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OverviewOverview
n User’s view on file systems: 
ü How files are named?
ü What operations are allowed on them?
ü What the directory tree looks like?

n Implementor’s view on file systems: 
ü How files and directories are stored?
ü How disk space is managed?
ü How to make everything work efficiently and reliably?
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FileFile--System StructureSystem Structure
n File structure
ü Logical storage unit
ü Collection of related information

n File system resides on secondary storage (disks)

n File system organized into layers

n File control block
ü storage structure consisting of information about a file
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Layered File SystemLayered File System
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A Typical File Control BlockA Typical File Control Block
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FileFile--System ImplementationSystem Implementation
n On-disk structure
ü Boot control block

§ Boot block(UFS) or Boot sector(NTFS)
ü Partition control block

§ Super block(UFS) or Master file table(NTFS)
ü Directory structure
ü File control block (FCB)

§ I-node(UFS) or In master file table(NTFS)

n In-memory structure
ü In-memory partition table
ü In-memory directory structure
ü System-wide open file table
ü Per-process open file table
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OnOn--Disk StructureDisk Structure
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InIn--Memory StructureMemory Structure
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InIn--Memory File System StructuresMemory File System Structures
n The following figure illustrates the necessary file system structures provided 

by the operating systems

n Figure 12-3(a) refers to opening a file

n Figure 12-3(b) refers to reading a file
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InIn--Memory File System StructuresMemory File System Structures
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Virtual File SystemsVirtual File Systems
n Virtual File Systems (VFS) provide an object-oriented way of implementing 

file systems

n VFS allows the same system call interface (the API) to be used for different 
types of file systems

n The API is to the VFS interface, rather than any specific type of file system
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Schematic View of Virtual File SystemSchematic View of Virtual File System
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File System InternalsFile System Internals

Virtual File System (VFS)Virtual File System (VFS)

minixminix nfsnfs ext2ext2 dosfsdosfs … mmfsmmfs procfsprocfs

buffer cachebuffer cache
File SystemFile System

device driverdevice driver

System call interface
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VFSVFS
n Virtual File System
ü Manages kernel-level file abstractions in one format for all file systems
ü Receives system call requests from user-level (e.g., open, write, stat, etc.)
ü Interacts with a specific file system based on mount point traversal
ü Receives requests from other parts of the kernel, mostly from memory 

management
ü Translates file descriptors to VFS data structures (such as vnode)

n Linux: VFS common file model
ü The superblock object

§ stores information concerning a mounted file system
ü The inode object

§ stores general information about a specific file
ü The file object

§ stores information about the interaction between an open file and a process
ü The dentry object

§ stores information about the linking of a directory entry with the corresponding file
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Directory ImplementationDirectory Implementation
n Linear list of file names with pointer to the data blocks

ü simple to program
ü time-consuming to execute

n Hash Table 
ü linear list with hash data structure
ü decreases directory search time
ü collisions

§ situations where two file names hash to the same location
ü fixed size
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n The location of metadata
ü In the directory entry

ü In the separate 
data structure 
(e.g., i-node)

ü A hybrid approach
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Allocation MethodsAllocation Methods
n An allocation method refers to how disk blocks are allocated for files

ü Contiguous allocation
ü Linked allocation
ü Indexed allocation
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Contiguous AllocationContiguous Allocation
n Each file occupies a set of contiguous blocks on the disk

n Simple 
ü only starting location (block #) and length (number of blocks) are required

n Random access

n Wasteful of space (dynamic storage-allocation problem)

n Files cannot grow
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Contiguous Allocation of Disk SpaceContiguous Allocation of Disk Space
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ExtentExtent--Based SystemsBased Systems
n Many newer file systems (I.e. Veritas File System) use a modified contiguous 

allocation scheme

n Extent-based file systems allocate disk blocks in extents

n An extent is a contiguous block of disks 
ü Extents are allocated for file allocation
ü A file consists of one or more extents
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Contiguous AllocationContiguous Allocation
n Advantages
ü The number of disk seeks is minimal
ü Directory entries can be simple:

<file name, starting disk block, length, etc.>

n Disadvantages
ü Requires a dynamic storage allocation: First / best fit
ü External fragmentation: may require a compaction
ü The file size is hard to predict and varying over time

n Feasible and widely used for CD-ROMS
ü All the file sizes are known in advance
ü Files will never change during subsequent use



