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BackgroundBackground
n Virtual memory – separation of user logical memory from physical memory

ü Only part of the program needs to be in memory for execution
ü Logical address space can therefore be much larger than physical address space
ü Allows address spaces to be shared by several processes
ü Allows for more efficient process creation

n Virtual memory can be implemented via:
ü Demand paging 
ü Demand segmentation



Operating System 3

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory
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Demand PagingDemand Paging
n Bring a page into memory only when it is needed

ü Less I/O needed
ü Less memory needed 
ü Faster response
ü More users

n Page is needed ⇒ reference to it
ü invalid reference ⇒ abort
ü not-in-memory ⇒ bring to memory
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Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space
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Demand PagingDemand Paging
n A paging system with (page-level) swapping
n Bring a page into memory only when it is needed
ü Cf) swapping: entire process is moved

n OS uses main memory as a (page) cache of all of the data allocated by 
processes in the system
ü Initially, pages are allocated from physical memory frames
ü When physical memory fills up, allocating a page requires some other page to be 

evicted from its physical memory frame
n Evicted pages go to disk (only need to write if they are dirty)

ü To a swap file
ü Movement of pages between memory/disks is done by the OS
ü Transparent to the application
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Demand Paging (ContDemand Paging (Cont’’d)d)
n Why does this work? à Locality

ü Temporal locality: locations referenced recently tend to be referenced again soon
ü Spatial locality: locations near recently referenced locations are likely to be 

referenced soon

n Locality means paging can be infrequent
ü Once you’ve paged something in, it will be used many times
ü On average, you use things that are paged in
ü But this depends on many things:

§ Degree of locality in application
§ Page replacement policy
§ Amount of physical memory
§ Application’s reference pattern and memory footprint



Operating System 8

Demand Paging (ContDemand Paging (Cont’’d)d)
n Why is this “demand” paging?
ü When a process first starts up, it has a brand new page table, with all PTE valid 

bits “false”
§ No pages are yet mapped to physical memory

ü When the process starts executing:
§ Instructions immediately fault on both code and data pages
§ Faults stop when all necessary code/data pages are in memory
§ Only the code/data that is needed (demanded!!) by process needs to be loaded
§ What is needed changes over time, of course…
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ValidValid--Invalid BitInvalid Bit
n With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory, 0 ⇒ not-in-memory)
n Initially valid–invalid but is set to 0 on all entries
n Example of a page table snapshot

n During address translation, if valid–invalid bit in page table entry is 0 
⇒ page fault
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Page Table When Some Pages Are Not in Main MemoryPage Table When Some Pages Are Not in Main Memory
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Page FaultPage Fault
n If there is ever a reference to a page, first reference will trap to OS 

⇒ page fault
n OS looks at another table to decide:
ü Invalid reference ⇒ abort
ü Just not in memory

n Get empty frame
n Swap page into frame
n Reset tables, validation bit = 1
n Restart instruction (if cannot be restarted?)
ü block move

ü auto increment/decrement location
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Page FaultPage Fault
n What happens to a process that references a virtual address in a page that 

has been evicted?
ü When the page was evicted, the OS sets the PTE as invalid and stores (in PTE) 

the location of the page in the swap file
ü When a process accesses the page, the invalid PTE will cause an exception to be 

thrown
n The OS will run the page fault handler in response

ü Handler uses invalid PTE to locate page in swap file
ü Handler reads page into a physical frame, updates PTE to point to it and to be 

valid
ü Handler restarts the faulted process

n Where does the page that’s read in go?
ü Have to evict something else (page replacement algorithm)
ü OS typically tries to keep a pool of free pages around so that allocations don’t 

inevitably cause evictions
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Steps in Handling a Page FaultSteps in Handling a Page Fault
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MemoryMemory

