10. Virtual Memory

Sungyoung Lee

College of Engineering
KyungHee University

Contents

Background

Demand Paging

Process Creation

Page Replacement
Allocation of Frames
Thrashing

Operating System Examples

J 3 53 3 3 3 3

Operating System 1

Background

N Virtual memory — separation of user logical memory from physical memory
U Only part of the program needs to be in memory for execution
U Logical address space can therefore be much larger than physical address space
U Allows address spaces to be shared by several processes
U Allows for more efficient process creation

N Virtual memory can be implemented via:
U Demand paging
U Demand segmentation

Operating System 2

Virtual Memory That is Larger Than Physical Memory

N\

memaory
map

physical
memory

Operating System 3

Demand Paging

N Bring a page into memory only when it is needed
U Less I/O needed
U Less memory needed
U Faster response
U More users

N Page is needed b reference to it
U invalid reference b abort
a not-in-memory P bring to memory

Operating System 4

Transfer of a Paged Memory to Contiguous Disk Space

—_— swap out o] 100 2[] 8[]

A L1 s ol 7L
8] 9[]10o[J11[]
12[]13[]14[]15[]

progBram . 16[] 17|;| 18|;| 19|;|

20[J21[J22[]23[]

main
memory

Operating System S}

Demand Paging

N A paging system with (page-level) swapping
N Bring a page into memory only when it is needed
U Cf) swapping: entire process is moved

N OS uses main memory as a (page) cache of all of the data allocated by
processes in the system
U Initially, pages are allocated from physical memory frames

U When physical memory fills up, allocating a page requires some other page to be
evicted from its physical memory frame

N Evicted pages go to disk (only need to write if they are dirty)
U To a swap file

U Movement of pages between memory/disks is done by the OS
U Transparent to the application

Operating System 6

Demand Paging (Cont’d)

N Why does this work? & Locality
U Temporal locality: locations referenced recently tend to be referenced again soon

U Spatial locality: locations near recently referenced locations are likely to be
referenced soon

N Locality means paging can be infrequent
U Once you've paged something in, it will be used many times
 On average, you use things that are paged in
O But this depends on many things:
§ Degree of locality in application
§ Page replacement policy

§ Amount of physical memory
§ Application’s reference pattern and memory footprint

Operating System 7

Demand Paging (Cont’d)

n Why is this “demand” paging?
U When a process first starts up, it has a brand new page table, with all PTE valid
bits “false”

§ No pages are yet mapped to physical memory

U When the process starts executing:
§ Instructions immediately fault on both code and data pages
§ Faults stop when all necessary code/data pages are in memory
§ Only the code/data that is needed (demanded!!) by process needs to be loaded
§ What is needed changes over time, of course...

Operating System 8

Valid-Invalid Bit

N With each page table entry a valid—invalid bit is associated
(1 P in-memory, O P not-in-memory)

N Initially valid—invalid but is set to O on all entries
N Example of a page table snapshot

Frame # valid-invalid bit

page table

N During address translation, if valid—invalid bit in page table entry is O
P page fault

Operating System 9

Page Table When Some Pages Are Not in Main Memory

= O

valid—invalid
frame. o
- ¥

4 |v

6 |v

W

w @ N s oo o om o W

~N @ " ke LN = O

page lable

-
o

—h
=

[4+]

®

-l
.

16

physical mamory

Operating System 10

Page Fault

N If there is ever a reference to a page, first reference will trap to OS
P page fault
N OS looks at another table to decide:

U Invalid reference b abort
(Just not in memory

Get empty frame
Swap page into frame
Reset tables, validation bit = 1

Restart instruction (if cannot be restarted?)
0 block move

5 3 3 3

U auto increment/decrement location

Operating System 11

Page Fault

N What happens to a process that references a virtual address in a page that
has been evicted?

U When the page was evicted, the OS sets the PTE as invalid and stores (in PTE)
the location of the page in the swap file

U When a process accesses the page, the invalid PTE will cause an exception to be
thrown

N The OS will run the page fault handler in response
U Handler uses invalid PTE to locate page in swap file

U Handler reads page into a physical frame, updates PTE to point to it and to be
valid

U Handler restarts the faulted process
N Where does the page that’s read in go?

