11. File-System I nterface

Sungyoung Lee

College of Engineering
KyungHee University

Contents

N
N
N
N
N
N

File Concept

Access Methods
Directory Structure
File System Mounting
File Sharing
Protection

Operating System 1

Basic Concept

N Requirements for long-term information storage
U It must be possible to store a very large amount of information
U The information must survive the termination of the process using it
U Multiple processes must be able to access the information concurrently

N File system
U Implement an abstraction for secondary storage (files)
U Organize files logically (directories)
0 Permit sharing of data between processes, people, and machines
U Protect data from unwanted access (security)

Operating System 2

Files

N File

U A named collection of related information that is recorded on secondary storage
§ persistent through power failures and system reboots

 OS provides a uniform logical view of information storage via files

N File structures
U Flat: byte sequence

 Structured:
§ Lines
§ Fixed length records
§ Variable length records

Operating System 3

File Concept

N Contiguous logical address space

N Types:

U Data
§ numeric
§ character
§ binary
U Program

Operating System 4

File Structure

N None
U Sequence of words, bytes
N Simple record structure
U Lines
U Fixed length
U Variable length
N Complex Structures
U Formatted document
U Relocatable load file
N Can simulate last two with first method by inserting appropriate control
characters
N Who decides:
U Operating system
U Program

Operating System 5

File Attributes

N Name

U only information kept in human-readable form
Nn Type

U needed for systems that support different types
N Location

U pointer to file location on device
n Size

U current file size
N Protection

U controls who can do reading, writing, executing
N Time, date, and user identification

U data for protection, security, and usage monitoring

N Information about files are kept in the directory structure, which is maintained
on the disk

Operating System 6

N Attributes or metadata

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
| Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up: 1 for needs to be backed up

ASCll/binary flag

|0 for ASCIl file; 1 for binary file

0 for sequential access only; 1 for random access

| Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags . 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record

| Kev length Number of bytes in the key field

. Creation time

Date and time the file was created

imea of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Number of bytes in the file

Number of bytes the file may grow to

Operating System 7

File Operations

n
n
n
n
n
n
n

Create

Write

Read

Reposition within file — file seek
Delete

Truncate

Open(F)

U search the directory structure on disk for entry F;, and move the content of entry
to memory

n Close (F)
U move the content of entry F, in memory to directory structure on disk

Operating System 8

File Operations

N Unix operations

Int creat (const char *pathname, mode_t mode);

Int open (const char *pathname, int flags, mode_t mode);
Int close (int fd);

ssize_t read (int fd, void *buf, size _t count);

ssize_t write (int fd, const void *buf, size_t count);

off _t Iseek (int fd, off_t offset, int whence);

Int stat (const char *pathname, struct stat *buf);

Int chmod (const char *pathname, mode_t mode);

Int chown (const char *pathname, uid_t owner, gid_t grp);
int flock (int fd, int operation);

int fcntl (int fd, int cmd, long arg);

Operating System 9

File Types

N Files may have types
U Understood by file systems
§ device, directory, symbolic link, etc.
U Understood by other parts of OS or runtime libraries
§ executable, dll, source code, object code, text, etc.
U Understood by application programs
§ jpg, mpg, avi, mp3, etc.

N Encoding file types
U Windows encodes type in name
§ .com, .exe, .bat, .dll, .jpg, .avi, . mp3, etc.
U Unix encodes type in contents
§ magic numbers (e.g., Oxcafebabe for Java class files)
§ initial characters (e.g., #! for shell scripts)

Operating System 10

File Types — Name, Extension

Operating System

file type

usual extension

function

executable

exe, com, bin
or none

read to run machine-
language program

object

obj, o

compiled, machine language,

not linked

source code

c, Cc, java, pas,
asm, a

source code in various
languages

batch

bat, sh

commands to the command

interpreter

text

txt, doc

textual data, documents

word processor

wp, tex, rrf,
doc

various word-processor
formats

library

lib, a, so, dll,
mpeg, mov, rm

libraries of routines for
programmers

print or view

arc, zip, tar

ASCII or binary file in a
format for printing or
viewing

archive

arc, zip, tar

related files grouped into
one file, sometimes com-
pressed, for archiving

or storage

multimedia

mpeg, mov, rm

binary file containing
audio or A/V information

11

File Access

N Some file systems provide different access methods that specify different
ways for accessing data in a file.