Memory ReferenceMemory Reference

TLBTLB
VA PATLB hit

Page
tables
Page
tablesTLB miss

page fault
protection fault

PTE
data

n Situation
ü Process is executing on the CPU, and it issues a read to a (virtual) address
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Memory Reference (ContMemory Reference (Cont’’d)d)
n The common case
ü The read goes to the TLB in the MMU
ü TLB does a lookup using the page number of the address
ü The page number matches, returning a PTE
ü TLB validates that the PTE protection allows reads
ü PTE specifies which physical frame holds the page
ü MMU combines the physical frame and offset into a physical address
ü MMU then reads from that physical address, returns value to CPU
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Memory Reference (ContMemory Reference (Cont’’d)d)
n TLB misses: two possibilities
ü (1) MMU loads PTE from page table in memory

§ Hardware managed TLB, OS not involved in this step
§ OS has already set up the page tables so that the hardware can access it directly

ü (2) Trap to the OS
§ Software managed TLB, OS intervenes at this point
§ OS does lookup in page tables, loads PTE into TLB
§ OS returns from exception, TLB continues

ü At this point, there is a valid PTE for the address in the TLB
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Memory Reference (ContMemory Reference (Cont’’d)d)
n TLB misses
ü Page table lookup (by HW or OS) can cause a recursive fault if page table is 

paged out
§ Assuming page tables are in OS virtual address space
§ Not a problem if tables are in physical memory

ü When TLB has PTE, it restarts translation
§ Common case is that the PTE refers to a valid page in memory
§ Uncommon case is that TLB faults again on PTE because of PTE protection bits

(e.g., page is invalid)
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Memory Reference (ContMemory Reference (Cont’’d)d)
n Page faults
ü PTE can indicate a protection fault

§ Read/Write/Execute – operation not permitted on page
§ Invalid – virtual page not allocated, or page not in physical memory

ü TLB traps to the OS (software takes over)
§ Read/Write/Execute – OS usually will send fault back to the process, or might be 

playing tricks (e.g., copy on write, mapped files)
§ Invalid (Not allocated) – OS sends fault to the process (e.g., segmentation fault)
§ Invalid (Not in physical memory) – OS allocates a frame, reads from disk, and maps 

PTE to physical frame
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What happens if there is no free frame?What happens if there is no free frame?
n Page replacement – find some page in memory, but not really in use, swap it 

out
ü Algorithm
ü Performance

§ want an algorithm which will result in minimum number of page faults

n Same page may be brought into memory several times
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Performance of Demand PagingPerformance of Demand Paging
n Page Fault Rate 0 ≤ p ≤ 1.0

ü if p = 0 no page faults 
ü if p = 1, every reference is a fault

n Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p x (page fault overhead
+ [swap page out ]
+ swap page in
+ restart overhead)
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Demand Paging ExampleDemand Paging Example
n Memory access time = 1 microsecond

n 50% of the time the page that is being replaced has been modified and 
therefore needs to be swapped out

n Swap Page Time = 10 msec = 10,000 usec
EAT = (1 – p) x 1 + p x (15000)

= 1 + 14999P      (in usec)
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Process CreationProcess Creation
n Virtual memory allows other benefits during process creation:

ü Copy-on-Write
ü Memory-Mapped Files



Operating System 23

CopyCopy--onon--WriteWrite
n Copy-on-Write (COW) allows both parent and child processes to initially 

share the same pages in memory
ü If either process modifies a shared page, only then is the page copied

n COW allows more efficient process creation as only modified pages are 
copied

n Free pages are allocated from a pool of zeroed-out pages
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CopyCopy--OnOn--WriteWrite
n Process creation
ü requires copying the entire address space of the parent process to the child 

process
ü Very slow and inefficient!

n Solution 1: Use threads
ü Sharing address space is free

n Solution 2: Use vfork() system call
ü vfork() creates a process that shares the memory address space of its parent
ü To prevent the parent from overwriting data needed by the child, the parent’s 

execution is blocked until the child exits or executes a new program
ü Any change by the child is visible to the parent once it resumes
ü Useful when the child immediately executes exec()
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CopyCopy--OnOn--Write (ContWrite (Cont’’d)d)

Process

Page
table

Physical
memory

COWCOW

COWCOW

fork

child process

copied

write

n Solution 3: Copy On Write (COW)
ü Instead of copying all pages, create shared 

mappings of parent pages in child address 
space.

