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Background

N Virtual memory — separation of user logical memory from physical memory
U Only part of the program needs to be in memory for execution
U Logical address space can therefore be much larger than physical address space
U Allows address spaces to be shared by several processes
U Allows for more efficient process creation

N Virtual memory can be implemented via:
U Demand paging
U Demand segmentation
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Virtual Memory That is Larger Than Physical Memory
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Demand Paging

N Bring a page into memory only when it is needed
U Less I/O needed
U Less memory needed
U Faster response
U More users

N Page is needed b reference to it
U invalid reference b abort
a not-in-memory P bring to memory
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Transfer of a Paged Memory to Contiguous Disk Space
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Demand Paging

N A paging system with (page-level) swapping
N Bring a page into memory only when it is needed
U Cf) swapping: entire process is moved

N OS uses main memory as a (page) cache of all of the data allocated by
processes in the system
U Initially, pages are allocated from physical memory frames

U When physical memory fills up, allocating a page requires some other page to be
evicted from its physical memory frame

N Evicted pages go to disk (only need to write if they are dirty)
U To a swap file

U Movement of pages between memory/disks is done by the OS
U Transparent to the application
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Demand Paging (Cont’d)

N Why does this work? & Locality
U Temporal locality: locations referenced recently tend to be referenced again soon

U Spatial locality: locations near recently referenced locations are likely to be
referenced soon

N Locality means paging can be infrequent
U Once you've paged something in, it will be used many times
 On average, you use things that are paged in
O But this depends on many things:
§ Degree of locality in application
§ Page replacement policy

§ Amount of physical memory
§ Application’s reference pattern and memory footprint
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Demand Paging (Cont’d)

n Why is this “demand” paging?
U When a process first starts up, it has a brand new page table, with all PTE valid
bits “false”

§ No pages are yet mapped to physical memory

U When the process starts executing:
§ Instructions immediately fault on both code and data pages
§ Faults stop when all necessary code/data pages are in memory
§ Only the code/data that is needed (demanded!!) by process needs to be loaded
§ What is needed changes over time, of course...
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Valid-Invalid Bit

N With each page table entry a valid—invalid bit is associated
(1 P in-memory, O P not-in-memory)

N Initially valid—invalid but is set to O on all entries
N Example of a page table snapshot

Frame # valid-invalid bit

page table

N During address translation, if valid—invalid bit in page table entry is O
P page fault
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Page Table When Some Pages Are Not in Main Memory
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Page Fault

N If there is ever a reference to a page, first reference will trap to OS
P page fault
N OS looks at another table to decide:

U Invalid reference b abort
( Just not in memory

Get empty frame
Swap page into frame
Reset tables, validation bit = 1

Restart instruction (if cannot be restarted?)
0 block move

5 3 3 3

U auto increment/decrement location

Operating System 11



Page Fault

N What happens to a process that references a virtual address in a page that
has been evicted?

U When the page was evicted, the OS sets the PTE as invalid and stores (in PTE)
the location of the page in the swap file

U When a process accesses the page, the invalid PTE will cause an exception to be
thrown

N The OS will run the page fault handler in response
U Handler uses invalid PTE to locate page in swap file

U Handler reads page into a physical frame, updates PTE to point to it and to be
valid

U Handler restarts the faulted process
N Where does the page that’s read in go?

U Have to evict something else (page replacement algorithm)

U OS typically tries to keep a pool of free pages around so that allocations don’t
inevitably cause evictions
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Steps in Handling a Page Fault
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Memory Reference

N Situation
U Process is executing on the CPU, and it issues a read to a (virtual) address

TLB hit PA Memory
TLB miss Page
page fault | tables
prptection fault
PTE
data
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Memory Reference (Cont’d)

N The common case
U The read goes to the TLB in the MMU
TLB does a lookup using the page number of the address
The page number matches, returning a PTE
TLB validates that the PTE protection allows reads
PTE specifies which physical frame holds the page
MMU combines the physical frame and offset into a physical address
MMU then reads from that physical address, returns value to CPU

G e e e e
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Memory Reference (Cont’d)

N TLB misses: two possibilities

U (1) MMU loads PTE from page table in memory

§ Hardware managed TLB, OS not involved in this step

§ OS has already set up the page tables so that the hardware can access it directly
0 (2) Trap to the OS

§ Software managed TLB, OS intervenes at this point

§ OS does lookup in page tables, loads PTE into TLB

§ OS returns from exception, TLB continues

U At this point, there is a valid PTE for the address in the TLB
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Memory Reference (Cont’d)

