
8. 8. DeadlocksDeadlocks

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n System Model
n Deadlock Characterization
n Methods for Handling Deadlocks
n Deadlock Prevention
n Deadlock Avoidance
n Deadlock Detection
n Recovery from Deadlock
n Combined Approach to Deadlock Handling

Operating System 2

The Deadlock ProblemThe Deadlock Problem
n A set of blocked processes each holding a resource and waiting to acquire a

resource held by another process in the set

n Example
ü System has 2 tape drives
ü P1 and P2 each hold one tape drive and each needs another one

n Example
ü semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

Operating System 3

ResourcesResources
n Resources
ü Can only be used by one process at a time
ü Can be both hardware and software

§ e.g., tape drives, printers, system tables, database entries, memory locations
ü Request → Allocate → Use → Release

n Preemptable resources
ü Sharable resources
ü Can be taken away from a process with no ill effects

n Nonpreemptable resources
ü Nonsharable resources
ü Will cause the process to fail if taken away
ü Generally deadlocks involve nonpreemtable resources

Operating System 4

Bridge Crossing ExampleBridge Crossing Example

n Traffic only in one direction
n Each section of a bridge can be viewed as a resource
n If a deadlock occurs, it can be resolved if one car backs up (preempt

resources and rollback)
n Several cars may have to be backed up if a deadlock occurs
n Starvation is possible

Operating System 5

System ModelSystem Model
n Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

n Each resource type Ri has Wi instances

n Each process utilizes a resource as follows:
ü request
ü use
ü release

Operating System 6

Deadlock CharacterizationDeadlock Characterization

n Mutual exclusion: only one process at a time can use a resource

n Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

n No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

n Circular wait: there exists a set {P0, P1, …, Pn, P0} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1 is waiting for a
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0

Deadlock can arise if four conditions hold simultaneously

Operating System 7

ResourceResource--Allocation GraphAllocation Graph

n V is partitioned into two types:
ü P = {P1, P2, …, Pn}, the set consisting of all the processes in the system
ü R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

n Request edge
ü directed edge Pi → Rj

n Assignment edge
ü directed edge Rj → Pi

A set of vertices V and a set of edges E

Operating System 8

ResourceResource--Allocation Graph (ContAllocation Graph (Cont’’d)d)

n Process

n Resource Type with 4 instances

n Pi requests instance of Rj

n Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Operating System 9

Example of a Resource Allocation GraphExample of a Resource Allocation Graph

Operating System 10

Resource Allocation Graph With A DeadlockResource Allocation Graph With A Deadlock

Operating System 11

Resource Allocation Graph With A Cycle But No DeadlockResource Allocation Graph With A Cycle But No Deadlock

Operating System 12

Basic FactsBasic Facts
n If graph contains no cycles ⇒ no deadlock

n If graph contains a cycle ⇒
ü If only one instance per resource type, then deadlock
ü If several instances per resource type, possibility of deadlock

Operating System 13

Methods for Handling DeadlocksMethods for Handling Deadlocks
n Ensure that the system will never enter a deadlock state

n Allow the system to enter a deadlock state and then recover

n Ignore the problem and pretend that deadlocks never occur in the system
ü used by most operating systems, including UNIX

Operating System 14

Handling DeadlocksHandling Deadlocks
n Deadlock prevention
ü Restrain how requests are made
ü Ensure that at least one necessary condition cannot hold

n Deadlock avoidance
ü Require additional information about how resources are to be requested
ü Decide to approve or disapprove requests on the fly

n Deadlock detection and recovery
ü Allow the system to enter a deadlock state and then recover

n Just ignore the problem altogether!

Operating System 15

Deadlock PreventionDeadlock Prevention

n Mutual Exclusion
ü Not required for sharable resources
ü Must hold for nonsharable resources
ü Make as few processes as possible actually claim the resource

n Hold and Wait
ü Must guarantee that whenever a process requests a resource, it does not hold

any other resources
ü Require process to request and be allocated all its resources before it begins

execution, or allow process to request resources only when the process has none
ü Low resource utilization
ü Starvation possible

Restrain the ways request can be made

Operating System 16

Deadlock Prevention (ContDeadlock Prevention (Cont’’d)d)
n No Preemption
ü If a process that is holding some resources requests another resource that cannot

be immediately allocated to it, then all resources currently being held are released
ü Preempted resources are added to the list of resources for which the process is

waiting
ü Process will be restarted only when it can regain its old resources, as well as the

new ones that it is requesting

n Circular Wait
ü Impose a total ordering of all resource types, and require that each process

requests resources in an increasing order of enumeration
ü F: R → N, where R = {R1, R2, …, Rn} is the set of resource types and N is the set

of natural numbers
ü Whenever a process requests an instance of Rj, it has released any resources Ri

such that F(Ri) >= F(Rj)