N Sequential access

U read bytes one at a time, in order
N Direct access

U random access given block/byte number
N Record access

U File is an array of fixed- or variable-length records, read/written sequentially or
randomly by record #

N Index access

U File system contains an index to a particular field of each record in a file, reads
specify a value for that field and the system finds the records via the index (DBS)

Operating System 12

Access Methods

N Sequential Access
read next
write next
reset
no read after last write
(rewrite)

N Direct Access
read n
write n
position to n
read next
write next
rewrite n

n = relative block number

Operating System 13

Sequential-access File

o current position
beginning P

< rewind m

— read or write ===

Operating System 14

Simulation of Sequential Access on a Direct-access File

sequential access

implementation for direct access

reset

cp = 0;

read next

read cp;
cp = cp+1;

write next

write cp;
cp = cp+1;

Operating System

15

Example of Index and Relative Files

logical record
last name number

Adams
Arthur
Asher Smith, John | social-security

index file relative file

Operating System 16

Directory Structure

N A collection of nodes containing information about all files

Directory Q Q Q Q Q

\

\

Files

F2 F 4
F1 F3

Fn

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

Operating System 17

A Typical File-system Organization

partition A <

partition B <

directory

directory

Operating System

files

partition C <

directory

18

Directories

N Directories
U For users, they provide a structured way to organize files

U For the file system, they provide a convenient naming interface that allows the
Implementation to separate logical file organization from physical file placement
on the disk

N A hierarchical directory system
U Most file systems support multi-level directories
U Most file systems support the notion of a current directory (or working directory)

§ Relative names specified with respect to current directory
§ Absolute names start from the root of directory tree

19

Operating System

Directory Internals

N Adirectory is ...
U typically just a file that happens to contain special metadata
§ Only need to manage one kind of secondary storage unit
U directory = list of (file name, file attributes)
U attributes include such things as:

§ size, protection, creation time, access time,
§ location on disk, etc.

U usually unordered (effectively random)
§ Entries usually sorted by program that reads directory

Operating System 20

Information in a Device Directory

N
N
N
N
N
N
N
N
N

Operating System 21

Name

Type

Address

Current length

Maximum length

Date last accessed (for archival)
Date last updated (for dump)

Owner ID (who pays)

Protection information (discuss later)

Operations Performed on Directory

N
N
N
N
N
N

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

Operating System 22

Directory Operations

N Unix operations

U Directories implemented in files
§ Use file operations to manipulate directories

U C runtime libraries provides a higher-level abstraction for reading directories
§ DIR *opendir (const char *name);
§ struct dirent *readdir (DIR *dir);
§ void seekdir (DIR *dir, off t offset);
§ int closedir (DIR *dir);
U Other directory-related system calls
§ int rename (const char *oldpath, const char *newpath);
§ int link (const char *oldpath, const char *newpath);
§ int unlink (const char *pathname);

Operating System 23

Organize the Directory (Logically) to Obtain

N Efficiency — locating a file quickly

N Naming — convenient to users
U Two users can have same name for different files
U The same file can have several different names

N Grouping — logical grouping of files by properties, (e.g., all Java programs,
all games, ...)

Operating System 24

Single-Level Directory

N A single directory for all users

directory cat lest

BEERREREY

Naming problem

Grouping problem

Operating System 25

Two-Level Directory

N Separate directory for each user

ser file

* Path name

« Can have the same file name for different user
« Efficient searching

* No grouping capability

Operating System 26

Tree-Structured Directories

programs

dist find count reorder mail

&
@ \)‘\\tfk)b\)/\

prog exp reorder| list | find count

S T

list] first

Operating System 27

Tree-Structured Directories (Cont’d)

N Efficient searching
N Grouping Capabillity
N Current directory (working directory)

U cd /spell/mail/prog
0 type list

Operating System

28

Tree-Structured Directories (Cont’d)

N Absolute or relative path name

N Creating a new file is done in current directory

N Delete a file

rm <file-name>

N Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

mail

prog

copy

prt

exp

count

Deleting “mail” b deleting the entire subtree rooted by “mail”

Operating System

29

Acyclic-Graph Directories

N Have shared subdirectories and files

Operating System 30

Acyclic-Graph Directories (Cont’d)

N Two different names (aliasing)

