network interface
cards. Although RSS based location awareness par-

1 Corresponding author, E-mail address: yklee@khu.ac.kr

ticularly for indoor scenarios is desirable but accu-
racy of such system has been subject to a lot of re-
search [18],[20],[21],[22],[25],[26]. These systems use
standard infrastructure of IEEE 802.11 also called
WiFi networks to estimate location of any device
which has a WiFi network interface card. RSS based
location systems can enable several applications
like automatic call forwarding to user’s location,
robotic localization, exploration and navigation
tasks, searching, guiding and escorting systems,
liaison applications, location based advertisement
and positioning of entities in large warehouses.

The fundamental assumption underlying RSS
based location estimation is that received signal
strengths of different access points, or signal sources,
exhibit complex but distinguishable patterns at
a particular location. If these patterns could be
captured at each location then pattern recognition
machines can be trained to learn the relationship
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between RSS fingerprints and each target location.
From a pattern recognition standpoint, a particular
set of access points constitute n-dimensional input
space which is often referred to as a Radio Map.
Suppose that n access points define a signal space
RSSn which covers target location space L, then
this relationship can be represented as

F : RSSn → L (1)

More specifically,

lj = f(rssn) (2)

where lj ∈ L and rssn ∈ RSSn.
Creation of the Radio Map, also called Site Cal-

ibration, involves capturing this information and
storing observed signal strengths vectors in a data
store. Fig. 1 shows the methodology of the calibra-
tion process.

Fig. 1. Creating the Radio Map Feature Space

Once the Radio Map feature space is created, it is
used to develop a mapping function, given in equa-
tion 2; between jth target location lj and respective
signal strength patterns. This function is later em-
ployed to estimate location of a device given RSS
values.

WiFi radio signals follow a complex propagation
model because of multi-path effects caused by build-
ing structure and environmental factors such as hu-
man activity and neighboring devices. These ele-
ments as well as the distance between transmitter
and receiver contribute to loss of a signal in certain
areas. In this paper, we refer to the signal availabil-
ity of a particular access point at a given location
as its visibility. Line graph of Fig. 2 shows signal
strength values of four access points 2 , listed on y-
axis, which are received at different locations, listed

2 We use last four digits of the MAC address to identify an
access point e.g. AP5535

on x-axis, by a mobile device. RSS scanning opera-
tion was performed several times for 5 days at each
location and averaged signal strength is used to rep-
resent signal strength at that location. It is clearly
noticeable that on many locations signal strength
of each access point is too weak to be detected by
mobile device. Temporal signal loss can be seen in
Fig. 3 graph in which scanning time is listed along x-
axis and signal strengths are shown along y-axis. It
shows signal strengths of one access point received
by a stationary PDA device.

Fig. 2. Permanent loss of signals

Fig. 3. Temporal loss of signals

Previously several pattern classification methods
have been reported, as presented in section 2, for
RSS based location estimation. However most of
the previous results consider a small scale location
estimation problem. Scaling up the target area in-
troduces the visibility issue which introduces null
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values in radio map feature space. Section 2.1 ad-
dresses the limitations imposed by the absence of
signals in previous approaches. We argue that the
visibility issue calls for a modular approach in or-
der to further improve the accuracy of RSS based
location systems. Modularity has successfully been
employed into classification systems as an effective
scheme to enhance their performance as described
in Section 2.2.In section 3 a novel approach is of-
fered to decompose the classification task into sim-
pler, self-contained classifier modules based on the
a priori knowledge about signal behavior. A modu-
lar classification model is presented combined with
a feature selection method to develop large scale
and highly accurate signal strength based location
systems. Previously we reported small scale proto-
type location estimation system based on modular
Multi Layer Perceptron networks [29], [30]. Here we
present extended experiments to validate robustness
and applicability of our approach by applying it on:
a) Two classification methods (Multi Layer Percep-
tron and Learning Vector Quantization) and b) Two
different sites. Experimental design and test set up
details are given in section 5. Results of both loca-
tion systems for each site are presented in section 6.1
and 6.2.

2. Related Work

There has been several efforts to develop RSS
based location systems. Several pattern classifica-
tion and machine learning methods e.g. bayesian
classification and filtering[21], k-nearest neigh-
bors[18],[20] , GPS like triangulation[19] and kalman
filtering[26] have been employed for this purpose.

Nearest Neighbors based pattern recognition
technique and its derivatives have been used in pi-
oneer works on RSS based location estimation. Mi-
crosoft’s RADAR system reported 2.65 meter dis-
tance error[18]. K. Pehlavan et al. used K-Nearest
Neighbors and achieved 2.8 meter distance er-
ror[20]. Nearest Neighbor and its variants require a
database of sample RSS readings at the estimation
time for pattern matching. As the area and number
of target locations grow, the size of the database
dramatically increases prohibiting sufficient scala-
bility.

Some research works have also employed GPS like
triangulation method for location estimation. Asim
et al achieved 4.5 meter location estimation error
in a target area of 60 square meters[19]. Triangu-

lation methods work on the assumption that signal
strength decays only as function of distance of re-
ceiver device from sender access points. Nevertheless
signal strength decay is a function of several factors
of the indoor environments which undermine the va-
lidity of this assumption.

Probabilistic approaches like Bayesian networks
have also been employed for such systems but are
computationally exhaustive and difficult to scale.
Andrew et al reported 1.5 meter average distance
error but only for 30 square meter area test bed
[21]. As the area and number of target locations
and wireless access points increase, the complexity
of bayesian structures grow and become computa-
tionally expensive.