Operating System 22

Linked AllocationLinked Allocation
n Each file is a linked list of disk blocks

ü Blocks may be scattered anywhere on the disk

pointerblock      =
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Linked Allocation (ContLinked Allocation (Cont’’d)d)
n Simple
ü need only starting address

n Free-space management system 
ü no waste of space 

n No random access

n File-allocation table (FAT)
ü disk-space allocation used by MS-DOS and OS/2
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Linked AllocationLinked Allocation
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FileFile--Allocation TableAllocation Table
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Linked AllocationLinked Allocation
n Advantages
ü Directory entries are simple:

<file name, starting block, ending block, etc.>
ü No external fragmentation

§ the disk blocks may be scattered anywhere on the disk
ü A file can continue to grow as long as free blocks are available

n Disadvantages
ü It can be used only for sequentially accessed files
ü Space overhead for maintaining pointers to the next disk block
ü The amount of data storage in a block is no longer a power of two because the 

pointer takes up a few bytes
ü Fragile: a pointer can be lost or damaged
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Linked Allocation using ClustersLinked Allocation using Clusters
n Collect blocks into multiples (clusters) and allocate the clusters to files
ü e.g., 4 blocks / 1 cluster

n Advantages
ü The logical-to-physical block mapping remains simple
ü Improves disk throughput (fewer disk seeks)
ü Reduced space overhead for pointers

n Disadvantages
ü Internal fragmentation
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Indexed AllocationIndexed Allocation
n Brings all pointers together into the index block
n Logical view

n Need index table
n Random access
n Dynamic access without external fragmentation, but have overhead of index 

block

index table
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Example of Indexed AllocationExample of Indexed Allocation
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Indexed Allocation Indexed Allocation –– Mapping (ContMapping (Cont’’d)d)

Μ

outer-index

index table file
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Combined Scheme:  UNIX (4K bytes per block)Combined Scheme:  UNIX (4K bytes per block)
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Indexed AllocationIndexed Allocation
n Advantages
ü Supports direct access, without suffering from external fragmentation
ü I-node need only be in memory when the corresponding file is open

n Disadvantages
ü Space overhead for indexes:

(1) Linked scheme: link several index blocks
(2) Multilevel index blocks
(3) Combined scheme: UNIX

- 12 direct blocks, single indirect block, double indirect block,
triple indirect block
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FreeFree--Space ManagementSpace Management
n Bit vector (n blocks)

…
0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit
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FreeFree--Space Management (ContSpace Management (Cont’’d)d)
n Bit map requires extra space.  Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

n Easy to get contiguous files 

n Linked list (free list)
ü Cannot get contiguous space easily
ü No waste of space

n Grouping 

n Counting
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Linked Free Space List on DiskLinked Free Space List on Disk
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Free Space ManagementFree Space Management
n Grouping
ü Store the addresses of n free blocks in the first free block
ü The addresses of a large number of free blocks can be found quickly

n Counting
ü Keep the address of the free block and the number of free contiguous blocks
ü The length of the list becomes shorter and the count is generally greater than 1

§ Several contiguous blocks may be allocated or freed simultaneously
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Efficiency and PerformanceEfficiency and Performance
n Efficiency dependent on:

ü Disk allocation and directory algorithms
ü Types of data kept in file’s directory entry

n Performance
ü Disk cache

§ separate section of main memory for frequently used blocks
ü Free-behind and Read-ahead 

§ techniques to optimize sequential access
ü Improve PC performance by dedicating section of memory as virtual disk, or RAM 

disk
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Buffer CacheBuffer Cache
n Applications exhibit significant locality for reading and writing files

n Idea: cache file blocks in memory to capture locality in buffer cache (or disk 
cache)
ü Cache is system wide, used and shared by all processes
ü Reading from the cache makes a disk perform like memory
ü Even a 4MB cache can be very effective

n Issues
ü The buffer cache competes with VM
ü Like VM, it has limited size
ü Need replacement algorithms again