ü Shared pages are protected as read-only in 
child.
§ Reads happen as usual
§ Writes generate a protection fault, trap to OS, 

and OS copies the page, changes page 
mapping in client page table, restarts write 
instruction
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MemoryMemory--Mapped FilesMapped Files
n Memory-mapped file I/O allows file I/O to be treated as routine memory 

access by mapping a disk block to a page in memory

n A file is initially read using demand paging
ü A page-sized portion of the file is read from the file system into a physical page
ü Subsequent reads/writes to/from the file are treated as ordinary memory 

accesses

n Simplifies file access by treating file I/O through memory rather than read()
write() system calls

n Also allows several processes to map the same file allowing the pages in 
memory to be shared
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Memory Mapped FilesMemory Mapped Files
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MemoryMemory--Mapped FilesMapped Files
n Memory-mapped files
ü Mapped files enable processes to do file I/O using memory references

§ Instead of open(), read(), write(), close()
ü mmap(): bind a file to a virtual memory region

§ PTEs map virtual addresses to physical frames holding file data
§ <Virtual address base + N> refers to offset N in file

ü Initially, all pages in mapped region marked as invalid
§ OS reads a page from file whenever invalid page is accessed
§ OS writes a page to file when evicted from physical memory
§ If page is not dirty, no write needed



Operating System 29

MemoryMemory--Mapped Files (ContMapped Files (Cont’’d)d)
n Note:
ü File is essentially backing store for that region of the virtual address space 

(instead of using the swap file)
ü Virtual address space not backed by “real” files also called “anonymous VM”

n Advantages
ü Uniform access for files and memory (just use pointers)
ü Less copying

n Drawbacks
ü Process has less control over data movement

§ OS handles faults transparently
ü Does not generalize to streamed I/O (pipes, sockets, etc.)
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Page ReplacementPage Replacement
n Prevent over-allocation of memory by modifying page-fault service routine to 

include page replacement

n Use modify (dirty) bit to reduce overhead of page transfers 
ü Only modified pages are written to disk

n Page replacement completes separation between logical memory and
physical memory 
ü Large virtual memory can be provided on a smaller physical memory
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Page ReplacementPage Replacement
n When a page fault occurs, the OS loads the faulted page from disk into a 

page frame of memory

n At some point, the process has used all of the page frames it is allowed to 
use

n When this happens, the OS must replace a page for each page faulted in
ü It must evict a page to free up a page frame

n The page replacement algorithm determines how this is done
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Page Replacement (ContPage Replacement (Cont’’d)d)
n Evicting the best page
ü The goal of the replacement algorithm is to reduce the fault rate by selecting the 

best victim page to remove
ü The best page to evict is the one never touched again

§ as process will never again fault on it
ü “Never” is a long time, so picking the page closest to “never” is the next best thing

§ Belady’s proof: Evicting the page that won’t be used for the longest period of time 
minimizes the number of page faults
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Need For Page ReplacementNeed For Page Replacement
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Basic Page ReplacementBasic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
ü If there is a free frame, use it
ü If there is no free frame, use a page replacement algorithm to select a victim

frame

3. Read the desired page into the (newly) free frame 
ü Update the page and frame tables

4. Restart the process
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Page ReplacementPage Replacement
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Page Replacement AlgorithmsPage Replacement Algorithms
n Want lowest page-fault rate

n Evaluate algorithm by running it on a particular string of memory references 
(reference string) and computing the number of page faults on that string

n In all our examples, the reference string is 
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames
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FirstFirst--InIn--FirstFirst--Out (FIFO) AlgorithmOut (FIFO) Algorithm
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n Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
n 3 frames (3 pages can be in memory at a time per process)

