
11. 11. FileFile--System InterfaceSystem Interface

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n File Concept
n Access Methods
n Directory Structure
n File System Mounting
n File Sharing
n Protection

Operating System 2

Basic ConceptBasic Concept
n Requirements for long-term information storage
ü It must be possible to store a very large amount of information
ü The information must survive the termination of the process using it
ü Multiple processes must be able to access the information concurrently

n File system
ü Implement an abstraction for secondary storage (files)
ü Organize files logically (directories)
ü Permit sharing of data between processes, people, and machines
ü Protect data from unwanted access (security)

Operating System 3

FilesFiles
n File
ü A named collection of related information that is recorded on secondary storage

§ persistent through power failures and system reboots
ü OS provides a uniform logical view of information storage via files

n File structures
ü Flat: byte sequence
ü Structured:

§ Lines
§ Fixed length records
§ Variable length records

Operating System 4

File ConceptFile Concept
n Contiguous logical address space

n Types:
ü Data

§ numeric
§ character
§ binary

ü Program

Operating System 5

File StructureFile Structure
n None

ü Sequence of words, bytes
n Simple record structure

ü Lines
ü Fixed length
ü Variable length

n Complex Structures
ü Formatted document
ü Relocatable load file

n Can simulate last two with first method by inserting appropriate control
characters

n Who decides:
ü Operating system
ü Program

Operating System 6

File AttributesFile Attributes
n Name

ü only information kept in human-readable form
n Type

ü needed for systems that support different types
n Location

ü pointer to file location on device
n Size

ü current file size
n Protection

ü controls who can do reading, writing, executing
n Time, date, and user identification

ü data for protection, security, and usage monitoring
n Information about files are kept in the directory structure, which is maintained

on the disk

Operating System 7

File AttributesFile Attributes
n Attributes or metadata

Protection

Control
flags

For files whose
records can be

looked up
using a key

Other
information

Operating System 8

File OperationsFile Operations
n Create
n Write
n Read
n Reposition within file – file seek
n Delete
n Truncate
n Open(Fi)

ü search the directory structure on disk for entry Fi, and move the content of entry
to memory

n Close (Fi)
ü move the content of entry Fi in memory to directory structure on disk

Operating System 9

File OperationsFile Operations
n Unix operations

int creat (const char *pathname, mode_t mode);

int open (const char *pathname, int flags, mode_t mode);

int close (int fd);

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, const void *buf, size_t count);

off_t lseek (int fd, off_t offset, int whence);

int stat (const char *pathname, struct stat *buf);

int chmod (const char *pathname, mode_t mode);

int chown (const char *pathname, uid_t owner, gid_t grp);

int flock (int fd, int operation);

int fcntl (int fd, int cmd, long arg);

int creat (const char *pathname, mode_t mode);

int open (const char *pathname, int flags, mode_t mode);

int close (int fd);

ssize_t read (int fd, void *buf, size_t count);

ssize_t write (int fd, const void *buf, size_t count);

off_t lseek (int fd, off_t offset, int whence);

int stat (const char *pathname, struct stat *buf);

int chmod (const char *pathname, mode_t mode);

int chown (const char *pathname, uid_t owner, gid_t grp);

int flock (int fd, int operation);

int fcntl (int fd, int cmd, long arg);

Operating System 10

File TypesFile Types
n Files may have types
ü Understood by file systems

§ device, directory, symbolic link, etc.
ü Understood by other parts of OS or runtime libraries

§ executable, dll, source code, object code, text, etc.
ü Understood by application programs

§ jpg, mpg, avi, mp3, etc.

n Encoding file types
ü Windows encodes type in name

§ .com, .exe, .bat, .dll, .jpg, .avi, .mp3, etc.
ü Unix encodes type in contents

§ magic numbers (e.g., 0xcafebabe for Java class files)
§ initial characters (e.g., #! for shell scripts)

Operating System 11

File Types File Types –– Name, ExtensionName, Extension

Operating System 12

File AccessFile Access
n Some file systems provide different access methods that specify different

ways for accessing data in a file.

n Sequential access
ü read bytes one at a time, in order

n Direct access
ü random access given block/byte number

n Record access
ü File is an array of fixed- or variable-length records, read/written sequentially or

randomly by record #
n Index access

ü File system contains an index to a particular field of each record in a file, reads
specify a value for that field and the system finds the records via the index (DBs)