Battiti et al. have reported their research on us-
ing feed forward back propagation neural network
on small scale (624 square meter area using 3 ac-
cess points) location estimation system [22]. Learn-
ing Vector Quantization networks were used to de-
velop location estimation system for 350 square me-
ter area using 5 access points[27].

2.1. Limitations of Previous Approaches

Previous approaches assume that all input signals
are available at every location, mainly due to small
problem area of location system. This assumption
leads to the monolithic, large and complex clas-
sification machine for location estimation which
means that classifier learns to estimate all loca-
tions, or classes, present in location space as shown
in Fig. 4. This approach is referred to as all-classes-

Fig. 4. All-classes-one-classifier Approach

one-classifier in literature. It is observed that in
many complex pattern classification tasks where the
number of classes is large and input space is noisy,
the all-classes-one-classifier either may not learn
pattern-to-class function or may take very long to
learn[16]. Due to intermittent visibility of the WiFi
radio signals, all access points are not accessible at
all target locations all the time. We argue that this
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phenomena imposes a primary limitation on fur-
ther success of all-classes-one-classifier approaches.
Since a particular access point corresponds to a di-
mension of the radio map feature space , therefore
invisibility of signals introduce null values in RSS
features. Previous approaches handle this situation
by representing unknown values with very low RSS
such as−100 dBm but this practice results in redun-
dant feature space . Redundant RSS values contain
little information to influence the discrimination
ability of feature space instead they can negatively
effect performance of classifier in two ways. First,
redundant features increase sample size to dimen-
sionality ratio. It is well known that classification er-
ror is mainly determined by ratio of training sample
size and feature space dimensions [1], [24]. Second,
unknown features do not compactly represent the
target locations in terms of signal measurements.
Non-representative features reduce the efficiency of
classifier and contribute to increase computational
complexity as well as memory requirements.

A modular classifier approach is presented in next
section which overcomes these limitations by incor-
porating visibility knowledge into classification sys-
tem design.

2.2. Modular Classification

Modularity has long been employed in comput-
ing systems. Inspired from biological evidences [16],
modular classification systems attracted lot of at-
tention from pattern recognition research commu-
nity. There are numerous variants such as Modu-
lar Connectionless Systems [4], Multi Modular Ar-
chitectures [6], Modular Neural Networks [11], [28],
Modular Pattern Classifiers [16] and Multiple Clas-
sifier Systems [10]. In general terms, the modular
designs claim that decomposing a problem space
into several subproblems enhances the learning and
generalization capability of the classifier. Different
methodologies for designing modular classifiers can
be categorized into three schemes.

All-Classes-Many-Classifiers refers to the method-
ology of training several redundant classifiers for
the same problem. Later, results of all classifiers are
integrated in order to obtain better performance
than a single classifier can yield. Several different
methods have been presented to integrate the out-
puts of different classifiers[3],[10],[13][15]. Although
this scheme can produces better generalization due
to the combined capabilities of multiple experts but

training of such systems takes a lot longer.
One-Class-One-Classifier methodology is based

on a class decomposition concept. It states that an
N-class problem can be divided into N two-class
subproblems. Later, separate modules are trained
to learn each two-class subproblem. However this
approach leads to a large number of sub-classifiers
which is not suitable for large scale location systems.
Moreover the discriminatory capability of the one-
class-one-classifier is reported to be poor [16].

SubsetOfAll-Classes-One-Classifier refers to
modular design which partitions the problem space
into subproblems. Each subproblem is then learned
by individual classifier. Cheng et al.[11] explained
a Divide-and-Conquer learning approach based on
partitioning of an input space into smaller training
sets. Multiple networks learn each training set in-
dividually and network outputs are integrated to
form a global output of system. Similar schemes
have been reported by others [4],[28].

3. Modular Classification Model for
Location Estimation

Modularity is principally proven to be an effec-
tive method for improving learning and recognition
performance. However no single approach suffices
for every problem. Each modular design is mainly
guided by the specific nature of the problem and re-
lated goals. An intuitive approach to overcome the
limitations mentioned in Section 2.1 is to decompose
the location estimation task into several sub-tasks
based on a priori knowledge about visibility of sig-
nals in the target area. This can be achieved by par-
titioning the input signal space into several feature
spaces and training individual classification modules
to learn the association between signal strengths and
respective locations. Let RSSd represent input sig-
nal space

RSSd = (rssi1, rssi2, rssi3 . . . rssid) (3)

where i is the ith input vector and each input vector
is composed of signal strength values of d access
points. This signal space provides connectivity to
mobile device in a finite output space A which is
divided into m disjoint locations.

A = {l1, l2, l3 . . . lm} (4)

The learning procedure of RSS pattern classifier re-
quires a training data set τ containing pairs of n
input vectors and corresponding output locations.

τ = (RSSd
i , lj)

n,m

i=1,j=1 lj ∈ A (5)
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In previous approaches a single large classifier is
trained to learn signal-to-location associations us-
ing τ . This paper proposes to partition both input
as well as output spaces based on visibility proper-
ties of radio signals, the input space is divided into
an arbitrary collection of nonempty subsets

RSSd = (RSSc
1 1 RSSc

2 1 RSSc
3 1 . . . RSSc

q) (6)

such that c < d and q is total number of partitions
in the input space. Correspondingly, each subset de-
fines a region R which is a nonempty set of locations
in the output space.

Ri = {li1, li2, li3 . . . lil}∀lil ∈ A (7)

and

A =
q⋃

i=1

Ri

This partitioning of the input and the output spaces
is driven by visibility properties of access points in
the area.

Separate classification modules can be employed,
based on visibility dependency between (6) and (7),
such as a subset of access points defines the input
vector of each classifier and the locations in each
corresponding region Ri become its outputs.