U Have to evict something else (page replacement algorithm)

U OS typically tries to keep a pool of free pages around so that allocations don’t
inevitably cause evictions

Operating System 12

Steps in Handling a Page Fault

i, page is on
(i] backing store

operaling
system

reference

Ty
el g

LN

) | i

. -

restart page table
instruction

free frame —
Ty e
(5) (4)
reset page bring in
table missing page

—_—

physical
memory

Operating System 13

Memory Reference

N Situation
U Process is executing on the CPU, and it issues a read to a (virtual) address

TLB hit PA Memory
TLB miss Page
page fault | tables
prptection fault
PTE
data

Operating System 14

Memory Reference (Cont’d)

N The common case
U The read goes to the TLB in the MMU
TLB does a lookup using the page number of the address
The page number matches, returning a PTE
TLB validates that the PTE protection allows reads
PTE specifies which physical frame holds the page
MMU combines the physical frame and offset into a physical address
MMU then reads from that physical address, returns value to CPU

G e e e e

Operating System 15

Memory Reference (Cont’d)

N TLB misses: two possibilities

U (1) MMU loads PTE from page table in memory

§ Hardware managed TLB, OS not involved in this step

§ OS has already set up the page tables so that the hardware can access it directly
0 (2) Trap to the OS

§ Software managed TLB, OS intervenes at this point

§ OS does lookup in page tables, loads PTE into TLB

§ OS returns from exception, TLB continues

U At this point, there is a valid PTE for the address in the TLB

Operating System 16

Memory Reference (Cont’d)

N TLB misses
U Page table lookup (by HW or OS) can cause a recursive fault if page table is
paged out
§ Assuming page tables are in OS virtual address space
§ Not a problem if tables are in physical memory

U When TLB has PTE, it restarts translation
§ Common case is that the PTE refers to a valid page in memory
§ Uncommon case is that TLB faults again on PTE because of PTE protection bits
(e.g., page is invalid)

Operating System 17

Memory Reference (Cont’d)

N Page faults

U PTE can indicate a protection fault

§ Read/Write/Execute — operation not permitted on page

§ Invalid — virtual page not allocated, or page not in physical memory
O TLB traps to the OS (software takes over)

§ Read/Write/Execute — OS usually will send fault back to the process, or might be
playing tricks (e.g., copy on write, mapped files)

§ Invalid (Not allocated) — OS sends fault to the process (e.g., segmentation fault)

§ Invalid (Not in physical memory) — OS allocates a frame, reads from disk, and maps
PTE to physical frame

Operating System 18

What happens if there is no free frame?

N Page replacement — find some page in memory, but not really in use, swap it
out

 Algorithm
U Performance
§ want an algorithm which will result in minimum number of page faults

N Same page may be brought into memory several times

Operating System 19

Performance of Demand Paging

N Page FaultRate O£p £ 1.0
U if p =0 no page faults
a if p =1, every reference is a fault

N Effective Access Time (EAT)
EAT = (1 — p) X memory access
+ p X (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Operating System 20

Demand Paging Example

N Memory access time = 1 microsecond

N 50% of the time the page that is being replaced has been modified and
therefore needs to be swapped out

N Swap Page Time = 10 msec = 10,000 usec

EAT=(1-p)x1+px(15000)
=1+ 14999P (in usec)

Operating System

21

Process Creation

N Virtual memory allows other benefits during process creation:
0 Copy-on-Write
0 Memory-Mapped Files

Operating System 22

Copy-on-Write

N Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

U If either process modifies a shared page, only then is the page copied

Nn COW allows more efficient process creation as only modified pages are
copied

N Free pages are allocated from a pool of zeroed-out pages

Operating System 23

Copy-On-Write

N Process creation

O requires copying the entire address space of the parent process to the child
process

U Very slow and inefficient!

N Solution 1: Use threads
U Sharing address space is free

N Solution 2: Use vfork() system call

U vfork() creates a process that shares the memory address space of its parent

U To prevent the parent from overwriting data needed by the child, the parent's
execution is blocked until the child exits or executes a new program

U Any change by the child is visible to the parent once it resumes
U Useful when the child immediately executes exec()

Operating System

24

Copy-On-Write (Cont’d)

N Solution 3: Copy On Write (COW)

U Instead of copying all pages, create shared
mappings of parent pages in child address

Space. Process
(Shared pages are protected as read-only in
child. Page Physical
§ Reads happen as usual table memory
§ Writes gene_rate a protection fault, trap to OS,
and OS copies the page, changes page
mapping in client page table, restarts write
instruction i fork)
copied
write
\‘ COW