Operating System 13

Access MethodsAccess Methods
n Sequential Access

read next
write next
reset
no read after last write

(rewrite)

n Direct Access
read n
write n
position to n

read next
write next

rewrite n
n = relative block number

Operating System 14

SequentialSequential--access Fileaccess File

Operating System 15

Simulation of Sequential Access on a DirectSimulation of Sequential Access on a Direct--access Fileaccess File

Operating System 16

Example of Index and Relative FilesExample of Index and Relative Files

Operating System 17

Directory StructureDirectory Structure
n A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

Operating System 18

A Typical FileA Typical File--system Organizationsystem Organization

Operating System 19

DirectoriesDirectories
n Directories
ü For users, they provide a structured way to organize files
ü For the file system, they provide a convenient naming interface that allows the

implementation to separate logical file organization from physical file placement
on the disk

n A hierarchical directory system
ü Most file systems support multi-level directories
ü Most file systems support the notion of a current directory (or working directory)

§ Relative names specified with respect to current directory
§ Absolute names start from the root of directory tree

Operating System 20

Directory InternalsDirectory Internals
n A directory is …
ü typically just a file that happens to contain special metadata

§ Only need to manage one kind of secondary storage unit
ü directory = list of (file name, file attributes)
ü attributes include such things as:

§ size, protection, creation time, access time,
§ location on disk, etc.

ü usually unordered (effectively random)
§ Entries usually sorted by program that reads directory

Operating System 21

Information in a Device DirectoryInformation in a Device Directory
n Name
n Type
n Address
n Current length
n Maximum length
n Date last accessed (for archival)
n Date last updated (for dump)
n Owner ID (who pays)
n Protection information (discuss later)

Operating System 22

Operations Performed on DirectoryOperations Performed on Directory
n Search for a file
n Create a file
n Delete a file
n List a directory
n Rename a file
n Traverse the file system

Operating System 23

Directory OperationsDirectory Operations
n Unix operations
ü Directories implemented in files

§ Use file operations to manipulate directories
ü C runtime libraries provides a higher-level abstraction for reading directories

§ DIR *opendir (const char *name);
§ struct dirent *readdir (DIR *dir);
§ void seekdir (DIR *dir, off_t offset);
§ int closedir (DIR *dir);

ü Other directory-related system calls
§ int rename (const char *oldpath, const char *newpath);
§ int link (const char *oldpath, const char *newpath);
§ int unlink (const char *pathname);

Operating System 24

n Efficiency – locating a file quickly

n Naming – convenient to users
ü Two users can have same name for different files
ü The same file can have several different names

n Grouping – logical grouping of files by properties, (e.g., all Java programs,
all games, …)

Organize the Directory (Logically) to ObtainOrganize the Directory (Logically) to Obtain

Operating System 25

SingleSingle--Level DirectoryLevel Directory
n A single directory for all users

Naming problem

Grouping problem

Operating System 26

TwoTwo--Level DirectoryLevel Directory

n Separate directory for each user

• Path name
• Can have the same file name for different user
• Efficient searching
• No grouping capability

Operating System 27

TreeTree--Structured DirectoriesStructured Directories

Operating System 28

TreeTree--Structured Directories (ContStructured Directories (Cont’’d)d)
n Efficient searching

n Grouping Capability

n Current directory (working directory)
ü cd /spell/mail/prog
ü type list

Operating System 29

TreeTree--Structured Directories (ContStructured Directories (Cont’’d)d)

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

n Absolute or relative path name
n Creating a new file is done in current directory
n Delete a file

rm <file-name>
n Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

Operating System 30

AcyclicAcyclic--Graph DirectoriesGraph Directories

n Have shared subdirectories and files

Operating System 31

AcyclicAcyclic--Graph Directories (ContGraph Directories (Cont’’d)d)
n Two different names (aliasing)

n If dict deletes list ⇒ dangling pointer
Solutions:
ü Backpointers, so we can delete all pointers

Variable size records a problem
ü Backpointers using a daisy chain organization
ü Entry-hold-count solution

