
12. File12. File--System ImplementationSystem Implementation

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n File System Structure
n File System Implementation
n Directory Implementation
n Allocation Methods
n Free-Space Management
n Efficiency and Performance
n Recovery
n Log-Structured File Systems
n NFS

Operating System 2

OverviewOverview
n User’s view on file systems:
ü How files are named?
ü What operations are allowed on them?
ü What the directory tree looks like?

n Implementor’s view on file systems:
ü How files and directories are stored?
ü How disk space is managed?
ü How to make everything work efficiently and reliably?

Operating System 3

FileFile--System StructureSystem Structure
n File structure
ü Logical storage unit
ü Collection of related information

n File system resides on secondary storage (disks)

n File system organized into layers

n File control block
ü storage structure consisting of information about a file

Operating System 4

Layered File SystemLayered File System

Operating System 5

A Typical File Control BlockA Typical File Control Block

Operating System 6

FileFile--System ImplementationSystem Implementation
n On-disk structure
ü Boot control block

§ Boot block(UFS) or Boot sector(NTFS)
ü Partition control block

§ Super block(UFS) or Master file table(NTFS)
ü Directory structure
ü File control block (FCB)

§ I-node(UFS) or In master file table(NTFS)

n In-memory structure
ü In-memory partition table
ü In-memory directory structure
ü System-wide open file table
ü Per-process open file table

Operating System 7

OnOn--Disk StructureDisk Structure

Master Boot Record

Partition 1
(active)

Partition 2

Partition 3

boot code
partition table

boot blockboot block

super blocksuper block

bitmapsbitmaps

i-nodesi-nodes

root dirroot dirFS-
dependent

: fs metadata
(type, # blocks, etc.)

: data structures for
free space mgmt.

: file metadata

files
&

directories

files
&

directories

Operating System 8

InIn--Memory StructureMemory Structure

count
offset

file attributes

count
offset

file attributes

process A

process B

per-process
file descriptor table

(per-process open-file table)

file table
(system-wide
open-file table)

in-memory
partition table

directory cache

buffer cache

Operating System 9

InIn--Memory File System StructuresMemory File System Structures
n The following figure illustrates the necessary file system structures provided

by the operating systems

n Figure 12-3(a) refers to opening a file

n Figure 12-3(b) refers to reading a file

Operating System 10

InIn--Memory File System StructuresMemory File System Structures

Operating System 11

Virtual File SystemsVirtual File Systems
n Virtual File Systems (VFS) provide an object-oriented way of implementing

file systems

n VFS allows the same system call interface (the API) to be used for different
types of file systems

n The API is to the VFS interface, rather than any specific type of file system

Operating System 12

Schematic View of Virtual File SystemSchematic View of Virtual File System

Operating System 13

File System InternalsFile System Internals

Virtual File System (VFS)Virtual File System (VFS)

minixminix nfsnfs ext2ext2 dosfsdosfs … mmfsmmfs procfsprocfs

buffer cachebuffer cache
File SystemFile System

device driverdevice driver

System call interface

Operating System 14

VFSVFS
n Virtual File System
ü Manages kernel-level file abstractions in one format for all file systems
ü Receives system call requests from user-level (e.g., open, write, stat, etc.)
ü Interacts with a specific file system based on mount point traversal
ü Receives requests from other parts of the kernel, mostly from memory

management
ü Translates file descriptors to VFS data structures (such as vnode)

n Linux: VFS common file model
ü The superblock object

§ stores information concerning a mounted file system
ü The inode object

§ stores general information about a specific file
ü The file object

§ stores information about the interaction between an open file and a process
ü The dentry object

§ stores information about the linking of a directory entry with the corresponding file

Operating System 15

Directory ImplementationDirectory Implementation
n Linear list of file names with pointer to the data blocks

ü simple to program
ü time-consuming to execute

n Hash Table
ü linear list with hash data structure
ü decreases directory search time
ü collisions