Operating System 25

Memory-Mapped Files

N Memory-mapped file 1/0 allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

N A file is initially read using demand paging
U A page-sized portion of the file is read from the file system into a physical page

U Subsequent reads/writes to/from the file are treated as ordinary memory
accesses

N Simplifies file access by treating file I/O through memory rather than read|()
write() system calls

N Also allows several processes to map the same file allowing the pages in
memory to be shared

Operating System 26

N~
(Q\

virtual memory

1T rA

disk file

physical memory

-, -] :

o S S Y Y S YY
I L

1 L 1 1 1 |

virtual memory

Memory Mapped Files

Operating System

Memory-Mapped Files

N Memory-mapped files

U Mapped files enable processes to do file /O using memory references
§ Instead of open(), read(), write(), close()

0 mmap(): bind a file to a virtual memory region
§ PTEs map virtual addresses to physical frames holding file data
§ <Virtual address base + N> refers to offset N in file

U Initially, all pages in mapped region marked as invalid
§ OS reads a page from file whenever invalid page is accessed
§ OS writes a page to file when evicted from physical memory
§ If page is not dirty, no write needed

Operating System 28

Memory-Mapped Files (Cont’d)

N Note:

U File is essentially backing store for that region of the virtual address space
(instead of using the swap file)

U Virtual address space not backed by “real” files also called “anonymous VM”

N Advantages
U Uniform access for files and memory (just use pointers)
U Less copying

N Drawbacks

U Process has less control over data movement
§ OS handles faults transparently

U Does not generalize to streamed I/O (pipes, sockets, etc.)

Operating System 29

Page Replacement

N Prevent over-allocation of memory by modifying page-fault service routine to
Include page replacement

N Use modify (dirty) bit to reduce overhead of page transfers
U Only modified pages are written to disk

N Page replacement completes separation between logical memory and
physical memory
U Large virtual memory can be provided on a smaller physical memory

Operating System 30

Page Replacement

N When a page fault occurs, the OS loads the faulted page from disk into a
page frame of memory

N At some point, the process has used all of the page frames it is allowed to
use

N When this happens, the OS must replace a page for each page faulted in
O It must evict a page to free up a page frame

N The page replacement algorithm determines how this is done

Operating System 31

Page Replacement (Cont’d)

N Evicting the best page
U The goal of the replacement algorithm is to reduce the fault rate by selecting the
best victim page to remove
U The best page to evict is the one never touched again
§ as process will never again fault on it
U “Never” is a long time, so picking the page closest to “never” is the next best thing

§ Belady’s proof: Evicting the page that won'’t be used for the longest period of time
minimizes the number of page faults

Operating System 32

Need For Page Replacement

logical memory page table
for user 1 for user 1

valid—invalid

frame , 'f,"t
« ¥
6| v

i
2| v
E 7| v

D

logical memory page table
for user 2 for user 2

Operating System

monitor

E

physical
memory

33

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
U If there is a free frame, use it

U If there is no free frame, use a page replacement algorithm to select a victim
frame

3. Read the desired page into the (newly) free frame
U Update the page and frame tables

4. Restart the process

Operating System

34

Page Replacement

frame \ valid —inwvalid bit

. ¥

swap out

to invalid @y

reset page

page table table for @
new page Swap

desired
pagein

physical

Operating System 35

Page Replacement Algorithms

N Want lowest page-fault rate

N Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

N In all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5

Operating System 36

Graph of Page Faults Versus The Number of Frames

number of page faults

4

number of frames

Operating System 37

First-In-First-Out (FIFO) Algorithm

N Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
N 3 frames (3 pages can be in memory at a time per process)

1114 5

2 12| 1 3 9page faults

313|2 4
N 4 frames
1115 4
2 12| 1 5 10 page faults
3 (3|2
4 (4] 3

N FIFO Replacement — Belady’s Anomaly
U more frames b less page faults

Operating System 38

N Obvious and simple to implement
U Maintain a list of pages in order they were paged in
U On replacement, evict the one brought in longest time ago

N Why might this be good?
U Maybe the one brought in the longest ago is not being used

N Why might this be bad?
U Maybe, it's not the case
U We don’t have any information either way

N FIFO suffers from “Belady’s Anomaly”
U The fault rate might increase when the algorithm is given more memory