(Ri ←→ RSSc
i )

q
i=1 (8)

Fig. 5 shows schematic diagram of modular classi-
fication system for RSS based location estimation.
This approach leverages several desirable features
of location systems which cannot be realized using
previous approaches.

1. Insulation refers to separating the concerns by
localizing the learning and recognition of related
patterns and classes into individual classifiers. This
feature ensures clarity and flexibility while develop-
ing, repairing and expanding large scale classifica-
tion systems. Reparability can be more appreciated
in the context of location systems because changes
in the structure, such as adding or moving furni-
ture, of a part of building can effect signal strength
patterns, ultimately causing degraded location
estimation performance. In case of non-modular
approaches, the whole classifier is required to be
retrained for small changes or additions in signal
space. Whereas modular classifier model let repair
the effected areas independent of other parts of the
system.

Similar advantages are obtained in case of expand-
ing a classification system. By expanding we mean
to increase the area for location awareness. Even

Fig. 5. Modular Classification Model

though expansibility can be achieved by ad hoc in-
clusion of new features and classes into system, how-
ever unnecessary overlaps in signal space and subop-
timal utilization of the discrimination-ability of each
access point results in increased complexity of clas-
sifier. Modular classification system can integrate
new location classifiers into system without causing
redesigning and retraining of previous classifier such
that overlaps can be avoided and only the minimum
required access points are used to train a classifier.

2. The high dimensions and low sample size con-
tributes to learning and generalization ability of the
classifier [1]. Signal strength based location estima-
tion faces the issue of small sample size because only
finite number of samples can be collected at calibra-
tion time. Collecting signal samples for longer pe-
riods of time has practical constraints especially in
the case of large scale systems. Moreover, the di-
mensionality of input space increases as the target
area expands which further aggravates the problems
caused by high dimensionality and low sample size.

The modular design employs only c most influen-
tial access points from a d-dimensional input space,
such as c < d, and sample size remain same. This im-
proves the dimensionality-sample size ratio and, ul-
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timately, generalization ability resulting classifiers.
3. Parallelism is a common trait of modular de-

signs which allows faster training of classification
systems. Since a large and complex problem is di-
vided into several simpler sub-problems. It take less
time to learn pattern-class associations. Moreover
several classifier modules can be trained in parallel,
which further reduces training time.

4. Visibility Modeling

It is needed to inspect the physical properties of
radio signal in order to support the propositions
made by modular classification model in the previ-
ous section. We present a modeling approach to cap-
ture visibility information about radio signals in the
form of a visibility matrix.

4.1. Visibility matrix

As mentioned in Section 2.1, in certain areas sig-
nal strength drops to undetectable levels, less than
-100 dBm. Suppose that at jth location, scanning
operations are performed Nj times and the signal of
ith access point is detected pi times. Then visibility
probability can be written as

Pij =
pij

Nj
(9)

A visual representation of the visibility probability
of 10 access points in experimental site 1 is shown
using radar graphs in Fig. 6. The target locations are
listed on the edge of each graph and Pij is shown as
shaded area from center, which represents zero prob-
ability, to the edge, representing maximum probabil-
ity, of each graph. Fig. 8 map shows the target loca-
tions where signal visibility data were collected. We
calculate visibility probability of each access point
at all target locations as part of site calibration pro-
cess as explained in section 5.1. Notice that, loca-
tions 11,12,14,20 and 34 are missing in Fig. 6 graphs
because we did not have access to these locations.

The visibility probabilities of d access points at m
locations can be combined into an m× d matrix.

V isibilityMatrix := (Pij)m×d

0 ≤ Pij ≤ 1

This visibility matrix is used to resolve each location
lj into the corresponding prior probabilities of all
access points.

[Pij ]di=1 = V isibilityMatrix(lj) (10)

Fig. 6. Visibility probability graphs of 10 access points

In the following subsection, we explain how the visi-
bility matrix provides the basis for a systematic way
to select more representative features from the radio
map feature space.
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4.2. Visibility Clusters

Careful observation of visibility graphs, shown in
Fig. 6, reveals that among total d access points there
exists q subsets or clusters of c access points which
are visible at different regions. Let RSSc

i denote ith

cluster of c access points which belongs to the whole
input space RSSd. Let Ri denote the correspond-
ing ith region where members of RSSc

i has desirable
visibility probability. Visibility clusters define all the
visibility associated pairs of access point clusters and
their corresponding regions such that

[RSSc
i ]

q
i=1 = V isibilityCluster([Ri])

[Ri]
q
i=1 = V isibilityCluster(RSSc

i )
(11)

where [RSSc
i ]

q
i=1 ∈ RSSd and [Ri]

q
i=1 ∈ A as

mentioned in equations (6) and (7). Notice that all
visibility associations among signal space and loca-
tion space, as formulated in (11), are defined over
the visibility matrix. Let c denote the desired num-
ber of features in subspace or access points and r
denote the number of locations in corresponding re-
gion. Even though c can vary across different access
point clusters but for simplicity of discussion sup-
pose that c remains constant for all clusters. It is de-
sirable to automatically acquire i) those access point
clusters which have more visibility probability than
certain threshold Pτ and ii) all possible locations
where each corresponding access point cluster is de-
tectable or visible. Algorithm 1 extracts these clus-
ters from the visibility matrix given desired num-
ber of features c, or access points in a cluster, and
threshold visibility probability Pτ .