§ situations where two file names hash to the same location
ü fixed size

Operating System 16

n The location of metadata
ü In the directory entry

ü In the separate
data structure
(e.g., i-node)

ü A hybrid approach

“foo”“foo”

“bar”“bar” owner
size
ACL
access time
location, …

owner
size
ACL
access time
location, …

owner
size
ACL
access time
location, …

owner
size
ACL
access time
location, ………

“foo”“foo” owner, size, ACL,owner, size, ACL,

access time, location, …access time, location, …

“bar”“bar” owner, size, ACL,owner, size, ACL,

access time, location, …access time, location, …

“foo”“foo” locationlocation

owner, size, …owner, size, …

“bar”“bar” locationlocation

owner, size, …owner, size, …

Directory ImplementationDirectory Implementation

Operating System 17

Allocation MethodsAllocation Methods
n An allocation method refers to how disk blocks are allocated for files

ü Contiguous allocation
ü Linked allocation
ü Indexed allocation

Operating System 18

Contiguous AllocationContiguous Allocation
n Each file occupies a set of contiguous blocks on the disk

n Simple
ü only starting location (block #) and length (number of blocks) are required

n Random access

n Wasteful of space (dynamic storage-allocation problem)

n Files cannot grow

Operating System 19

Contiguous Allocation of Disk SpaceContiguous Allocation of Disk Space

Operating System 20

ExtentExtent--Based SystemsBased Systems
n Many newer file systems (I.e. Veritas File System) use a modified contiguous

allocation scheme

n Extent-based file systems allocate disk blocks in extents

n An extent is a contiguous block of disks
ü Extents are allocated for file allocation
ü A file consists of one or more extents

Operating System 21

Contiguous AllocationContiguous Allocation
n Advantages
ü The number of disk seeks is minimal
ü Directory entries can be simple:

<file name, starting disk block, length, etc.>

n Disadvantages
ü Requires a dynamic storage allocation: First / best fit
ü External fragmentation: may require a compaction
ü The file size is hard to predict and varying over time

n Feasible and widely used for CD-ROMS
ü All the file sizes are known in advance
ü Files will never change during subsequent use

Operating System 22

Linked AllocationLinked Allocation
n Each file is a linked list of disk blocks

ü Blocks may be scattered anywhere on the disk

pointerblock =

Operating System 23

Linked Allocation (ContLinked Allocation (Cont’’d)d)
n Simple
ü need only starting address

n Free-space management system
ü no waste of space

n No random access

n File-allocation table (FAT)
ü disk-space allocation used by MS-DOS and OS/2

Operating System 24

Linked AllocationLinked Allocation

Operating System 25

FileFile--Allocation TableAllocation Table

Operating System 26

Linked AllocationLinked Allocation
n Advantages
ü Directory entries are simple:

<file name, starting block, ending block, etc.>
ü No external fragmentation

§ the disk blocks may be scattered anywhere on the disk
ü A file can continue to grow as long as free blocks are available

n Disadvantages
ü It can be used only for sequentially accessed files
ü Space overhead for maintaining pointers to the next disk block
ü The amount of data storage in a block is no longer a power of two because the

pointer takes up a few bytes
ü Fragile: a pointer can be lost or damaged

Operating System 27

Linked Allocation using ClustersLinked Allocation using Clusters
n Collect blocks into multiples (clusters) and allocate the clusters to files
ü e.g., 4 blocks / 1 cluster

n Advantages
ü The logical-to-physical block mapping remains simple
ü Improves disk throughput (fewer disk seeks)
ü Reduced space overhead for pointers

n Disadvantages
ü Internal fragmentation

Operating System 28

Indexed AllocationIndexed Allocation
n Brings all pointers together into the index block
n Logical view

n Need index table
n Random access
n Dynamic access without external fragmentation, but have overhead of index

block

index table

Operating System 29

Example of Indexed AllocationExample of Indexed Allocation

Operating System 30

Indexed Allocation Indexed Allocation –– Mapping (ContMapping (Cont’’d)d)