Operating System

39

FIFO Page Replacement

reference string

7 0 1 2

1

page frames

Operating System 40

FIFO lllustrating Belady’s Anomaly

2}
=
>
©
(S
&)
@)
©
o
e
o
L
©
o)
S
>
-

3 4
number of frames

Operating System 41

FIFO (Cont’d)

N Example: Belady’'s anomaly
U Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
0 3 frames: 9 faults

[=To

4
1
2

(]~ =

U 4 frames: 10 faults

EIE

[~ o]~
|O.)NI—‘U'I

Operating System 42

Optimal Algorithm

N Replace page that will not be used for longest period of time

N 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

W |IDN |

N How do you know this?

N Used for measuring how well your algorithm performs

Operating System 43

Optimal Page Replacement

reference string
7 0 1 2

page frames

Operating System 44

Least Recently Used (LRU) Algorithm

N Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

A 1T OW|IDN| P
(@)
N

N Counter implementation
U Every page entry has a counter
U Every time page is referenced through this entry, copy the clock into the counter

U When a page needs to be changed, look at the counters to determine which are
to change

45

Operating System

LRU Page Replacement

reference string
7 0 1 2

page frames

Operating System 46

LRU Algorithm (Cont’d)

N Stack implementation — keep a stack of page numbers in a double link form:

U Page referenced:
§ move it to the top
§ requires 6 pointers to be changed

U No search for replacement

Operating System 47

Use Of A Stack to Record The Most Recent Page References

reference string

4 7 0 7

stack before a stack after b

Operating System 48

LRU

N LRU uses reference information to make a more informed replacement
decision
U Idea: past experience gives us a guess of future behavior

U On replacement, evict the page that has not been used for the longest time in the
past

U LRU looks at the past, Belady’'s wants to look at future

N Implementation

U To be perfect, need to timestamp every reference and put it in the PTE (or
maintain a stack) — too expensive

U So, we need an approximation

Operating System 49

LRU Approximation Algorithms

N Reference bit
U With each page associate a bit, initially = 0
U When page is referenced bit setto 1
U Replace the one which is O (if one exists). We do not know the order, however

N Second chance
U Need reference hit
U Clock replacement

U If page to be replaced (in clock order) has reference bit = 1, then:
§ set reference bit 0
§ leave page in memory
§ replace next page (in clock order), subject to same rules

Operating System 50

Approximating LRU

N Many LRU approximations use the PTE reference (R) bit
U R bit is set whenever the page is referenced (read or written)

N Counter-based approach
U Keep a counter for each page

O At regular intervals, for every page, do:
§ If R =0, increment the counter (hasn’t been used)
§ If R =1, zero the counter (has been used)
§ Zero the R bit
U The counter will contain the number of intervals since the last reference to the
page
U The page with largest counter is the least recently used

N Some architectures don’'t have a reference bit
0 Can simulate reference bit using the valid bit to induce faults

Operating System 51

Second Chance or LRU Clock

N FIFO with giving a second chance to a recently referenced page

N Arrange all of physical page frames in a big circle (clock)

N A clock hand is used to select a good LRU candidate
0 Sweep through the pages in circular order like a clock
U If the R bit is off, it hasn’t been used recently and we have a victim
U If the R bit is on, turn it off and go to next page

N Arm moves quickly when pages are needed
U Low overhead if we have plenty of memory
0 If memory is large, “accuracy” of information degrades

Operating System 52

Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages circular queue of pages

(a) (b)

Operating System 53

Not Recently Used

N NRU or enhanced second chance

U Use R (reference) and M (modify) bits

§ Periodically, (e.g., on each clock interrupt), R is cleared, to distinguish pages that have
not been referenced recently from those that have been

Paged-in _
interrupt interrupt
Class O
R=0, M=0 _
Write
_ Read _
Read Interrupt Write Interrupt
Read 2 -
ass Read
R=1,M=0__/ wWrite R=1, M=1 Write

Operating System 54

Not Recently Used (Cont’d)

N Algorithm
U Removes a page at random from the lowest numbered nonempty class

U It is better to remove a modified page that has not been referenced in at least one
clock tick than a clean page that is in heavy use

N Advantages
U Easy to understand
U Moderately efficient to implement
U Gives a performance that, while certainly not optimal, may be adequate