N TLB misses
U Page table lookup (by HW or OS) can cause a recursive fault if page table is
paged out
§ Assuming page tables are in OS virtual address space
§ Not a problem if tables are in physical memory

U When TLB has PTE, it restarts translation
§ Common case is that the PTE refers to a valid page in memory
§ Uncommon case is that TLB faults again on PTE because of PTE protection bits
(e.g., page is invalid)
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Memory Reference (Cont’d)

N Page faults

U PTE can indicate a protection fault

§ Read/Write/Execute — operation not permitted on page

§ Invalid — virtual page not allocated, or page not in physical memory
O TLB traps to the OS (software takes over)

§ Read/Write/Execute — OS usually will send fault back to the process, or might be
playing tricks (e.g., copy on write, mapped files)

§ Invalid (Not allocated) — OS sends fault to the process (e.g., segmentation fault)

§ Invalid (Not in physical memory) — OS allocates a frame, reads from disk, and maps
PTE to physical frame
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What happens if there is no free frame?

N Page replacement — find some page in memory, but not really in use, swap it
out

 Algorithm
U Performance
§ want an algorithm which will result in minimum number of page faults

N Same page may be brought into memory several times
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Performance of Demand Paging

N Page FaultRate O£p £ 1.0
U if p =0 no page faults
a if p =1, every reference is a fault

N Effective Access Time (EAT)
EAT = (1 — p) X memory access
+ p X (page fault overhead
+ [swap page out ]
+ swap page in
+ restart overhead)
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Demand Paging Example

N Memory access time = 1 microsecond

N 50% of the time the page that is being replaced has been modified and
therefore needs to be swapped out

N Swap Page Time = 10 msec = 10,000 usec

EAT=(1-p)x1+px(15000)
=1+ 14999P  (in usec)

Operating System

21




Process Creation

N Virtual memory allows other benefits during process creation:
0 Copy-on-Write
0 Memory-Mapped Files
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Copy-on-Write

N Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

U If either process modifies a shared page, only then is the page copied

Nn COW allows more efficient process creation as only modified pages are
copied

N Free pages are allocated from a pool of zeroed-out pages
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Copy-On-Write

N Process creation

O requires copying the entire address space of the parent process to the child
process

U Very slow and inefficient!

N Solution 1: Use threads
U Sharing address space is free

N Solution 2: Use vfork() system call

U vfork() creates a process that shares the memory address space of its parent

U To prevent the parent from overwriting data needed by the child, the parent's
execution is blocked until the child exits or executes a new program

U Any change by the child is visible to the parent once it resumes
U Useful when the child immediately executes exec()

Operating System
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Copy-On-Write (Cont’d)

N Solution 3: Copy On Write (COW)

U Instead of copying all pages, create shared
mappings of parent pages in child address

Space. Process
( Shared pages are protected as read-only in
child. Page Physical
§ Reads happen as usual table memory
§ Writes gene_rate a protection fault, trap to OS,
and OS copies the page, changes page
mapping in client page table, restarts write
instruction i fork )
copied
write
\‘ COW
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Memory-Mapped Files

N Memory-mapped file 1/0 allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

N A file is initially read using demand paging
U A page-sized portion of the file is read from the file system into a physical page

U Subsequent reads/writes to/from the file are treated as ordinary memory
accesses

N Simplifies file access by treating file I/O through memory rather than read|()
write() system calls

N Also allows several processes to map the same file allowing the pages in
memory to be shared
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Memory-Mapped Files

N Memory-mapped files

U Mapped files enable processes to do file /O using memory references
§ Instead of open(), read(), write(), close()

0 mmap(): bind a file to a virtual memory region
§ PTEs map virtual addresses to physical frames holding file data
§ <Virtual address base + N> refers to offset N in file

U Initially, all pages in mapped region marked as invalid
§ OS reads a page from file whenever invalid page is accessed
§ OS writes a page to file when evicted from physical memory
§ If page is not dirty, no write needed
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Memory-Mapped Files (Cont’d)

N Note:

U File is essentially backing store for that region of the virtual address space
(instead of using the swap file)

U Virtual address space not backed by “real” files also called “anonymous VM”

N Advantages
U Uniform access for files and memory (just use pointers)
U Less copying

N Drawbacks

U Process has less control over data movement
§ OS handles faults transparently

U Does not generalize to streamed I/O (pipes, sockets, etc.)
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Page Replacement

N Prevent over-allocation of memory by modifying page-fault service routine to
Include page replacement

N Use modify (dirty) bit to reduce overhead of page transfers
U Only modified pages are written to disk

N Page replacement completes separation between logical memory and
physical memory
U Large virtual memory can be provided on a smaller physical memory
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Page Replacement