Μ

outer-index

index table file

Operating System 31

Combined Scheme: UNIX (4K bytes per block)Combined Scheme: UNIX (4K bytes per block)

Operating System 32

Indexed AllocationIndexed Allocation
n Advantages
ü Supports direct access, without suffering from external fragmentation
ü I-node need only be in memory when the corresponding file is open

n Disadvantages
ü Space overhead for indexes:

(1) Linked scheme: link several index blocks
(2) Multilevel index blocks
(3) Combined scheme: UNIX

- 12 direct blocks, single indirect block, double indirect block,
triple indirect block

Operating System 33

FreeFree--Space ManagementSpace Management
n Bit vector (n blocks)

…
0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Operating System 34

FreeFree--Space Management (ContSpace Management (Cont’’d)d)
n Bit map requires extra space. Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

n Easy to get contiguous files

n Linked list (free list)
ü Cannot get contiguous space easily
ü No waste of space

n Grouping

n Counting

Operating System 35

Linked Free Space List on DiskLinked Free Space List on Disk

Operating System 36

Free Space ManagementFree Space Management
n Grouping
ü Store the addresses of n free blocks in the first free block
ü The addresses of a large number of free blocks can be found quickly

n Counting
ü Keep the address of the free block and the number of free contiguous blocks
ü The length of the list becomes shorter and the count is generally greater than 1

§ Several contiguous blocks may be allocated or freed simultaneously

Operating System 37

Efficiency and PerformanceEfficiency and Performance
n Efficiency dependent on:

ü Disk allocation and directory algorithms
ü Types of data kept in file’s directory entry

n Performance
ü Disk cache

§ separate section of main memory for frequently used blocks
ü Free-behind and Read-ahead

§ techniques to optimize sequential access
ü Improve PC performance by dedicating section of memory as virtual disk, or RAM

disk

Operating System 38

Buffer CacheBuffer Cache
n Applications exhibit significant locality for reading and writing files

n Idea: cache file blocks in memory to capture locality in buffer cache (or disk
cache)
ü Cache is system wide, used and shared by all processes
ü Reading from the cache makes a disk perform like memory
ü Even a 4MB cache can be very effective

n Issues
ü The buffer cache competes with VM
ü Like VM, it has limited size
ü Need replacement algorithms again

(References are relatively infrequent, so it is feasible to keep all the blocks in
exact LRU order)

Operating System 39

Various DiskVarious Disk--Caching LocationsCaching Locations

Operating System 40

Page CachePage Cache
n A page cache caches pages rather than disk blocks using virtual memory

techniques

n Memory-mapped I/O uses a page cache

n Routine I/O through the file system uses the buffer (disk) cache

n This leads to the following figure

Operating System 41

I/O Without a Unified Buffer CacheI/O Without a Unified Buffer Cache

Operating System 42

Unified Buffer CacheUnified Buffer Cache
n A unified buffer cache uses the same page cache to cache both memory-

mapped pages and ordinary file system I/O

Operating System 43

Caching WritesCaching Writes
n Synchronous writes are very slow

n Asynchronous writes (or write-behind, write-back)
ü Maintain a queue of uncommitted blocks
ü Periodically flush the queue to disk
ü Unreliable: metadata requires synchronous writes (with small files, most writes

are to metadata)

Operating System 44

ReadRead--AheadAhead
n File system predicts that the process will request next block
ü File system goes ahead and requests it from the disk
ü This can happen while the process is computing on previous block, overlapping

I/O with execution
ü When the process requests block, it will be in cache

n Compliments the disk cache, which also is doing read ahead

n Very effective for sequentially accessed files

n File systems try to prevent blocks from being scattered across the disk during
allocation or by restructuring periodically

n Cf) Free-behind

Operating System 45

Block Size Performance vs. EfficiencyBlock Size Performance vs. Efficiency
n Block size
ü Disk block size vs. file system block size
ü The median file size in UNIX is about 1KB