Even though formation of visibility clusters tends
to vary in different sites due to the specific physical
layout and environmental conditions at each site. We
present general heuristics which largely effect this
formation. Combination of three factors, a) Pτ vis-
ibility probability threshold b) c sub-feature space
dimensionality c) the total number of access points
d, influences the selection of final members of visi-
bility clusters in three respects;

1. Total number of visibility clusters denoted as
q. For an admissible visibility Pτ , smaller values of
c and larger values of d produce several access point
clusters to be visible at similar or overlapping re-
gions. This is because if there are n access points
visible in a region and c < n, then n!

c! different com-
binations of access point clusters can become visi-
ble in that region. As described in equation 8, since
each visibility cluster defines inputs and outputs of

Algorithm 1 Algorithm for Extracting Visibility
Clusters from Visibility Matrix

Inputs
c: Required number of access points in a cluster
Pτ : Threshold visibility probability
Define Global
L[j]: Collection of all target locations
j: Index of target location
AP[k]: Collection of all access points
k: access point index
pkj : Visibility probability of a kth access point at
jth location
R[i]: Collection of regions
RSS[i]: Collection of access points clusters
i: Index of access point clusters
newAPSet: boolean flag
APSet: temporary collection of access point
for Each Location j in L[j] do

Initialize i, k, newAPset, and APSet
for Each Access Point k in AP[k] do

if pkj satisfies Pτ then
Add AP[k] to APSet

else
Move to next access point AP[k+1]

end if
end for
if APSet has c elements then

set newAPSet flag to true
for Each access point cluster i in RSS[i] do

if APSet is member of RSS[i] then
Add L[j] to R[i]

set newAPSet flag to false
quit for

else
Move to next access point cluster
RSS[i+1]

end if
end for
if newAPSet is true then

Add new APSet to RSS[i]

Add L[j] to R[i]

end if
end if
Move to Next Location L[j+1]

end for

the classifier module, it is desirable to generate less
number of modules in order to reduce overall com-
plexity of the modular classification system.

2. Total number of omitted locations that can not
be covered by any of the clusters. Notice that even
though c can take possibly all values less than d,
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nevertheless any arbitrary access point cluster does
not necessarily provide enough coverage in terms of
the number of locations.

3. Separability of new subspaces defined by access
point clusters. It refers to those ambiguous vectors
in feature space which belong to more than one loca-
tions or classes. Neighboring locations often receive
similar signal strengths especially when situated in
one room or a corridor. A straightforward solution
to this issue is to incorporate more access points
into feature space. Nevertheless the exact number
of access points required to achieve separability de-
pends on a particular site. We measure separability
of training samples as ratio of separable samples and
total samples representing one location.

sq
i=1 =

m∑

j=1

Tj −Oj

Tj

where Tj denotes the total samples and Oj repre-
sents the number of overlapping samples in the fea-
ture space for jth location. Summation of these ra-
tios at every location in ith region gives separability
of ith access point cluster. Fig. 7 shows separability
of different visibility clusters.

In order to further explain above heuristics some
example visibility clusters, which exist in one of
our experimental sites, are presented here. Effect of
changing total number of access points used to de-
fine the radio map feature space is shown in tables
1 and 2. It is evident from these clusters that in-
creasing features, 8 access points in table 1 and 11
in table 2, results in increased number of visibility
clusters q. Three locations are omitted in this clus-
tering. Nevertheless only three features may not re-
sult in completely separable signal vectors. Table 3
shows visibility clustering results with different pa-
rameters. In this case q is 5 and omitted locations
are 3. This clustering produces no overlap in training
data of different locations as can be seen in Fig. 7.
This shows that adding more access points to the
feature space enriches discrimination information by
making all sample training vectors separable. How-
ever acceptable values of visibility probability Pτ re-
strict subspace dimensionality c to 4 and further in-
crement of access points in c results in no visibility
clusters. Consequently we increased the total num-
ber of access points d to 12. Table 4 shows visibility
clusters where c = 5 in 12 access point radio map.
Although this clustering results in only 3 clusters
and completely separable training samples but 16
locations are omitted.

Table 1
Visibility Clusters A: d = 8, c = 3,Pτ = .55

Access Point Clusters Regions

AP7195AP9239AP5659 3,19,23,24,28

AP7195AP5659AP9235 16,17,18,19,21,22,23,24,25,28

AP7195AP7199AP9239 2,3,5,6,7,10,23,26,27,28,29,30,31,35

AP5551AP7199AP9239 2,6,7,8,23,26,27,28,29,30,31,32,33

AP7195AP8195AP5823 2,3,6,7,9,15,17

AP7195AP7199AP5659 3,22,23,25,28

AP7195AP5551AP7199 2,6,7,22,23,26,27,28,29,30,31

Table 2
Visibility Clusters B: d = 11, c = 3, Pτ = .55

Access Point Clusters Regions

AP5551AP7199AP9239 6,7,8,23,26,27,28,29,30,31,32,33;