N When a page fault occurs, the OS loads the faulted page from disk into a
page frame of memory

N At some point, the process has used all of the page frames it is allowed to
use

N When this happens, the OS must replace a page for each page faulted in
O It must evict a page to free up a page frame

N The page replacement algorithm determines how this is done
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Page Replacement (Cont’d)

N Evicting the best page
U The goal of the replacement algorithm is to reduce the fault rate by selecting the
best victim page to remove
U The best page to evict is the one never touched again
§ as process will never again fault on it
U “Never” is a long time, so picking the page closest to “never” is the next best thing

§ Belady’s proof: Evicting the page that won'’t be used for the longest period of time
minimizes the number of page faults
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
U If there is a free frame, use it

U If there is no free frame, use a page replacement algorithm to select a victim
frame

3. Read the desired page into the (newly) free frame
U Update the page and frame tables

4. Restart the process

Operating System
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Page Replacement
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Page Replacement Algorithms

N Want lowest page-fault rate

N Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

N In all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5
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Graph of Page Faults Versus The Number of Frames

number of page faults

4

number of frames
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First-In-First-Out (FIFO) Algorithm

N Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
N 3 frames (3 pages can be in memory at a time per process)

1114 5

2 12| 1 3 9page faults

313|2 4
N 4 frames
1115 4
2 12| 1 5 10 page faults
3 (3|2
4 (4] 3

N FIFO Replacement — Belady’s Anomaly
U more frames b less page faults
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N Obvious and simple to implement
U Maintain a list of pages in order they were paged in
U On replacement, evict the one brought in longest time ago

N Why might this be good?
U Maybe the one brought in the longest ago is not being used

N Why might this be bad?
U Maybe, it's not the case
U We don’t have any information either way

N FIFO suffers from “Belady’s Anomaly”
U The fault rate might increase when the algorithm is given more memory

Operating System
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FIFO Page Replacement

reference string

7 0 1 2

1

page frames
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FIFO lllustrating Belady’s Anomaly
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FIFO (Cont’d)

N Example: Belady’'s anomaly
U Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
0 3 frames: 9 faults

[=To

4
1
2

(]~ =

U 4 frames: 10 faults
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Optimal Algorithm

N Replace page that will not be used for longest period of time

N 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

W |IDN |

N How do you know this?

N Used for measuring how well your algorithm performs
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Optimal Page Replacement

reference string
7 0 1 2

page frames
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Least Recently Used (LRU) Algorithm

N Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

A 1T OW|IDN| P
(@)
N

N Counter implementation
U Every page entry has a counter
U Every time page is referenced through this entry, copy the clock into the counter

U When a page needs to be changed, look at the counters to determine which are
to change

45
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LRU Page Replacement

reference string
7 0 1 2

page frames
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LRU Algorithm (Cont’d)

N Stack implementation — keep a stack of page numbers in a double link form:

U Page referenced:
§ move it to the top
§ requires 6 pointers to be changed

U No search for replacement
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Use Of A Stack to Record The Most Recent Page References

reference string

4 7 0 7

stack before a stack after b
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LRU

N LRU uses reference information to make a more informed replacement
decision
U Idea: past experience gives us a guess of future behavior

U On replacement, evict the page that has not been used for the longest time in the
past

U LRU looks at the past, Belady’'s wants to look at future

N Implementation

U To be perfect, need to timestamp every reference and put it in the PTE (or
maintain a stack) — too expensive

U So, we need an approximation
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LRU Approximation Algorithms

N Reference bit
U With each page associate a bit, initially = 0
U When page is referenced bit setto 1
U Replace the one which is O (if one exists). We do not know the order, however

N Second chance
U Need reference hit
U Clock replacement

U If page to be replaced (in clock order) has reference bit = 1, then:
§ set reference bit 0
§ leave page in memory
§ replace next page (in clock order), subject to same rules
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Approximating LRU

N Many LRU approximations use the PTE reference (R) bit
U R bit is set whenever the page is referenced (read or written)

N Counter-based approach
U Keep a counter for each page

O At regular intervals, for every page, do:
§ If R =0, increment the counter (hasn’t been used)
§ If R =1, zero the counter (has been used)
§ Zero the R bit
U The counter will contain the number of intervals since the last reference to the
page
U The page with largest counter is the least recently used

N Some architectures don’'t have a reference bit
0 Can simulate reference bit using the valid bit to induce faults
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Second Chance or LRU Clock

N FIFO with giving a second chance to a recently referenced page

N Arrange all of physical page frames in a big circle (clock)