Block size (All files are 2KB)

100

Operating System 46

RecoveryRecovery
n Consistency checking

ü compares data in directory structure with data blocks on disk, and tries to fix
inconsistencies

n Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape)

n Recover lost file or disk by restoring data from backup

Operating System 47

ReliabilityReliability
n File system consistency
ü File system can be left in an inconsistent state if cached blocks are not written out

due to the system crash
ü It is especially critical if some of those blocks are i-node blocks, directory blocks,

or blocks containing the free list
ü Most systems have a utility program that checks file system consistency
§ Windows: scandisk
§ UNIX: fsck

Operating System 48

Log Structured File SystemsLog Structured File Systems
n Log structured (or journaling) file systems record each update to the file

system as a transaction

n All transactions are written to a log
ü A transaction is considered committed once it is written to the log
ü However, the file system may not yet be updated

n The transactions in the log are asynchronously written to the file system
ü When the file system is modified, the transaction is removed from the log

n If the file system crashes, all remaining transactions in the log must still be
performed

Operating System 49

Log Structured File SystemsLog Structured File Systems
n Journaling file systems
ü Fsck’ing takes a long time, which makes the file system restart slow in the event

of system crash
ü Record a log, or journal, of changes made to files and directories to a separate

location (preferably a separate disk)
ü If a crash occurs, the journal can be used to undo any partially completed tasks

that would leave the file system in an inconsistent state
ü IBM JFS for AIX, Linux

Veritas VxFS for Solaris, HP-UX, Unixware, etc.
SGI XFS for IRIX, Linux
Reiserfs, ext3 for Linux
NTFS for Windows

Operating System 50

The Sun Network File System (NFS)The Sun Network File System (NFS)
n An implementation and a specification of a software system for accessing

remote files across LANs (or WANs)

n The implementation is part of the Solaris and SunOS operating systems
running on Sun workstations using an unreliable datagram protocol (UDP/IP
protocol and Ethernet)

Operating System 51

NFS (ContNFS (Cont’’d)d)
n Interconnected workstations viewed as a set of independent machines with

independent file systems, which allows sharing among these file systems in a
transparent manner
ü A remote directory is mounted over a local file system directory. The mounted

directory looks like an integral subtree of the local file system, replacing the
subtree descending from the local directory

ü Specification of the remote directory for the mount operation is nontransparent;
the host name of the remote directory has to be provided. Files in the remote
directory can then be accessed in a transparent manner

ü Subject to access-rights accreditation, potentially any file system (or directory
within a file system), can be mounted remotely on top of any local directory

Operating System 52

NFS (ContNFS (Cont’’d)d)
n NFS is designed to operate in a heterogeneous environment of different

machines, operating systems, and network architectures
ü The NFS specifications independent of these media

n This independence is achieved through the use of RPC primitives built on top
of an External Data Representation (XDR) protocol used between two
implementation-independent interfaces

n The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services

Operating System 53

Three Independent File SystemsThree Independent File Systems

Operating System 54

Mounting in NFS Mounting in NFS

Mounts Cascading mounts

Operating System 55

NFS Mount ProtocolNFS Mount Protocol
n Establishes initial logical connection between server and client
n Mount operation includes name of remote directory to be mounted and name

of server machine storing it
ü Mount request is mapped to corresponding RPC and forwarded to mount server

running on server machine
ü Export list – specifies local file systems that server exports for mounting, along

with names of machines that are permitted to mount them
n Following a mount request that conforms to its export list, the server returns

a file handle — a key for further accesses
n File handle
ü A file-system identifier, and an inode number to identify the mounted directory

within the exported file system
n The mount operation changes only the user’s view and does not affect the

server side

Operating System 56

NFS ProtocolNFS Protocol
n Provides a set of remote procedure calls for remote file operations
n The procedures support the following operations:
ü searching for a file within a directory
ü reading a set of directory entries
ü manipulating links and directories
ü accessing file attributes
ü reading and writing files