n 4 frames

n FIFO Replacement – Belady’s Anomaly
ü more frames ⇒ less page faults
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FIFOFIFO
n Obvious and simple to implement
ü Maintain a list of pages in order they were paged in
ü On replacement, evict the one brought in longest time ago

n Why might this be good?
ü Maybe the one brought in the longest ago is not being used

n Why might this be bad?
ü Maybe, it’s not the case
ü We don’t have any information either way

n FIFO suffers from “Belady’s Anomaly”
ü The fault rate might increase when the algorithm is given more memory
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FIFO Page ReplacementFIFO Page Replacement
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FIFO Illustrating FIFO Illustrating BeladyBelady’’s s AnomalyAnomaly
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FIFO (ContFIFO (Cont’’d)d)
n Example: Belady’s anomaly
ü Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
ü 3 frames: 9 faults

ü 4 frames: 10 faults
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Optimal AlgorithmOptimal Algorithm
n Replace page that will not be used for longest period of time

n 4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n How do you know this?

n Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5
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Optimal Page ReplacementOptimal Page Replacement
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Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm
n Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n Counter implementation
ü Every page entry has a counter
ü Every time page is referenced through this entry, copy the clock into the counter
ü When a page needs to be changed, look at the counters to determine which are 

to change
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2
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5

4
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LRU Page ReplacementLRU Page Replacement



Operating System 47

LRU Algorithm (ContLRU Algorithm (Cont’’d)d)
n Stack implementation – keep a stack of page numbers in a double link form:
ü Page referenced:

§ move it to the top
§ requires 6 pointers to be changed

ü No search for replacement
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Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References
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LRULRU
n LRU uses reference information to make a more informed replacement 

decision
ü Idea: past experience gives us a guess of future behavior
ü On replacement, evict the page that has not been used for the longest time in the 

past
ü LRU looks at the past, Belady’s wants to look at future

n Implementation
ü To be perfect, need to timestamp every reference and put it in the PTE (or 

maintain a stack) – too expensive
ü So, we need an approximation
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LRU Approximation AlgorithmsLRU Approximation Algorithms
n Reference bit

ü With each page associate a bit, initially = 0
ü When page is referenced bit set to 1
ü Replace the one which is 0 (if one exists).  We do not know the order, however

n Second chance
ü Need reference bit
ü Clock replacement
ü If page to be replaced (in clock order) has reference bit = 1,  then:

§ set reference bit 0
§ leave page in memory
§ replace next page (in clock order), subject to same rules
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Approximating LRUApproximating LRU
n Many LRU approximations use the PTE reference (R) bit
ü R bit is set whenever the page is referenced (read or written)

n Counter-based approach
ü Keep a counter for each page
ü At regular intervals, for every page, do:

§ If R = 0, increment the counter (hasn’t been used)
§ If R = 1, zero the counter (has been used)
§ Zero the R bit

ü The counter will contain the number of intervals since the last reference to the 
page

ü The page with largest counter is the least recently used

n Some architectures don’t have a reference bit
ü Can simulate reference bit using the valid bit to induce faults
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Second Chance or LRU ClockSecond Chance or LRU Clock
n FIFO with giving a second chance to a recently referenced page

n Arrange all of physical page frames in a big circle (clock)

n A clock hand is used to select a good LRU candidate
ü Sweep through the pages in circular order like a clock
ü If the R bit is off, it hasn’t been used recently and we have a victim
ü If the R bit is on, turn it off and go to next page

n Arm moves quickly when pages are needed
ü Low overhead if we have plenty of memory
ü If memory is large, “accuracy” of information degrades
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SecondSecond--Chance (clock) PageChance (clock) Page--Replacement AlgorithmReplacement Algorithm
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Not Recently UsedNot Recently Used
n NRU or enhanced second chance
ü Use R (reference) and M (modify) bits

§ Periodically, (e.g., on each clock interrupt), R is cleared, to distinguish pages that have 
not been referenced recently from those that have been