(References are relatively infrequent, so it is feasible to keep all the blocks in 
exact LRU order)
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Various DiskVarious Disk--Caching LocationsCaching Locations
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Page CachePage Cache
n A page cache caches pages rather than disk blocks using virtual memory 

techniques

n Memory-mapped I/O uses a page cache

n Routine I/O through the file system uses the buffer (disk) cache

n This leads to the following figure
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I/O Without a Unified Buffer CacheI/O Without a Unified Buffer Cache
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Unified Buffer CacheUnified Buffer Cache
n A unified buffer cache uses the same page cache to cache both memory-

mapped pages and ordinary file system I/O
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Caching WritesCaching Writes
n Synchronous writes are very slow

n Asynchronous writes (or write-behind, write-back)
ü Maintain a queue of uncommitted blocks
ü Periodically flush the queue to disk
ü Unreliable: metadata requires synchronous writes (with small files, most writes 

are to metadata)
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ReadRead--AheadAhead
n File system predicts that the process will request next block
ü File system goes ahead and requests it from the disk
ü This can happen while the process is computing on previous block, overlapping 

I/O with execution
ü When the process requests block, it will be in cache

n Compliments the disk cache, which also is doing read ahead

n Very effective for sequentially accessed files

n File systems try to prevent blocks from being scattered across the disk during 
allocation or by restructuring periodically

n Cf) Free-behind
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Block Size Performance vs. EfficiencyBlock Size Performance vs. Efficiency
n Block size
ü Disk block size vs. file system block size
ü The median file size in UNIX is about 1KB

Block size (All files are 2KB)

100
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RecoveryRecovery
n Consistency checking 

ü compares data in directory structure with data blocks on disk, and tries to fix 
inconsistencies

n Use system programs to back up data from disk to another storage device 
(floppy disk, magnetic tape)

n Recover lost file or disk by restoring data from backup
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ReliabilityReliability
n File system consistency
ü File system can be left in an inconsistent state if cached blocks are not written out 

due to the system crash
ü It is especially critical if some of those blocks are i-node blocks, directory blocks, 

or blocks containing the free list
ü Most systems have a utility program that checks file system consistency
§ Windows: scandisk
§ UNIX: fsck
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Log Structured File SystemsLog Structured File Systems
n Log structured (or journaling) file systems record each update to the file 

system as a transaction

n All transactions are written to a log
ü A transaction is considered committed once it is written to the log
ü However, the file system may not yet be updated

n The transactions in the log are asynchronously written to the file system
ü When the file system is modified, the transaction is removed from the log

n If the file system crashes, all remaining transactions in the log must still be 
performed
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Log Structured File SystemsLog Structured File Systems
n Journaling file systems 
ü Fsck’ing takes a long time, which makes the file system restart slow in the event 

of system crash
ü Record a log, or journal, of changes made to files and directories to a separate 

location (preferably a separate disk)
ü If a crash occurs, the journal can be used to undo any partially completed tasks 

that would leave the file system in an inconsistent state
ü IBM JFS for AIX, Linux

Veritas VxFS for Solaris, HP-UX, Unixware, etc.
SGI XFS for IRIX, Linux
Reiserfs, ext3 for Linux
NTFS for Windows
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The Sun Network File System (NFS)The Sun Network File System (NFS)
n An implementation and a specification of a software system for accessing 

remote files across LANs (or WANs)

n The implementation is part of the Solaris and SunOS operating systems 
running on Sun workstations using an unreliable datagram protocol (UDP/IP 
protocol and Ethernet) 
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NFS (ContNFS (Cont’’d)d)
n Interconnected workstations viewed as a set of independent machines with 

independent file systems, which allows sharing among these file systems in a 
transparent manner
ü A remote directory is mounted over a local file system directory.  The mounted 

directory looks like an integral  subtree of the local file system, replacing the 
subtree descending from the local directory

ü Specification of the remote directory for the mount operation is nontransparent; 
the host name of the remote directory has to be provided.  Files in the remote 
directory can then be accessed in a transparent manner

ü Subject to access-rights accreditation, potentially any file system (or directory 
within a file system), can be mounted remotely on top of any local directory
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NFS (ContNFS (Cont’’d)d)
n NFS is designed to operate in a heterogeneous environment of different 

machines, operating systems, and network architectures
ü The NFS specifications independent of these media

n This independence is achieved through the use of RPC primitives built on top 
of an External Data Representation (XDR) protocol used between two 
implementation-independent interfaces

n The NFS specification distinguishes between the services provided by a 
mount mechanism and the actual remote-file-access services
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Three Independent File SystemsThree Independent File Systems
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Mounting in NFS Mounting in NFS 