n NFS servers are stateless
ü Each request has to provide a full set of arguments

n Modified data must be committed to the server’s disk before results are
returned to the client (lose advantages of caching)

n The NFS protocol does not provide concurrency-control mechanisms

Operating System 57

n UNIX file-system interface
ü Based on the open, read, write, and close calls, and file descriptors

n Virtual File System (VFS) layer
ü Distinguishes local files from remote ones, and local files are further distinguished

according to their file-system types
ü The VFS activates file-system-specific operations to handle local requests

according to their file-system types
ü Calls the NFS protocol procedures for remote requests

n NFS service layer
ü Bottom layer of the architecture
ü Implements the NFS protocol

Three Major Layers of NFS ArchitectureThree Major Layers of NFS Architecture

Operating System 58

Schematic View of NFS Architecture Schematic View of NFS Architecture

Operating System 59

NFS PathNFS Path--Name TranslationName Translation
n Performed by breaking the path into component names and performing a

separate NFS lookup call for every pair of component name and directory
vnode

n To make lookup faster, a directory name lookup cache on the client’s side
holds the vnodes for remote directory names

Operating System 60

NFS Remote OperationsNFS Remote Operations
n Nearly one-to-one correspondence between regular UNIX system calls and

the NFS protocol RPCs (except opening and closing files)
n NFS adheres to the remote-service paradigm, but employs buffering and

caching techniques for the sake of performance
n File-blocks cache
ü When a file is opened, the kernel checks with the remote server whether to fetch

or revalidate the cached attributes
ü Cached file blocks are used only if the corresponding cached attributes are up to

date
n File-attribute cache

ü The attribute cache is updated whenever new attributes arrive from the server
n Clients do not free delayed-write blocks until the server confirms that the data

have been written to disk

Appendix) Implementation Appendix) Implementation
ExamplesExamples

Operating System 62

Fast File SystemFast File System
n Fast file system (FFS)
ü The original Unix file system (70’s) was very simple and straightforwardly

implemented:
§ Easy to implement and understand
§ But very poor utilization of disk bandwidth (lots of seeking)

ü BSD Unix folks redesigned file system called FFS
§ McKusick, Joy, Fabry, and Leffler (mid 80’s)
§ Now it is the file system from which all other UNIX file systems have been compared

ü The basic idea is aware of disk structure
§ Place related things on nearby cylinders to reduce seeks
§ Improved disk utilization, decreased response time

Operating System 63

Fast File System (ContFast File System (Cont’’d)d)
n Data and i-node placement
ü Original Unix FS had two major problems:
(1) Data blocks are allocated randomly in aging file systems

§ Blocks for the same file allocated sequentially when FS is new
§ As FS “ages” and fills, need to allocate blocks freed up when other files are deleted
§ Problem: Deleted files essentially randomly placed
§ So, blocks for new files become scattered across the disk

(2) i-nodes are allocated far from blocks
§ All i-nodes at the beginning of disk, far from data
§ Traversing file name paths, manipulating files and directories require going back and

forth from i-nodes to data blocks
ü Both of these problems generate many long seeks!

Operating System 64

Fast File System (ContFast File System (Cont’’d)d)
n Cylinder groups
ü BSD FFS addressed these problems using the notion of a cylinder group
ü Disk partitioned into groups of cylinders
ü Data blocks from a file all placed in the same cylinder group
ü Files in same directory placed in the same cylinder group
ü I-nodes for files allocated in the same cylinder group as file’s data blocks

Operating System 65

Fast File System (ContFast File System (Cont’’d)d)
n Free space reserved across all cylinders.
ü If the number of free blocks falls to zero, the file system throughput tends to be

cut in half, because of the inability to localize blocks in a file
ü A parameter, called free space reserve, gives the minimum acceptable

percentage of file system blocks that should be free
ü If the number of free blocks drops below this level, only the system administrator

can continue to allocate blocks
ü Normally 10%; this is why df may report > 100%

Operating System 66

Fast File System (ContFast File System (Cont’’d)d)
n Fragments
ü Small blocks (1KB) caused two problems:

§ Low bandwidth utilization
§ Small max file size (function of block size)

ü FFS fixes by using a larger block (4KB)
§ Allows for very large files

(1MB only uses 2 level indirect)
§ But introduces internal fragmentation: there are many small files (i.e., < 4KB)

ü FFS introduces “fragments” to fix internal fragmentation
§ Allows the division of a block into one or more fragments (1K pieces of a block)

Operating System 67

Fast File System (ContFast File System (Cont’’d)d)
n Media failures
ü Replicate master block (superblock)

n File system parameterization
ü Parameterize according to disk and CPU characteristics

§ Maximum blocks per file in a cylinder group
§ Minimum percentage of free space
§ Sectors per track
§ Rotational delay between contiguous blocks
§ Tracks per cylinder, etc.

ü Skip according to rotational rate and CPU latency

Operating System 68

Linux Ext2 File SystemLinux Ext2 File System
n History
ü Evolved from Minix file system

§ Block addresses are stored in 16bit integers – maximal file system size is restricted to
64MB

§ Directories contain fixed-size entries and the maximal file name was 14 characters
ü Virtual File System (VFS) is added
ü Extended Filesystem (Ext FS), 1992

§ Added to Linux 0.96c
§ Maximum file system size was 2GB, and the maximal file name size was 255

characters
ü Second Extended File-system (Ext2 FS), 1994

Operating System 69

Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Ext2 Features
ü Configurable block sizes (from 1KB to 4KB)

§ depending on the expected average file size
ü Configurable number of i-nodes

§ depending on the expected number of files
ü Partitions disk blocks into groups

§ lower average disk seek time
ü Preallocates disk data blocks to regular files

§ reduces file fragmentation
ü Fast symbolic links

§ If the pathname of the symbolic link has 60 bytes or less, it is stored in the i-node
ü Automatic consistency check at boot time

Operating System 70

Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Disk layout
ü Boot block

§ reserved for the partition boot sector
ü Block group

§ Similar to the cylinder group in FFS
§ All the block groups have the same size and are stored sequentially

Boot
Block
Boot
Block Block group 0Block group 0 Block group nBlock group n

Super
Block
Super
Block

Group
Descriptors

Group
Descriptors

Data block
Bitmap

Data block
Bitmap

i-node
Bitmap
i-node
Bitmap

i-node
Table
i-node
Table Data blocksData blocks

1 block n blocks 1 block 1 block n block n blocks

Operating System 71

Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Block group
ü Superblock: stores file system metadata

§ Total number of i-nodes
§ File system size in blocks
§ Free blocks / i-nodes counter
§ Number of blocks / i-nodes per group
§ Block size, etc.

ü Group descriptor
§ Number of free blocks / i-nodes / directories in the group
§ Block number of block / i-node bitmap, etc.

ü Both the superblock and the group descriptors are duplicated in each block group
§ Only those in block group 0 are used by the kernel
§ fsck copies them into all other block groups
§ When data corruption occurs, fsck uses old copies to bring the file system back to a

consistent state

Operating System 72

Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Block group size
ü The block bitmap must be stored in a single block

§ In each block group, there can be at most 8xb blocks, where b is the block size in bytes
ü The smaller the block size, the larger the number of block groups
ü Example: 8GB Ext2 partition with 4KB block size

§ Each 4KB block bitmap describes 32K data blocks
= 32K * 4KB = 128MB

§ At most 64 block groups are needed

Operating System 73

Linux Ext2 File System (ContLinux Ext2 File System (Cont’’d)d)
n Directory structure

12 \0 \0\0.1 221

16 o emh5 2 1 \0 \0 \053
12 . \0\0.2 222

28 s \0ru3 267
16 l fdo7 1 i l e \00
12 i \0nb3 234

0

24
12

40
62
68

inode
record
length name

name length file type

<deleted file>