Class 1
R=0, M=1
Class 1

R=0, M=1

Class 3
R=1, M=1
Class 3

R=1, M=1
Class 2

R=1, M=0
Class 2

R=1, M=0

Class 0
R=0, M=0
Class 0

R=0, M=0

Read

Write

interrupt

Read

Write

interrupt

Read
Write

interrupt
Read
Write

interrupt
Paged-in
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Not Recently Used (ContNot Recently Used (Cont’’d)d)
n Algorithm
ü Removes a page at random from the lowest numbered nonempty class
ü It is better to remove a modified page that has not been referenced in at least one 

clock tick than a clean page that is in heavy use

n Advantages
ü Easy to understand
ü Moderately efficient to implement
ü Gives a performance that, while certainly not optimal, may be adequate
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Counting AlgorithmsCounting Algorithms
n Keep a counter of the number of references that have been made to each 

page

n LFU Algorithm:  replaces page with smallest count

n MFU Algorithm: based on the argument that the page with the smallest count 
was probably just brought in and has yet to be used
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LFULFU
n Counting-based page replacement
ü A software counter is associated with each page
ü At each clock interrupt, for each page, the R bit is added to the counter

§ The counters denote how often each page has been referenced

n Least Frequently Used (LFU)
ü The page with the smallest count will be replaced
ü Cf) Most frequently used (MFU) page replacement

§ The page with the largest count will be replaced
§ Based on the argument that the page with the smallest count was probably just brought 

in and has yet to be used
ü It never forgets anything

§ A page may be heavily used during the initial phase of a process, but then is never 
used again



Operating System 58

LFU (ContLFU (Cont’’d)d)
n Aging
ü The counters are shifted right by 1 bit before the R bit is added to the leftmost
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Allocation of FramesAllocation of Frames
n Each process needs minimum number of pages

n Example:  IBM 370 – 6 pages to handle SS MOVE instruction:
ü instruction is 6 bytes, might span 2 pages
ü 2 pages to handle from
ü 2 pages to handle to

n Two major allocation schemes
ü fixed allocation
ü priority allocation
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Fixed AllocationFixed Allocation
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n Equal allocation – e.g., if 100 frames and 5 processes, give each 20 pages
n Proportional allocation – Allocate according to the size of process
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Priority AllocationPriority Allocation
n Use a proportional allocation scheme using priorities rather than size

n If process Pi generates a page fault,
ü select for replacement one of its frames
ü select for replacement a frame from a process with lower priority number
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Global vs. Local AllocationGlobal vs. Local Allocation
n Global replacement 

ü Process selects a replacement frame from the set of all frames
ü One process can take a frame from another

n Local replacement 
ü Each process selects from only its own set of allocated frames
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ThrashingThrashing
n If a process does not have “enough” pages, the page-fault rate is very high

n This leads to:
ü Low CPU utilization
ü Operating system thinks that it needs to increase the degree of multiprogramming
ü Another process added to the system

n Thrashing ≡ a process is busy swapping pages in and out
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Thrashing Thrashing 

n Why does paging work? à Locality model
ü Process migrates from one locality to another
ü Localities may overlap

n Why does thrashing occur?
ü Σ size of locality > total memory size
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Locality In A MemoryLocality In A Memory--Reference PatternReference Pattern
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WorkingWorking--Set ModelSet Model
n ∆ ≡ working-set window ≡ a fixed number of page references 
ü Example:  10,000 instruction

n WSSi (Working Set Size of Process Pi) =
total number of pages referenced in the most recent ∆ (varies in time)
ü if ∆ too small will not encompass entire locality
ü if ∆ too large will encompass several localities
ü if ∆ = ∞ ⇒ will encompass entire program

n D = Σ WSSi ≡ total demand frames 

n if D > m ⇒ Thrashing

n Policy if D > m, then suspend one of the processes
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WorkingWorking--Set Model (ContSet Model (Cont’’d)d)
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Keeping Track of the Working SetKeeping Track of the Working Set
n Approximate with interval timer + a reference bit

n Example: ∆ = 10,000
ü Timer interrupts after every 5000 time units
ü Keep in memory 2 bits for each page
ü Whenever a timer interrupts copy and sets the values of all reference bits to 0
ü If one of the bits in memory = 1 ⇒ page in working set

n Why is this not completely accurate?