Mounts Cascading mounts
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NFS Mount ProtocolNFS Mount Protocol
n Establishes initial logical connection between server and client
n Mount operation includes name of remote directory to be mounted and name 

of server machine storing it 
ü Mount request is mapped to corresponding RPC and forwarded to mount server 

running on server machine
ü Export list – specifies local file systems that server exports for mounting, along 

with names of machines that are permitted to mount them
n Following a mount request that conforms to its export list, the server returns 

a file handle — a key for further accesses
n File handle
ü A file-system identifier, and an inode number to identify the mounted directory 

within the exported file system
n The mount operation changes only the user’s view and does not affect the 

server side
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NFS ProtocolNFS Protocol
n Provides a set of remote procedure calls for remote file operations
n The procedures support the following operations:
ü searching for a file within a directory 
ü reading a set of directory entries 
ü manipulating links and directories 
ü accessing file attributes
ü reading and writing files

n NFS servers are stateless
ü Each request has to provide a full set of arguments

n Modified data must be committed to the server’s disk before results are 
returned to the client (lose advantages of caching)

n The NFS protocol does not provide concurrency-control mechanisms
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n UNIX file-system interface 
ü Based on the open, read, write, and close calls, and file descriptors

n Virtual File System (VFS) layer
ü Distinguishes local files from remote ones, and local files are further distinguished 

according to their file-system types
ü The VFS activates file-system-specific operations to handle local requests 

according to their file-system types
ü Calls the NFS protocol procedures for remote requests

n NFS service layer
ü Bottom layer of the architecture
ü Implements the NFS protocol

Three Major Layers of NFS ArchitectureThree Major Layers of NFS Architecture
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Schematic View of NFS Architecture Schematic View of NFS Architecture 
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NFS PathNFS Path--Name TranslationName Translation
n Performed by breaking the path into component names and performing a 

separate NFS lookup call for every pair of component name and directory 
vnode

n To make lookup faster, a directory name lookup cache on the client’s side 
holds the vnodes for remote directory names
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NFS Remote OperationsNFS Remote Operations
n Nearly one-to-one correspondence between regular UNIX  system calls and 

the NFS protocol RPCs (except opening and closing files)
n NFS adheres to the remote-service paradigm, but employs buffering and 

caching techniques for the sake of performance 
n File-blocks cache
ü When a file is opened, the kernel checks with the remote server whether to fetch 

or revalidate the cached attributes
ü Cached file blocks are used only if the corresponding cached attributes are up to 

date
n File-attribute cache

ü The attribute cache is updated whenever new attributes arrive from the server
n Clients do not free delayed-write blocks until the server confirms that the data 

have been written to disk
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ExamplesExamples
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Fast File SystemFast File System
n Fast file system (FFS)
ü The original Unix file system (70’s) was very simple and straightforwardly 

implemented:
§ Easy to implement and understand
§ But very poor utilization of disk bandwidth (lots of seeking)

ü BSD Unix folks redesigned file system called FFS
§ McKusick, Joy, Fabry, and Leffler (mid 80’s)
§ Now it is the file system from which all other UNIX file systems have been compared

ü The basic idea is aware of disk structure
§ Place related things on nearby cylinders to reduce seeks
§ Improved disk utilization, decreased response time
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Fast File System (ContFast File System (Cont’’d)d)
n Data and i-node placement
ü Original Unix FS had two major problems:
(1) Data blocks are allocated randomly in aging file systems

§ Blocks for the same file allocated sequentially when FS is new
§ As FS “ages” and fills, need to allocate blocks freed up when other files are deleted
§ Problem: Deleted files essentially randomly placed
§ So, blocks for new files become scattered across the disk