AP7195AP5551AP7199 6,7,22,23,26,27,28,29,30,31

AP7195AP7199AP9239 2,3,5,6,7,10,23,26,27,28,29,30,31,35

AP7195AP8195AP5823 2,3,6,7,9,15

AP7195AP5659AP9235 16,17,18,19,21,22,23,24,25,28

AP7195AP7199AP5659 3,22,23,25,28

AP7195AP5659AP8135 16,17,21,22,23,24,25,28

AP7195AP9239AP5659 3,19,23,24,28

Table 3
Visibility Clusters C: d = 11, c = 4, Pτ = .55

Access Point Clusters Regions

AP7195AP5659AP9235AP8135 16,17,18,19,21,22,23,24,25,28

AP5551AP7199AP9239AP6079 6,8,28,29,30,31,32,33

AP7195AP5551AP7199AP9239 2,6,7,23,26,27,28,29,30,31

AP7195AP7199AP9239AP6079 3,5,6,10,28,29,30,31,35

AP7195AP8195AP5823AP5535 2,3,6,7,9,15

Table 4
Visibility Clusters D: d = 12, c = 5, Pτ = .50

Access Point Clusters Regions

AP7195AP7199AP9239AP6079AP5535 3,5,6,10,29,35

AP7195AP7199AP9239AP8195AP5535 2,3,5,6,7,35

AP5551AP7199AP9239AP6079AP9207 6,8,28,29,30,31,32,33

So far it is confirmed that low values of visibility
probability Pτ introduce redundant features in the
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radio map. This reduces the location estimation ac-
curacy and increases the complexity of the classifi-
cation system as shown in experimental results (sec-
tions 6.1 and 6.2). On the other hand, low values of
c correspond to decreased discrimination ability of
access points in each cluster and higher values ren-
der either no clustering or result in a large number
of omitted locations.

Fig. 7. Separability of visibility clusters

Since visibility clusters correspond to a set of ac-
cess points which are visible at a set of locations,
this information is used to develop binary decision
rules, as shown in table 5, to invoke a specific classi-
fier module for a particular signal input. In this table
the availability or absence of signal from a particular
access point is represented as either 1 or 0 respec-
tively. The gating module shown in Fig. 5 receives a
d-dimensional input feature space vector rssd, pre-
sented in equation 3, and converts it into appropri-
ate sub-space vectors, equation 6, based on visibility
status of access points. This converted input vector
is then routed to appropriate classifier module de-
pending upon the decision rules in table 5.

Table 5
Binary Visibility Decision Rules

7195 7199 9239 5551 8195 5823 5659 9235 Module

1 1 1 0 0 1 0 0 m1

1 1 1 0 1 0 1 1 m2

1 0 0 0 1 1 0 0 m2

1 0 0 0 0 0 1 1 m4

1 0 0 0 1 0 1 1 m5

5. Experimental Design

In order to evaluate modular classification model
in real life environment we conducted several exper-
iments in a campus environment. The selected sites
were located on 3rd floor of computer engineering
department. This floor has a versatile environment
containing class rooms, labs and offices. We used
MATLAB Neural Network Tool Box [32] for train-
ing the location classifier. Nevertheless, in order
to actually deploy trained classifiers onto mobile
devices we developed component-based software li-
braries. CompoNet [33] encapsulates arbitrary size
and structure of neural networks into a software
object which can be invoked as a function from
other programs. Experiments were carried out us-
ing a public network of 3COM IEEE 802.11 (a, b,
g) WiFi access points at two different sites. In or-
der to actually scan signal strengths, two types of
consumer devices with built in WiFi Network In-
terface Cards (NIC) were used for RSS scanning: 1)
HP iPAQ Pocket PC running Windows CE and 2)
Toshiba M30 Laptops running Windows XP. Fig. 8
and 9 show map of site 1 and site 2 with target
locations marked as small filled circles.
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Fig. 8. Experimental Site 1

A subset of the Site 2 target locations is situated
in IIRC labs 3 where radio signals face high levels of
electromagnetic noise generated by equipments (e.g.
MRI scanner machines) causing intermittent visibil-

3 Impedance Imaging Research Center, Kyung Hee Univer-
sity, http://iirc.khu.ac.kr/
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ity of access points. Another objective to carry out
these experiments is to study the effect of low visibil-
ity on location estimation performance of classifiers.
Visibility clusters of site 2 are presented in table 6.

Akin to typical pattern classification tasks, RSS
based location system development is divided into
feature-space creation, preprocessing, classifier
training and testing phases. We explain experimen-
tal design and test setup in following sub sections.

Fig. 9. Experimental Site 2

Table 6
Site 2 Visibility Clusters: d = 9, c = 3, Pτ = .75

Access Point Clusters Regions

AP2243AP5823AP9239 15,21,16,17,18,19,20

AP2243AP9147AP9239 5,6,7,8,9,10,11,15

AP9147AP9239AP9207 1,2,3,4

AP2243AP5823AP9147 12,13,14,15,16,17,18,28

AP2243AP5823AP5883 22,23,24,25,26,27,30

AP2243AP5823AP7195 28,29,30,31

5.1. Sensor Data Collection

Site calibration phase involves scanning RSS pat-
terns at discrete target locations. Signal strengths of
access points can be scanned passively and actively.
In former case each access point periodically broad-
casts an announcement packet. Mobile devices can
parse that packet to know the signal source Basic
Service Set Identifier (BSSID) and signal strength.

The BSSID contains MAC address of access point
which is used to identify different access points. In
active scanning case, the mobile device broadcasts
a query signal to access points. In response to the
query signal each access point sends a reply sig-
nal back to querying device containing its BSSID.
We used active scanning method for scanning sig-
nal strengths. For each type of devices, customized
software modules called Calibration Agents were de-
veloped to access NIC hardware. Calibration agent
invokes the scanning process on an adjustable fre-
quency and parses response signals of each access
point. As presented in section 4, a visibility matrix
is developed during calibration phase in addition
to the radio map. This is actualized through a his-
togram based data collection method. Apart from
hardware interfacing, the calibration agent builds
a histogram data structure in its memory to store
scanned data. Fig. 10 shows structure of calibration
data for one location and actual RSS histogram plots
are shown in Fig.11. Sensor measurements contain
pairs of access point BSSID and Received Signal
Strength Indicator (RSSI) values.