Operating System 32

General Graph DirectoryGeneral Graph Directory

Operating System 33

General Graph Directory (ContGeneral Graph Directory (Cont’’d)d)
n How do we guarantee no cycles?
ü Allow only links to file not subdirectories
ü Garbage collection
ü Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

Operating System 34

Pathname TranslationPathname Translation
n open(“/a/b/c”, …)
ü Open directory “/” (well known, can always find)
ü Search the directory for “a”, get location of “a”
ü Open directory “a”, search for “b”, get location of “b”
ü Open directory “b”, search for “c”, get location of “c”
ü Open file “c”
ü (Of course, permissions are checked at each step)

n System spends a lot of time walking down directory paths
ü This is why open is separate from read/write
ü OS will cache prefix lookups to enhance performance

§ /a/b, /a/bb, /a/bbb, etc. all share the “/a” prefix

Operating System 35

File System MountingFile System Mounting
n A file system must be mounted before it can be accessed

n A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

n Example
ü Windows: to drive letters (e.g., C:\, D:\, …)
ü Unix: to an existing empty directory (= mount point)

Operating System 36

((a) Existing (b) a) Existing (b) Unmounted Unmounted PartitionPartition

Operating System 37

Mount PointMount Point

Operating System 38

File SharingFile Sharing
n Sharing of files on multi-user systems is desirable

n Sharing may be done through a protection scheme

n On distributed systems, files may be shared across a network

n Network File System (NFS) is a common distributed file-sharing method

Operating System 39

Consistency SemanticsConsistency Semantics
n UNIX semantics
ü Writes to an open file are visible immediately to other users that have this file

open at the same time.
ü One mode of sharing allows users to share the pointer of current location into the

file.
§ via fork() or dup()

n AFS session semantics
ü Writes to an open file are not visible immediately
ü Once a file is closed, the changes made to it are visible only in sessions starting

later

n Immutable-shared-files semantics
ü Once a file is declared as shared by its creator, it cannot be modified

Operating System 40

ProtectionProtection
n File owner/creator should be able to control:

ü what can be done
ü by whom

n Types of access
ü Read
ü Write
ü Execute
ü Append
ü Delete
ü List

Operating System 41

rwrwhonghong rr

/home/hong/home/hong

rwrw

--

ProtectionProtection

/etc/passwd/etc/passwd /home/guest/home/guest

rootroot rwrw rwrw

guestguest -- rr

objects

subjects

ACL

rr

Capability

n Representing protection
ü Access control lists (ACLs)

§ For each object, keep list of subjects and their allowed actions
ü Capabilities

§ For each subject, keep list of objects and their allowed actions

Operating System 42

Protection (ContProtection (Cont’’d)d)
n ACLs vs. Capabilities
ü Two approaches differ only in how the table is represented
ü Capabilities are easy to transfer

§ They are like keys; can hand them off
§ They make sharing easy

ü In practice, ACLs are easier to manage
§ Object-centric, easy to grant and revoke
§ To revoke capabilities, need to keep track of all subjects that have the capability – hard

to do, given that subjects can hand off capabilities
ü ACLs grow large when object is heavily shared

§ Can simplify by using “groups”
§ Additional benefit: change group membership affects all objects that have this group in

its ACL

Operating System 43

Access Lists and GroupsAccess Lists and Groups

owner group public

chmod 761 game

Attach a group to a file
chgrp G game

n Mode of access: read, write, execute
n Three classes of users

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

n Ask manager to create a group (unique name), say G, and add some users
to the group

n For a particular file (say game) or subdirectory, define an appropriate access

Operating System 44

File LockingFile Locking
n Advisory lock on a whole file
ü int flock (int fd, int operation)

§ LOCK_SH(shared), LOCK_EX(exclusive), LOCK_UN(unlock)

n POSIX record lock
ü discretionary lock: can lock portions of a file
ü If a process dies, its locks are automatically removed
ü int fcntl (int fd, int cmd, struct flock *lock);

§ cmd: F_GETLK, F_SETLK, F_SETLKW
§ struct flock { type, whence, start, len, pid };

n System V mandatory lock
ü A file is marked as a candidate by setting the setgid bit and removing the group

execute bit
ü Must mount the file system to permit mandatory file locks
ü Use the existing flock()/fcntl() to apply locks
ü Every read() and write() is checked for locking