N If dict deletes list P dangling pointer

Solutions:

U Backpointers, so we can delete all pointers
Variable size records a problem

U Backpointers using a daisy chain organization
U Entry-hold-count solution

Operating System 31

General Graph Directory

Operating System 32

General Graph Directory (Cont’d)

N How do we guarantee no cycles?
U Allow only links to file not subdirectories
U Garbage collection

U Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

Operating System 33

Pathname Translation

n open(“/a/b/c”, ...)
U Open directory “/” (well known, can always find)

U Search the directory for “a”, get location of “a

U Open directory “a”, search for “b”, get location of “b”
U Open directory “b”, search for “c”, get location of “c”
g

Open file “c
(Of course, permissions are checked at each step)

N System spends a lot of time walking down directory paths
U This is why open is separate from read/write

U OS will cache prefix lookups to enhance performance
§ /a/b, /a/bb, /a/bbb, etc. all share the “/a” prefix

Operating System 34

File System Mounting

N A file system must be mounted before it can be accessed
N A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

N Example
U Windows: to drive letters (e.g., C:\, D\, ...)
U Unix: to an existing empty directory (= mount point)

Operating System 35

(a) Existing (b) Unmounted Partition

Operating System 36

Mount Point

Operating System 37

File Sharing

N Sharing of files on multi-user systems is desirable
N Sharing may be done through a protection scheme
N On distributed systems, files may be shared across a network

N Network File System (NFS) is a common distributed file-sharing method

Operating System

38

Consistency Semantics

N UNIX semantics

U Writes to an open file are visible immediately to other users that have this file
open at the same time.

U One mode of sharing allows users to share the pointer of current location into the
file.

8§ via fork() or dup()

N AFS session semantics
0 Writes to an open file are not visible immediately

U Once a file is closed, the changes made to it are visible only in sessions starting
later

N Immutable-shared-files semantics
U Once a file is declared as shared by its creator, it cannot be modified

Operating System 39

Protection

N File owner/creator should be able to control:
U what can be done
0 by whom

N Types of access
U Read

Write

Execute

Append

Delete

List

G e e e

Operating System 40

Protection

N Representing protection
U Access control lists (ACLS)
§ For each object, keep list of subjects and their allowed actions
 Capabilities
§ For each subject, keep list of objects and their allowed actions

ommmmmmmmme .. Objects

|

|:' /etc/passwd r /home/hong I /home/guest I
|

) root |: rw I rw I rw I
subjects i
I
VT |
' Capability _E

CSoeoeocoooooooooamace o o o e oo Gd G0 G0 G @

Operating System 41

Protection (Cont’d)

N ACLs vs. Capabilities
U Two approaches differ only in how the table is represented
U Capabilities are easy to transfer
§ They are like keys; can hand them off
§ They make sharing easy
U In practice, ACLs are easier to manage
§ Object-centric, easy to grant and revoke

§ To revoke capabilities, need to keep track of all subjects that have the capability — hard
to do, given that subjects can hand off capabilities

U ACLs grow large when object is heavily shared
§ Can simplify by using “groups”

§ Additional benefit: change group membership affects all objects that have this group in
its ACL

Operating System 42

Access Lists and Groups

N Mode of access: read, write, execute

N Three classes of users

a) owner access

b) group access

c) public access

RWX
7 p 111
RWX
6 p 110
RWX
1 p 001

N Ask manager to create a group (unigue name), say G, and add some users

to the group

N For a particular file (say game) or subdirectory, define an appropriate access

Attach agroup to afile

Operating System

owner\group)hc

chmod 761 game

chgrp G game

43

File Locking

N Advisory lock on a whole file
U int flock (int fd, int operation)
§ LOCK_ SH(shared), LOCK_EX(exclusive), LOCK_UN(unlock)
N POSIX record lock
U discretionary lock: can lock portions of a file
U If a process dies, its locks are automatically removed

U int fentl (int fd, int cmd, struct flock *lock);
§ cmd: F_GETLK, F_SETLK, F_SETLKW
§ struct flock { type, whence, start, len, pid };

N System V mandatory lock

U A file is marked as a candidate by setting the setgid bit and removing the group
execute bit

U Must mount the file system to permit mandatory file locks
U Use the existing flock()/fcntl() to apply locks
U Every read() and write() is checked for locking

Operating System 44