Operating System 55

Counting Algorithms

N Keep a counter of the number of references that have been made to each
page

N LFU Algorithm: replaces page with smallest count

N MFU Algorithm: based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

Operating System 56

N Counting-based page replacement
U A software counter is associated with each page

U At each clock interrupt, for each page, the R bit is added to the counter
§ The counters denote how often each page has been referenced

N Least Frequently Used (LFU)
U The page with the smallest count will be replaced

0 Cf) Most frequently used (MFU) page replacement
§ The page with the largest count will be replaced

§ Based on the argument that the page with the smallest count was probably just brought
in and has yet to be used

U It never forgets anything

§ A page may be heavily used during the initial phase of a process, but then is never
used again

Operating System 57

N Aging

U The counters are shifted right by 1 bit before the R bit is added to the leftmost

Page

LFU (Cont’d)

1 1 1 1
R bits for - R bits for : R bits for : R bits for : R bits for
pages 0-5, t pages 0-5, | pages 0-5, | pages 0-5, , pages 0-5,
clock tick 0 E clock tick 1 i clock tick 2 i clock tick 3 i clock tick 4
ol1]o]1 E 1lolo]|1 i 1lol1]o i nuu1oiu11nnn
i : | |
I I] |
] 1] |
! I l I
10000000 | i | 11000000 | 1| 11100000 | i | 11110000 |1 | 01111000
I i 1 I
] 1 (] I
00000000 10000000 i 11000000 01100000 i 10110000
[] i] I
1 1] I
10000000 :r 01000000 i 00100000 i 00100000 i 10001000
] 1 1 I
|] I I
00000000 : 00000000 : 10000000 01000000 i 00100000
] 1] I
[1] I
10000000 ' 11000000 ! 01100000 : 10110000 ! 01011000
|] 1 I
i i] |
10000000 E 01000000 i 10100000 : 01010000 i 00101000
I |] |
(a) (b) () (d) (e)

Operating System

58

Allocation of Frames

N Each process needs minimum number of pages

N Example: IBM 370 — 6 pages to handle SS MOVE instruction:
U instruction is 6 bytes, might span 2 pages
U 2 pages to handle from
0 2 pages to handle to

N Two major allocation schemes
U fixed allocation
U priority allocation

Operating System 59

Fixed Allocation

N Equal allocation — e.g., if 100 frames and 5 processes, give each 20 pages
N Proportional allocation — Allocate according to the size of process

— s; =size of process p;
— S = é Si
— m =total number of frames

. S -
— a; = allocation for p, =§ m

m=64

s =10

s, =127
10 ,

= — " 64»5

T I
127
=—"64»59

e

Operating System 60

Priority Allocation

N Use a proportional allocation scheme using priorities rather than size

N If process P, generates a page fault,
U select for replacement one of its frames
U select for replacement a frame from a process with lower priority number

Operating System 61

Global vs. Local Allocation

N Global replacement
U Process selects a replacement frame from the set of all frames
U One process can take a frame from another

N Local replacement
U Each process selects from only its own set of allocated frames

Operating System 62

Thrashing

N If a process does not have “enough” pages, the page-fault rate is very high

N This leads to:
U Low CPU utilization

U Operating system thinks that it needs to increase the degree of multiprogramming
U Another process added to the system

N Thrashing © a process is busy swapping pages in and out

Operating System 63

Thrashing

I -
| thrashing

degree of multiprogramming

N Why does paging work? & Locality model
U Process migrates from one locality to another
U Localities may overlap

N Why does thrashing occur?
U S size of locality > total memory size

Operating System 64

Locality In A Memory-Reference Pattern

Operating System

memory address

page numbers

34

32

30

28

26 mn

24

22 f

ﬁTWI TR0 s R ey

”, ~|Lr|1

o
I o
L

| s
I | 'l'|' || |u"

]

;:'uh;' 'Imiilll I

(TR et
a0 |

A MLLOL ORI
"| g

|H|HH\||IH|WWNMIHEIIH|||

) .I [TLYELLLITS DA T |,I ”ll
g 'ulun"!l'f

execution

timg —————»

65

Working-Set Model

N D° working-set window ° a fixed number of page references
U Example: 10,000 instruction

Nn WSS, (Working Set Size of Process P,) =
total number of pages referenced in the most recent D (varies in time)
U if Dtoo small will not encompass entire locality
U if Dtoo large will encompass several localities
0 if D=¥ b will encompass entire program

Nn D =SWSS,?° total demand frames
N if D>mpPp Thrashing

N Policy if D > m, then suspend one of the processes

Operating System

66

Working-Set Model (Cont’d)

page reference table
. ..2615777751623412344434344413234443444 ...