Od
i=1 = [BSSIDi, RSSIi]

Calibration agent parses each pair O from radio sig-
nals and establishes a separate histogram for indi-
vidual access points as presented in algorithm 2. The
visibility probability of access points is computed
such as for N signal scan observations at jth loca-
tion, each histogram provides the total number of
times the signal from ith access point is detected
pji =

∑n
i=1 xi. The ratio of N and pji gives visibil-

ity probability as explained in (9).
Prevalent method for site calibration uses a net-

work card interface to extract RSS values from hard-
ware and a graphical program with image map of
site which allows developers to pinpoint their lo-
cation. This practice is tiring for sufficient calibra-
tion of large sites. In order to alleviate the required
labor for data collection task, we developed a dis-
tributed site calibration system which allows multi-
ple devices to simultaneously calibrate site in short
time [31]. RSS based location estimation is directly
affected by the degree of how closely sample signal
data represent the real life radio signals. Therefore
we undertook un-customary efforts to gather sam-
ple signal strengths. Instead of creating the radio
map at one time and then dividing it into training
and test samples, we calibrated target sites for seven
days and at different timings of each day. Each tar-
get location was calibrated multiple times by differ-
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Algorithm 2 Algorithm for Constructing RSS His-
tograms
1: Input
2: rss: Received Signal Strength of ith access point
3: Define Global
4: newV alue: Boolean flag
5: H[, ]: Histogram, a two dimensional array
6: S: Histogram size
7: for each element c in H do
8: if rss equals H[count,0] then
9: newV alue is false

10: H[c,1] ← H[count,1] + 1
11: else
12: newV alue ← true
13: end if
14: end for
15: if newV alue is true then
16: H[S,0] ← rss
17: H[S,0] ← H[S,0] + 1
18: end if

ent people and devices. Data of alternate days was
used for, respectively, training and testing the clas-
sifiers. During sample data collection routine activ-
ities were taking place which are peculiar to typical
indoor environments such as lecture rooms, labs and
admin offices.

Fig. 10. Calibration Data Packet

5.2. Training Phase

In this phase the Radio Map feature space is used
to train location estimation classifier. Two classifi-
cation methods, Multi Layer Perceptron and Learn-
ing Vector Quantization, were employed for loca-
tion estimation as suggested by Battiti et al.[22] and
Ogawa et al.[27]. During training phase, preprocess-
ing of feature space is one important step to encode

Fig. 11. RSS Histogram of four access points at one location

inputs and outputs into a format suitable for clas-
sification method. We applied range normalization
on the Radio Map feature space.

rssnorm = 2((rss− rssmin)/(rssmax− rssmin))−1

Where rssnorm is normalized signal strength. RSS
values fall in the range of -100 dBm to -10 dBm [23],
We used these values as global minima rssmin and
maxima rssmax for normalizing all features.

Each location is identified in two ways: a) unique
identification number (ID) and b) cartesian coordi-
nates on xy-plane. The former was used for classifier
training and later for error analysis. For classifier
training, class labels or target locations are assigned
in the range of 1 to 35 and 1 to 31, for site 1 and 2
respectively. This ID is then encoded into sparse ar-
ray which has all 0-valued elements except the one
at the index of ID which contains 1. This array has
zero values in all elements for the location which was
not accessible for calibration. We measure location
estimation error in two aspects:

a) Absolute deviation of location estimate from
actual location is measured as Mean Absolute Error
(MAE)

|MAE| = 1
N

N∑

i=1

∣∣∣li − l̂i

∣∣∣

where N is the total number of training or test
patterns, li is the estimated location and l̂i is the
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true location of ith pattern. Deviation between li
and l̂i is calculated as euclidian distance

4i =
∣∣∣li − l̂i

∣∣∣ =
√

(xi − x̂i)
2 + (yi − ŷi)

2 (12)

where (xi, yi) are corresponding coordinates of li
location estimate of ith pattern and (x̂i, ŷi) is the
actual location.

b) Relative deviation of location estimate, de-
noted as er, is measured relative to some tolerable
error threshold denoted as Γ. It implies that relative
error reflects severity of error in location estimate by
allowing some deviation which is not more than Γ.
An estimate is less severe if it is relatively closer to
actual location than the one which is farther away.
Thus Er gives a percentage of total N estimates in
which 4i is admissible or less than Γ.

Er =
1
N

N∑

i=1

[(4i ≤ Γ) = 1]

where threshold Γ3
i=1 produces three severity of er-

ror values averaged over all locations.

5.2.1. Training Multi Layer Perceptron Classifiers
Separate multi layer perceptron based location es-

timation systems were trained for both site 1 and
site 2. For the sake of comparative analysis both
the non-modular, represented as MLP, and modular,
represented as mMLPi, location estimation systems
were trained. Site 1 radio map was composed of 11
access points for training MLP and for the mMLP
classifiers the training data was extracted using ta-
bles 3 visibility clusters. On the other hand, 9 ac-
cess points constituted radio map for Site 2 and the
visibility clusters are shown in table 6.

It is established that a single hidden layer is suf-
ficient to learn any continuous function to a desired
accuracy, given that the number of hidden neurons
is sufficient [2]. Fig. 12 shows an arbitrary structure
of a Multi Layer Perceptron (MLP) network for lo-
cation estimation. Network takes individual compo-
nents of the RSS vector as input and produces an
estimate of most likely location of the device which
is reporting these RSS values.

Several multi layer perceptron networks were
trained with different parameters such as hidden
layer neurons, learning function, transfer functions
and training epochs. Training results of only best
performing networks for Site 1 location system are
represented in Table 7 and Table 8 shows training
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Fig. 12. Employing Multi Layer Perceptron for RSS based
location estimation

results of for site 2. Detailed discussion of the ef-
fects of different parameters on location estimation
performance is given in [30].