Operating System 17

Deadlock AvoidanceDeadlock Avoidance

n Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

n The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition

n Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information available

Operating System 18

Safe StateSafe State
n When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

n System is in safe state if there exists a safe sequence of all processes

n Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can still
request can be satisfied by currently available resources + resources held by
all the Pj, with j<i
ü If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished
ü When Pj is finished, Pi can obtain needed resources, execute, return allocated

resources, and terminate
ü When Pi terminates, Pi+1 can obtain its needed resources, and so on

Operating System 19

Safe vs. Unsafe StateSafe vs. Unsafe State
n Examples

Total: 10units

P1 requests
2 units

P0 requests
1 unit

P0P0 33 99

P1P1 00 --

P2P2 22 77

Free: 5

P1 completes

P0P0 33 99

P1P1 00 --

P2P2 77 77

Free: 0

P2 gets 5 units

P0P0 33 99

P1P1 00 --

P2P2 00 --

Free: 7

P2 completes

P0P0 44 99

P1P1 44 44

P2P2 22 77

Free: 0

P1 gets 2 units

P0P0 44 99

P1P1 00 --

P2P2 22 77

Free: 4

P1 completes

P0P0 44 99

P1P1 22 44

P2P2 22 77

Free: 2

P0 gets 1 unit

UNSAFE

P0P0 33 99

P1P1 44 44

P2P2 22 77

Free: 1

P1 gets 2 units

P0P0 33 99

P1P1 22 44

P2P2 22 77

Free: 3

Has Max
SAFE

Operating System 20

Basic FactsBasic Facts
n If a system is in safe state ⇒ no deadlocks

n If a system is in unsafe state ⇒ possibility of deadlock

n Avoidance ⇒ ensure that a system will never enter an unsafe state

Operating System 21

Safe, Unsafe , Deadlock State Safe, Unsafe , Deadlock State

Operating System 22

ResourceResource--Allocation Graph AlgorithmAllocation Graph Algorithm
n Claim edge Pi → Rj indicated that process Pj may request resource Rj

ü represented by a dashed line

n Claim edge converts to request edge when a process requests a resource

n When a resource is released by a process, assignment edge reconverts to a
claim edge

n Resources must be claimed a priori in the system

Operating System 23

ResourceResource--Allocation Graph For Deadlock AvoidanceAllocation Graph For Deadlock Avoidance

Operating System 24

Unsafe State In ResourceUnsafe State In Resource--Allocation GraphAllocation Graph

Operating System 25

BankerBanker’’s Algorithms Algorithm
n Multiple instances

n Each process must a priori claim maximum use

n When a process requests a resource it may have to wait

n When a process gets all its resources it must return them in a finite amount
of time

Operating System 26

n Available: Vector of length m. If available [j] = k, there are k instances of
resource type Rj available

n Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k
instances of resource type Rj

n Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k
instances of Rj.

n Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj
to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types

Data Structures for the BankerData Structures for the Banker’’s Algorithms Algorithm

Operating System 27

Safety AlgorithmSafety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work := Available
Finish [i] := false for i = 1,2, …, n

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4

3. Work := Work + Allocationi
Finish[i] := true
go to step 2

4. If Finish [i] = true for all i, then the system is in a safe state

Operating System 28

ResourceResource--Request Algorithm for Process Request Algorithm for Process PPii

n Requesti : request vector for process Pi

n If Requesti [j] = k then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since process
has exceeded its maximum claim

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since resources are
not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
Available := Available - Requesti;
Allocationi := Allocationi + Requesti;
Needi := Needi – Requesti;

• If safe ⇒ the resources are allocated to Pi

• If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

Operating System 29

Example of BankerExample of Banker’’s Algorithms Algorithm
n 5 processes P0 through P4

ü 3 resource types A (10 instances), B (5 instances), and C (7 instances)

n Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Operating System 30

Example (ContExample (Cont’’d)d)
n The content of the matrix. Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

n The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Operating System 31

AA BB CC

P0P0 00 11

P1P1 22 00

P2P2 33 00

P3P3 22 11

P4P4 00 00

00

00

22

11

22

AA BB CC

P0P0 77 55

P1P1 33 22

P2P2 99 00

P3P3 22 22

P4P4 44 33

33

22

22

22

33

AA BB CC

1010 55 77

AA BB CC

33 33 22

AA BB CC

P0P0 77 44

P1P1 11 22

P2P2 66 00

P3P3 00 11

P4P4 44 33

33

22

00

11

11

Total
Resources

Available
Resources

Allocated
Resources

Max
Resources

Needed
Resources

Currently safe: <P1, P3, P4, P0, P2> is a safe sequence

Example (Redrawn)Example (Redrawn)

Operating System 32

Example PExample P11 Request (1,0,2) (ContRequest (1,0,2) (Cont’’d)d)
n Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true)

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

n Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies
safety requirement

n Can request for (3,3,0) by P4 be granted?
n Can request for (0,2,0) by P0 be granted?