(2) i-nodes are allocated far from blocks
§ All i-nodes at the beginning of disk, far from data
§ Traversing file name paths, manipulating files and directories require going back and 

forth from i-nodes to data blocks
ü Both of these problems generate many long seeks!
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Fast File System (ContFast File System (Cont’’d)d)
n Cylinder groups
ü BSD FFS addressed these problems using the notion of a cylinder group
ü Disk partitioned into groups of cylinders
ü Data blocks from a file all placed in the same cylinder group
ü Files in same directory placed in the same cylinder group
ü I-nodes for files allocated in the same cylinder group as file’s data blocks
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Fast File System (ContFast File System (Cont’’d)d)
n Free space reserved across all cylinders.
ü If the number of free blocks falls to zero, the file system throughput tends to be 

cut in half, because of the inability to localize blocks in a file
ü A parameter, called free space reserve, gives the minimum acceptable 

percentage of file system blocks that should be free
ü If the number of free blocks drops below this level, only the system administrator 

can continue to allocate blocks
ü Normally 10%; this is why df may report > 100%
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Fast File System (ContFast File System (Cont’’d)d)
n Fragments
ü Small blocks (1KB) caused two problems:

§ Low bandwidth utilization
§ Small max file size (function of block size)

ü FFS fixes by using a larger block (4KB)
§ Allows for very large files

(1MB only uses 2 level indirect)
§ But introduces internal fragmentation: there are many small files (i.e., < 4KB)

ü FFS introduces “fragments” to fix internal fragmentation
§ Allows the division of a block into one or more fragments (1K pieces of a block)
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Fast File System (ContFast File System (Cont’’d)d)
n Media failures
ü Replicate master block (superblock)

n File system parameterization
ü Parameterize according to disk and CPU characteristics

§ Maximum blocks per file in a cylinder group
§ Minimum percentage of free space
§ Sectors per track
§ Rotational delay between contiguous blocks
§ Tracks per cylinder, etc.

ü Skip according to rotational rate and CPU latency
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Linux Ext2 File SystemLinux Ext2 File System
n History
ü Evolved from Minix file system

§ Block addresses are stored in 16bit integers – maximal file system size is restricted to 
64MB

§ Directories contain fixed-size entries and the maximal file name was 14 characters
ü Virtual File System (VFS) is added
ü Extended Filesystem (Ext FS), 1992

§ Added to Linux 0.96c
§ Maximum file system size was 2GB, and the maximal file name size was 255 

characters
ü Second Extended File-system (Ext2 FS), 1994
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Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Ext2 Features
ü Configurable block sizes (from 1KB to 4KB) 

§ depending on the expected average file size
ü Configurable number of i-nodes

§ depending on the expected number of files
ü Partitions disk blocks into groups

§ lower average disk seek time
ü Preallocates disk data blocks to regular files

§ reduces file fragmentation
ü Fast symbolic links

§ If the pathname of the symbolic link has 60 bytes or less, it is stored in the i-node
ü Automatic consistency check at boot time
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Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Disk layout
ü Boot block

§ reserved for the partition boot sector
ü Block group

§ Similar to the cylinder group in FFS
§ All the block groups have the same size and are stored sequentially

Boot
Block
Boot
Block Block group 0Block group 0 Block group nBlock group n

Super
Block
Super
Block

Group
Descriptors

Group
Descriptors

Data block
Bitmap

Data block
Bitmap

i-node
Bitmap
i-node
Bitmap

i-node
Table
i-node
Table Data blocksData blocks

1 block n blocks 1 block 1 block n block n blocks
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Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Block group
ü Superblock: stores file system metadata

§ Total number of i-nodes
§ File system size in blocks
§ Free blocks / i-nodes counter
§ Number of blocks / i-nodes per group
§ Block size, etc.

ü Group descriptor
§ Number of free blocks / i-nodes / directories in the group
§ Block number of block / i-node bitmap, etc.

ü Both the superblock and the group descriptors are duplicated in each block group
§ Only those in block group 0 are used by the kernel
§ fsck copies them into all other block groups
§ When data corruption occurs, fsck uses old copies to bring the file system back to a 

consistent state
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Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Block group size
ü The block bitmap must be stored in a single block

§ In each block group, there can be at most 8xb blocks, where b is the block size in bytes
ü The smaller the block size, the larger the number of block groups
ü Example: 8GB Ext2 partition with 4KB block size

§ Each 4KB block bitmap describes 32K data blocks 
= 32K * 4KB = 128MB

§ At most 64 block groups are needed
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Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Directory structure
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