As results tables show in ’Training Function’
column, two training algorithms were employed
to learn pattern-location pairs: i) Levenberg-
Marquardt (LM) developed by Hagan et al.[9] and
ii) Moller’s Scaled Conjugate Gradient (SCG) pre-
sented in [7]. In our experiments, LM algorithm
achieved nearly zero training error in fewer itera-
tions but its requirement of computational resources
is prohibitive for training large networks. On the
other hand SCG achieved comparable performance
and does not require excessive computational as
well as memory resources during training.

Topology column contains structure of respective
neural network which is represented as I − H − O
where I is input neurons, H is hidden layer neurons
and O is output layer neurons. Epochs column shows
number of training iterations that respective net-
work took to achieve Mean Absolute Error (MAE)
which is listed in last column. One common prop-
erty that all networks in our experiments share is
the choice of transfer functions which is logsigmoidal
function logsig(n) = 1/(1+e−n) at hidden layer neu-
rons and tansigmoidal function tansig(n) = 2/(1 +
e−2n)− 1 at the output neurons.

It is obvious from training results that modular clas-
sifier model employs networks which are simpler
in structure and takes less than 100 iterations to
learn pattern-location associations in comparison
with non-modular networks.
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Table 7
Site 1: Training Results of Multi Layer Perceptron Classifiers

Module Training Function Topology Epochs Training MAE

MLP SCG 11-70-35 2000 0.021

mMLP1 LM 4-20-10 88 0.021

mMLP2 LM 4-20-8 80 0.082

mMLP3 LM 4-25-10 86 0.0184

mMLP4 LM 4-20-9 50 0.0047

mMLP5 LM 4-15-6 45 0.009

Table 8
Site 2: Training Results of Multi Layer Perceptron Classifiers

Module Training Function Topology Epochs Training MAE

MLP SCG 12-200-31 1000 0.138

mMLP1 SCG 3-40-8 100 .023

mMLP2 LM 3-40-8 64 .001

mMLP3 LM 3-20-4 14 .01

mMLP4 LM 3-40-8 23 .01

mMLP5 LM 3-35-7 77 .005

mMLP6 SCG 3-30-4 100 .013

5.2.2. Training Learning Vector Quantization
Classifiers

Learning Vector Quantization (LVQ) classifier
employs non-parametric nearest neighbor pattern
recognition algorithm based on Kohonen’s self-
organizing-maps [12]. Fig. 13 shows application of
an arbitrary structure of a Learning Vector Quan-
tization (LVQ) network for location estimation.
Network takes individual components of RSS vec-
tor as input and produce an estimate of most likely
location of the device which is reporting these RSS
values.

Design of LVQ network specifies three layers of
neurons. Input layer contains as many neurons as
components of input vector I. Hidden layer con-
tains competitive neurons to represents subclasses
and output layer consists of neurons which represent
actual classes in the input space.

The hidden or competitive layer learns to classify
input vectors in much the same way as the com-
petitive layer of self-organizing-maps. Input neurons
and competitive layer neurons are interconnected
through IW weights. When an RSS input is applied
to the network; the distance between each hidden
layer neuron and input vector is computed. Then
Winner Takes All (WTA) competition is applied to
find the closest subclass, the winner, neuron IWw.
Once the input vector is classified at hidden layer the
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Fig. 13. Employing Learning Vector Quantization network
for RSS based location estimation

third layer, also called linear transformation layer,
transforms the output of competitive layer into tar-
get classification vectors. Learning occurs by adjust-
ing the IWw weights in such a way as to move it
closer to input vector if classification result is correct

IWw = IWw + α(I − IWw)

or farther if input is incorrectly classified.

IWw = IWw − α(I − IWw)

Learning rate of the network is determined by the
parameter α. Number of hidden layer neurons in-
fluences the learning as well as generalization ca-
pability of Learning Vector Quantization networks.
We developed several Learning Vector Quantization
networks with different hidden layer neurons. Ta-
bles 9 and 10 list training results of best performing
LVQ classifiers for sites 1 and 2. Analogous to the
naming convention of multi layer perceptron exper-
iments, modular networks are denoted as mLV Qi

and non modular ones are denoted as LVQ in results
tables.
Table 9
Site 1: Training Results of Learning Vector Quantization
Classifiers

Classifier Learning Function Topology Epochs Training MAE

LVQ lvq1 8-100-35 150 0.018

mLVQ1 lvq1 5-30-10 45 0.03

mLVQ2 lvq1 4-30-8 20 0.009

mLVQ3 lvq1 4-25-10 40 0.027

mLVQ4 lvq1 4-25-9 25 0.057

mLVQ5 lvq1 4-15-6 15 0.048

13



Table 10
Site 2: Training Results of Learning Vector Quantization
Classifiers

Classifier Learning Function Topology Epochs Training MAE

LVQ lvq1 12-200-31 161 0.019

mLVQ1 lvq1 3-40-8 10 0.14

mLVQ2 lvq1 3-40-8 76 0.045

mLVQ3 lvq1 3-20-4 45 0.035

mLVQ4 lvq1 3-40-8 70 0.058

mLVQ5 lvq1 3-30-7 56 0.11

mLVQ6 lvq1 3-20-4 40 0.09

6. Test Results

As mentioned in section 5.1 we employed RSS
data of different days for testing the classifiers. Fol-
lowing subsections present location estimation re-
sults with test radio map for each site.