N A clock hand is used to select a good LRU candidate
0 Sweep through the pages in circular order like a clock
U If the R bit is off, it hasn’t been used recently and we have a victim
U If the R bit is on, turn it off and go to next page

N Arm moves quickly when pages are needed
U Low overhead if we have plenty of memory
0 If memory is large, “accuracy” of information degrades
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Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages circular queue of pages

(a) (b)
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Not Recently Used

N NRU or enhanced second chance

U Use R (reference) and M (modify) bits

§ Periodically, (e.g., on each clock interrupt), R is cleared, to distinguish pages that have
not been referenced recently from those that have been

Paged-in _
interrupt interrupt
Class O
R=0, M=0 _
Write
_ Read _
Read Interrupt Write Interrupt
Read 2 -
ass Read
R=1,M=0__/  wWrite R=1, M=1 Write
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Not Recently Used (Cont’d)

N Algorithm
U Removes a page at random from the lowest numbered nonempty class

U It is better to remove a modified page that has not been referenced in at least one
clock tick than a clean page that is in heavy use

N Advantages
U Easy to understand
U Moderately efficient to implement
U Gives a performance that, while certainly not optimal, may be adequate
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Counting Algorithms

N Keep a counter of the number of references that have been made to each
page

N LFU Algorithm: replaces page with smallest count

N MFU Algorithm: based on the argument that the page with the smallest count
was probably just brought in and has yet to be used
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N Counting-based page replacement
U A software counter is associated with each page

U At each clock interrupt, for each page, the R bit is added to the counter
§ The counters denote how often each page has been referenced

N Least Frequently Used (LFU)
U The page with the smallest count will be replaced

0 Cf) Most frequently used (MFU) page replacement
§ The page with the largest count will be replaced

§ Based on the argument that the page with the smallest count was probably just brought
in and has yet to be used

U It never forgets anything

§ A page may be heavily used during the initial phase of a process, but then is never
used again
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N Aging

U The counters are shifted right by 1 bit before the R bit is added to the leftmost

Page

LFU (Cont’d)

1 1 1 1
R bits for - R bits for : R bits for : R bits for : R bits for
pages 0-5, t pages 0-5, | pages 0-5, | pages 0-5, , pages 0-5,
clock tick 0 E clock tick 1 i clock tick 2 i clock tick 3 i clock tick 4
ol1]o]1 E 1lolo]|1 i 1lol1]o i nuu1oiu11nnn
i : | |
I I ] |
] 1 ] |
! I l I
10000000 | i | 11000000 | 1| 11100000 | i | 11110000 |1 | 01111000
I i 1 I
] 1 (] I
00000000 10000000 i 11000000 01100000 i 10110000
[] i ] I
1 1 ] I
10000000 :r 01000000 i 00100000 i 00100000 i 10001000
] 1 1 I
| ] I I
00000000 : 00000000 : 10000000 01000000 i 00100000
] 1 ] I
[ 1 ] I
10000000 ' 11000000 ! 01100000 : 10110000 ! 01011000
| ] 1 I
i i ] |
10000000 E 01000000 i 10100000 : 01010000 i 00101000
I | ] |
(a) (b) () (d) (e)
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Allocation of Frames

N Each process needs minimum number of pages

N Example: IBM 370 — 6 pages to handle SS MOVE instruction:
U instruction is 6 bytes, might span 2 pages
U 2 pages to handle from
0 2 pages to handle to

N Two major allocation schemes
U fixed allocation
U priority allocation
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Fixed Allocation

N Equal allocation — e.g., if 100 frames and 5 processes, give each 20 pages
N Proportional allocation — Allocate according to the size of process

— s; =size of process p;
— S = é Si
— m =total number of frames

. S -
— a; = allocation for p, =§ m

m=64

s =10

s, =127
10 ,

= — " 64»5

T I
127
=—"64»59

e
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Priority Allocation

N Use a proportional allocation scheme using priorities rather than size

N If process P, generates a page fault,
U select for replacement one of its frames
U select for replacement a frame from a process with lower priority number
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Global vs. Local Allocation

N Global replacement
U Process selects a replacement frame from the set of all frames
U One process can take a frame from another

N Local replacement
U Each process selects from only its own set of allocated frames
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Thrashing

N If a process does not have “enough” pages, the page-fault rate is very high

N This leads to:
U Low CPU utilization

U Operating system thinks that it needs to increase the degree of multiprogramming
U Another process added to the system

N Thrashing © a process is busy swapping pages in and out
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Thrashing

I -
| thrashing

degree of multiprogramming

N Why does paging work? & Locality model
U Process migrates from one locality to another
U Localities may overlap