n Improvement à 10 bits and interrupt every 1000 time units
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PagePage--Fault Frequency SchemeFault Frequency Scheme

n Establish “acceptable” page-fault rate
ü If actual rate too low, process loses frame
ü If actual rate too high, process gains frame
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Other ConsiderationsOther Considerations
n Prepaging 

n Page size selection
ü Fragmentation
ü Table size 
ü I/O overhead
ü Locality
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Other Considerations (ContOther Considerations (Cont’’d)d)
n TLB Reach
ü The amount of memory accessible from the TLB
ü TLB Reach = (TLB Size) X (Page Size)
ü Ideally, the working set of each process is stored in the TLB
ü Otherwise there is a high degree of page faults
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Increasing the Size of the TLBIncreasing the Size of the TLB
n Increase the Page Size 

ü This may lead to an increase in fragmentation as not all applications require a 
large page size

n Provide Multiple Page Sizes 
ü This allows applications that require larger page sizes the opportunity to use them 

without an increase in fragmentation
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Other Considerations (ContOther Considerations (Cont’’d)d)
n Program structure
ü int A[][] = new int[1024][1024];
ü Each row is stored in one page 
ü Program 1 for (j = 0; j < A.length; j++)

for (i = 0; i < A.length; i++)
A[i,j] = 0;

1024 x 1024 page faults 

ü Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults
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Other Considerations (ContOther Considerations (Cont’’d)d)
n I/O Interlock
ü Pages must sometimes be locked into memory

n Consider I/O
ü Pages that are used for copying a file from a device must be locked from being 

selected for eviction by a page replacement algorithm
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Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory
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Operating System ExamplesOperating System Examples
n Windows NT

n Solaris 2
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Windows NTWindows NT
n Uses demand paging with clustering
ü Clustering brings in pages surrounding the faulting page

n Processes are assigned working set minimum and working set maximum
ü Working set minimum is the minimum number of pages the process is guaranteed 

to have in memory
ü A process may be assigned as many pages up to its working set maximum

n When the amount of free memory in the system falls below a threshold, 
automatic working set trimming is performed to restore the amount of free 
memory

n Working set trimming removes pages from processes that have pages in 
excess of their working set minimum
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Solaris 2Solaris 2
n Maintains a list of free pages to assign faulting processes

n Lotsfree – threshold parameter to begin paging

n Paging is peformed by pageout process

n Pageout scans pages using modified clock algorithm
ü Two-handed-clock algorithm (similar to the second-chance algorithm)
ü handspread

n Scanrate is the rate at which pages are scanned
ü This ranged from slowscan to fastscan

n Pageout is called more frequently depending upon the amount of free 
memory available
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Solar Page ScannerSolar Page Scanner
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Virtual MemoryVirtual Memory
n Advantages
ü Separates user’s logical memory from physical memory

§ Abstracts main memory into an extremely large, uniform array of storage
§ Frees programmers from the concerns of memory-storage limitations

ü Allows the execution of processes that may not be completely in memory
§ Programs can be larger than physical memory
§ More programs could be run at the same time
§ Less I/O would be needed to load or swap each user program into memory

ü Allows processes to easily share files and address spaces
ü Provides an efficient mechanism for protection and process creation

n Disadvantages
ü Performance!!!

§ In terms of time and space



Operating System 81

Virtual Memory (ContVirtual Memory (Cont’’d)d)
n Optimizations
ü Managing page tables (space)
ü Efficient Translation (TLBs) (time)
ü Demand paging (space)

n Advanced functionality
ü Sharing memory
ü Copy on write
ü Mapped files