6.1. Site 1 Test Results

Modular classification, mMLP and mLVQ, results
for site 1 are shown in Tables 11 and 12. Both clas-
sifiers exhibit similar performance, in terms of ab-
solute and relative errors, except module 3 and 5.

Table 11
Site 1: Modular Approach Results of Modular MLP

Classifier Test Patterns Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

mMLP1 140 0.4140 85% 90% 91%

mMLP2 140 0.7286 91% 92% 94%

mMLP3 165 0.4957 81% 95% 96%

mMLP4 115 0.556 91% 92% 99%

mMLP5 103 0.9806 68% 88% 88%

Table 12
Site 1: Modular Approach Results of Modular LVQ

Classifier Test Patterns Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

mLVQ1 140 0.5571 87% 91% 91%

mLVQ2 140 0.7214 91% 91% 92%

mLVQ3 165 0.9760 66% 92% 93%

mLVQ4 115 0.4087 93% 95% 95%

mLVQ5 103 1.25 61% 78% 94%

Overall performance of modular classification sys-
tem is compared with non-modular classifier in Ta-
ble 13. In this site MLP performed better than LVQ
classifier both in terms of absolute and relative er-
ror. However LVQ benefits from modularity signifi-
cantly more than MLP with respect to absolute dis-
tance error. The mMLP and mLVQ produced rela-
tive positioning error Er ≤ 1 for 84% and 80% times
respectively. On the other hand, non-modular MLP
and LVQ achieve similar performance if Er ≤ 3.
Which means that severity of error of modular clas-
sification system is 3 times better in this site than
monolithic counterparts. As we increased the toler-
able error threshold up to 3 positions, modular clas-
sification system consistently provided superior re-
sults in comparison with non-modular approach.
Table 13
Site 1: Summarized Results

Classifier Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

MLP 1.0 70% 78% 85%

mMLP 0.6349 84% 92% 95%

LVQ 2.4 54% 68% 78%

mLVQ 0.7831 80% 90% 93%

6.2. Site 2 Test Results

The generalization performance of mMLP and
mLVQ on site 2 radio map is presented in Tables
14 and 15 respectively. Notice that, for both mMLP
and mLVQ, performance of 1,4 and 5 modules is ag-
gravated in comparison with other modules. This is
mainly because the target locations of these mod-
ules are situated in an area which is permeated with
high levels of radio noise as mentioned in section 5.
Due to the specific environmental conditions mobile
devices in this area face frequent visibility problems.
Table 14
Site 2: Modular Approach Results of Modular MLP

Classifier Test Patterns Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

mMLP1 109 1.13 68% 85% 95%

mMLP2 105 0.33 93% 99% 100%

mMLP3 65 0.06 100% 100% 100%

mMLP4 194 1.17 60% 82% 91%

mMLP5 194 0.77 72% 88% 99%

mMLP6 87 0.44 100% 100% 100%
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Table 15
Site 2: Modular Approach Results of Modular LVQ

Classifier Test Patterns Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

mLVQ1 109 1.43 54% 56% 83%

mLVQ2 105 0.15 93% 99% 99%

mLVQ3 65 0.04 100% 100% 100%

mLVQ4 194 0.92 65% 90% 100%

mLVQ5 194 1.08 61% 83% 92%

mLVQ6 87 0.32 100% 100% 100%

Summarized test results for Site 2 are shown in
Table 16 with respect to all classification meth-
ods. Notice that even though modules 1,4 and 5
produce relatively higher distance error than other
modules, these mMLP produce lower error in com-
parison with MLP and LVQ classifiers. It concurs
the tendency of modular classifier to show more
resilience to noise and render better location es-
timates than non-modular MLP and LVQ. It is
interesting to note that the mMLP based location
systems continued to perform better than mLVQ
as in site 1. Which implies that multi layer percep-
tron demonstrates better competence than learning
vector quantization. However LVQ based location
system surpassed MLP in terms of absolute error
and produced similar relative error.

Table 16
Site 2 Summarized Results

Classifier Test MAE Er ≤ 1 Er ≤ 2 Er ≤ 3

MLP 1.56 54% 69% 91%

mMLP 0.63 82% 88% 98%

LVQ 1.49 72% 75% 85%

mLVQ 0.66 79% 88% 96%

Based on these results, it is clear that modular clas-
sification model improves location estimation accu-
racy. This performance holds across different sites
both in terms of absolute location error and rela-
tive error. Moreover different classification methods
show similar trend to gain benefit from modularity.

7. Conclusions

Received Signal Strength based location systems
are poised to enable indoor positioning systems
due to their economic viability. Intrinsically, signal
strength based location estimation is a pattern clas-

sification problem. Large scale realization of these
systems face with the visibility issue which states
that radio signal at certain locations can become un-
detectable. This introduces null values in the radio
map feature space resulting in sparsity and redun-
dancy. A modular classification model is presented
to overcome the visibility problem by incorporating
the prior knowledge about signal availability into
design of the classification system. This is achieved
by partitioning high-dimensional and sparse feature
space into low-dimensional but more meaningful
subspaces. Signal visibility based decomposition of
radio map allows development of competitively ac-
curate location systems in arbitrarily large target
sites.

We developed two location systems in order to
confirm the applicability and robustness of modular
approach in real life environments. Two famous neu-
ral networks were employed to realize the modular
classification model, 1) Multi Layer Perceptron and
2) Learning Vector Quantization. Comparative re-
sults demonstrate superiority of modular approach
in terms of both absolute error and relative error.
On the basis of extensive experimental results we
conclude that modular classification model achieves
significant improvement in location estimation ac-
curacy as well as enables systematic expansion in
coverage area of location systems.
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