Operating System 33

BankerBanker’’s Algorithms Algorithm
n Notes
ü Safety checking algorithm requires O(mn2) operations, where

§ m is the number of resource types
§ n is the number of processes

ü Processes rarely know in advance what their maximum resource needs will be
ü The number of processes is not fixed, but dynamically varying as new users log in

and out
ü Resources that were thought to be available can suddenly vanish

§ e.g., tape drives or disk drives
ü In practice, few, if any, existing systems use the banker’s algorithm for avoiding

deadlocks

Operating System 34

Deadlock DetectionDeadlock Detection
n Allow system to enter deadlock state

n Detection algorithm

n Recovery scheme

Operating System 35

n Maintain wait-for graph
ü Nodes are processes
ü Pi → Pj if Pi is waiting for Pj

n Periodically invoke an algorithm that searches for a cycle in the graph

n An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph

Single Instance of Each Resource TypeSingle Instance of Each Resource Type

Operating System 36

Resource-Allocation Graph Corresponding wait-for graph

ResourceResource--Allocation Graph and WaitAllocation Graph and Wait--for Graphfor Graph

Operating System 37

Several Instances of a Resource TypeSeveral Instances of a Resource Type
n Available: A vector of length m indicates the number of available resources

of each type

n Allocation: An n x m matrix defines the number of resources of each type
currently allocated to each process

n Request: An n x m matrix indicates the current request of each process. If
Request [i,j] = k, then process Pi is requesting k more instances of resource
type, Rj

Operating System 38

Detection AlgorithmDetection Algorithm
1. Let Work and Finish be vectors of length m and n, respectively initialize:

(a) Work := Available
(b) For i := 1,2, …, n, if Allocationi ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] = false
(b) Requesti ≤ Work

If no such i exists, go to step 4

Operating System 39

Detection Algorithm (ContDetection Algorithm (Cont’’d)d)
3. Work := Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] = false, for some i, 1 ≤ i ≤ n, then the system is in deadlock state.
Moreover, if Finish[i] = false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether
the system is in deadlocked state

Operating System 40

Example of Detection AlgorithmExample of Detection Algorithm
n Five processes P0 through P4

n Three resource types A (7 instances), B (2 instances), and C (6 instances)

n Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

n Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Operating System 41

Example (Redrawn)Example (Redrawn)

AA BB CC

P0P0 00 11

P1P1 22 00

P2P2 33 00

P3P3 22 11

P4P4 00 00

00

00

33

11

22

AA BB CC

P0P0 00 00

P1P1 22 00

P2P2 00 00

P3P3 11 00

P4P4 00 00

00

22

00

00

22

AA BB CC

77 22 66

AA BB CC

00 00 00

Total
Resources

Available
Resources

Allocated
Resources

Requested
Resources

Currently not in a deadlock: <P0, P2, P3, P1, P4> will work

What if
this

becomes
1?

Operating System 42

Example (ContExample (Cont’’d)d)
n P2 requests an additional instance of type C

Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

n State of system?
ü Can reclaim resources held by process P0, but insufficient resources to fulfill other

processes’ requests
ü Deadlock exists, consisting of processes P1, P2, P3, and P4

Operating System 43

DetectionDetection--Algorithm UsageAlgorithm Usage
n When, and how often, to invoke depends on:
ü How often a deadlock is likely to occur?
ü How many processes will need to be rolled back?

§ one for each disjoint cycle

n If detection algorithm is invoked arbitrarily, there may be many cycles in the
resource graph and so we would not be able to tell which of the many
deadlocked processes “caused” the deadlock

Operating System 44

n Abort all deadlocked processes

n Abort one process at a time until the deadlock cycle is eliminated

n In which order should we choose to abort?
ü Priority of the process
ü How long process has computed, and how much longer to completion
ü Resources the process has used
ü Resources process needs to complete
ü How many processes will need to be terminated
ü Is process interactive or batch?

Recovery from Deadlock: Process TerminationRecovery from Deadlock: Process Termination

Operating System 45

n Selecting a victim
ü Minimize cost

n Rollback
ü Return to some safe state, restart process for that state

n Starvation
ü Same process may always be picked as victim, include number of rollback in cost

factor

Recovery from Deadlock: Resource PreemptionRecovery from Deadlock: Resource Preemption

Operating System 46

n Combine the three basic approaches
ü Prevention
ü Avoidance
ü Detection

allowing the use of the optimal approach for each of resources in the system

n Partition resources into hierarchically ordered classes

n Use most appropriate technique for handling deadlocks within each class

Combined Approach to Deadlock HandlingCombined Approach to Deadlock Handling

Operating System 47

Traffic Deadlock for Exercise 8.4Traffic Deadlock for Exercise 8.4

Operating System 48

Deadlock IgnoranceDeadlock Ignorance
n The Ostrich algorithm
ü Just put your head in the sand and pretend there is no problem at all
ü Reasonable if

§ Deadlocks occur very rarely
§ Cost of prevention is high

ü UNIX and Windows take this approach
ü It is a trade-off between

§ Convenience
§ Correctness