A _1 A
t1
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

Operating System 67

Keeping Track of the Working Set

N Approximate with interval timer + a reference bit

n Example: D= 10,000
U Timer interrupts after every 5000 time units
U Keep in memory 2 bits for each page
U Whenever a timer interrupts copy and sets the values of all reference bits to O
U If one of the bits in memory = 1 b page in working set

N Why is this not completely accurate?

N Improvement & 10 bits and interrupt every 1000 time units

Operating System 68

Page-Fault Frequency Scheme

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

N Establish “acceptable” page-fault rate
U If actual rate too low, process loses frame
U If actual rate too high, process gains frame

Operating System 69

Other Considerations

N Prepaging

N Page size selection
U Fragmentation
U Table size
U 1/O overhead
U Locality

Operating System 70

Other Considerations (Cont’d)

N TLB Reach
U The amount of memory accessible from the TLB
U TLB Reach = (TLB Size) X (Page Size)
U ldeally, the working set of each process is stored in the TLB
U Otherwise there is a high degree of page faults

Operating System 71

Increasing the Size of the TLB

N Increase the Page Size

U This may lead to an increase in fragmentation as not all applications require a
large page size

N Provide Multiple Page Sizes

U This allows applications that require larger page sizes the opportunity to use them
without an increase in fragmentation

Operating System 2

Other Considerations (Cont’d)

N Program structure
O int A[][] = new int[1024][1024];
U Each row is stored in one page

U Program 1 for (j = 0; j < A.length; j++)
for (i =0; i <A.length; i++)
Alij] =0;

1024 x 1024 page faults

U Program 2 for (i=0; i <A.length; i++)
for (j =0;] <A.length; j++)
Ali,j] =0;

1024 page faults

Operating System

73

Other Considerations (Cont’d)

N 1/O Interlock
U Pages must sometimes be locked into memory

N Consider I/O

U Pages that are used for copying a file from a device must be locked from being
selected for eviction by a page replacement algorithm

Operating System 74

Reason Why Frames Used For I/O Must Be In Memory

I

magnetic-tape
drive

Operating System 75

Operating System Examples

N Windows NT

N Solaris 2

Operating System 76

Windows NT

N Uses demand paging with clustering
U Clustering brings in pages surrounding the faulting page

N Processes are assigned working set minimum and working set maximum

0 Working set minimum is the minimum number of pages the process is guaranteed
to have in memory

U A process may be assigned as many pages up to its working set maximum

N When the amount of free memory in the system falls below a threshold,

automatic working set trimming is performed to restore the amount of free
memory

N Working set trimming removes pages from processes that have pages in
excess of their working set minimum

Operating System 77

Solaris 2

N Maintains a list of free pages to assign faulting processes
N Lotsfree — threshold parameter to begin paging
N Paging is peformed by pageout process
N Pageout scans pages using modified clock algorithm
U Two-handed-clock algorithm (similar to the second-chance algorithm)

U handspread

N Scanrate is the rate at which pages are scanned
U This ranged from slowscan to fastscan

N Pageout is called more frequently depending upon the amount of free
memory available

Operating System 78

Solar Page Scanner

8192 |
fastscan

scan rate

minfree desfree lotsfree

amount of free memory

79

Operating System

Virtual Memory

N Advantages

U Separates user’s logical memory from physical memory
§ Abstracts main memory into an extremely large, uniform array of storage
§ Frees programmers from the concerns of memory-storage limitations
U Allows the execution of processes that may not be completely in memory
§ Programs can be larger than physical memory
§ More programs could be run at the same time
§ Less I/O would be needed to load or swap each user program into memory
U Allows processes to easily share files and address spaces

U Provides an efficient mechanism for protection and process creation

N Disadvantages

U Performance!!!
§ Interms of time and space

Operating System 80

Virtual Memory (Cont’d)

N Optimizations
U Managing page tables (space)
U Efficient Translation (TLBs) (time)
U Demand paging (space)

N Advanced functionality
U Sharing memory
 Copy on write
U Mapped files

Operating System 81