N Why does thrashing occur?
U S size of locality > total memory size
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Locality In A Memory-Reference Pattern

Operating System
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Working-Set Model

N D° working-set window ° a fixed number of page references
U Example: 10,000 instruction

Nn WSS, (Working Set Size of Process P,) =
total number of pages referenced in the most recent D (varies in time)
U if Dtoo small will not encompass entire locality
U if Dtoo large will encompass several localities
0 if D=¥ b will encompass entire program

Nn D =SWSS,?° total demand frames
N if D>mpPp Thrashing

N Policy if D > m, then suspend one of the processes

Operating System
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Working-Set Model (Cont’d)

page reference table
. ..2615777751623412344434344413234443444 ...

A _1 A
t1
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}
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Keeping Track of the Working Set

N Approximate with interval timer + a reference bit

n Example: D= 10,000
U Timer interrupts after every 5000 time units
U Keep in memory 2 bits for each page
U Whenever a timer interrupts copy and sets the values of all reference bits to O
U If one of the bits in memory = 1 b page in working set

N Why is this not completely accurate?

N Improvement & 10 bits and interrupt every 1000 time units
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Page-Fault Frequency Scheme

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

N Establish “acceptable” page-fault rate
U If actual rate too low, process loses frame
U If actual rate too high, process gains frame
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Other Considerations

N Prepaging

N Page size selection
U Fragmentation
U Table size
U 1/O overhead
U Locality
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Other Considerations (Cont’d)

N TLB Reach
U The amount of memory accessible from the TLB
U TLB Reach = (TLB Size) X (Page Size)
U ldeally, the working set of each process is stored in the TLB
U Otherwise there is a high degree of page faults
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Increasing the Size of the TLB

N Increase the Page Size

U This may lead to an increase in fragmentation as not all applications require a
large page size

N Provide Multiple Page Sizes

U This allows applications that require larger page sizes the opportunity to use them
without an increase in fragmentation
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Other Considerations (Cont’d)

N Program structure
O int A[][] = new int[1024][1024];
U Each row is stored in one page

U Program 1 for (j = 0; j < A.length; j++)
for (i =0; i <A.length; i++)
Alij] =0;

1024 x 1024 page faults

U Program 2 for (i=0; i <A.length; i++)
for (j =0; ] <A.length; j++)
Ali,j] =0;

1024 page faults

Operating System
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Other Considerations (Cont’d)

N 1/O Interlock
U Pages must sometimes be locked into memory

N Consider I/O

U Pages that are used for copying a file from a device must be locked from being
selected for eviction by a page replacement algorithm
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Reason Why Frames Used For I/O Must Be In Memory

I

magnetic-tape
drive
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Operating System Examples

N Windows NT

N Solaris 2

Operating System 76



Windows NT

N Uses demand paging with clustering
U Clustering brings in pages surrounding the faulting page

N Processes are assigned working set minimum and working set maximum

0 Working set minimum is the minimum number of pages the process is guaranteed
to have in memory

U A process may be assigned as many pages up to its working set maximum

N When the amount of free memory in the system falls below a threshold,

automatic working set trimming is performed to restore the amount of free
memory

N Working set trimming removes pages from processes that have pages in
excess of their working set minimum
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Solaris 2

N Maintains a list of free pages to assign faulting processes
N Lotsfree — threshold parameter to begin paging
N Paging is peformed by pageout process
N Pageout scans pages using modified clock algorithm
U Two-handed-clock algorithm (similar to the second-chance algorithm)

U handspread

N Scanrate is the rate at which pages are scanned
U This ranged from slowscan to fastscan

N Pageout is called more frequently depending upon the amount of free
memory available
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Solar Page Scanner

8192 |
fastscan

scan rate

minfree desfree lotsfree

amount of free memory
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Virtual Memory

N Advantages

U Separates user’s logical memory from physical memory
§ Abstracts main memory into an extremely large, uniform array of storage
§ Frees programmers from the concerns of memory-storage limitations
U Allows the execution of processes that may not be completely in memory
§ Programs can be larger than physical memory
§ More programs could be run at the same time
§ Less I/O would be needed to load or swap each user program into memory
U Allows processes to easily share files and address spaces

U Provides an efficient mechanism for protection and process creation

N Disadvantages

U Performance!!!
§ Interms of time and space
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Virtual Memory (Cont’d)

N Optimizations
U Managing page tables (space)
U Efficient Translation (TLBs) (time)
U Demand paging (space)

N Advanced functionality
U Sharing memory
 Copy on write
U Mapped files
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