12. File-System | mplementation

Sungyoung Lee

College of Engineering
KyungHee University




Contents

File System Structure

File System Implementation
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Log-Structured File Systems
NFS

J J 3 3 3 3 3 3 3

Operating System 1




Overview

N User's view on file systems:
U How files are named?
 What operations are allowed on them?
 What the directory tree looks like?

N Implementor’s view on file systems:
U How files and directories are stored?
U How disk space is managed?
U How to make everything work efficiently and reliably?

Operating System 2




File-System Structure

N File structure
U Logical storage unit
U Collection of related information

N File system resides on secondary storage (disks)
N File system organized into layers

N File control block
(U storage structure consisting of information about a file

Operating System 3



Layered File System

application programs

logical file system
file-organization module
basic file system
I/O control

v

devices

Operating System 4




A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks

Operating System 5




File-System Implementation

N On-disk structure

U Boot control block
§ Boot block(UFS) or Boot sector(NTFS)

 Partition control block
§ Super block(UFS) or Master file table(NTFS)

U Directory structure

U File control block (FCB)
§ I-node(UFS) or In master file table(NTFS)

N In-memory structure
U In-memory partition table
U In-memory directory structure
0 System-wide open file table
U Per-process open file table

Operating System 6




On-Disk Structure

boot block

super block

boot code bitmaps

partition table

I-nodes

Partition 1 root dir

(active)

files
&
directories

Partition 3

Operating System 7

- fs metadata

(type, # blocks, etc.)

: data structures for

free space mgmt.

- file metadata




In-Memory Structure

4 ) file table in-memory
(system-wide partition table
process A open-file table) -
count
//P offset
44— file attributes
N

A directory cache

per-process I
file descriptor table

(per-process open-file table)

\
4 \ ) buffer cache

process B

7

- J

Operating System 8



In-Memory File System Structures

N The following figure illustrates the necessary file system structures provided
by the operating systems

N Figure 12-3(a) refers to opening a file

N Figure 12-3(b) refers to reading a file

Operating System 9




In-Memory File System Structures

=
— =

directory structure

open (filename)

directory structure file control block

user space kernel memory secondary storage
(a)

r L data blocks

per-process system-wide file control block
open-file table open-file table

read (index)

user space kernel memory secondary storage

(b)

Operating System 10



Virtual File Systems

N Virtual File Systems (VFS) provide an object-oriented way of implementing
file systems

N VFS allows the same system call interface (the API) to be used for different
types of file systems

N The API is to the VFS interface, rather than any specific type of file system

Operating System 11




Schematic View of Virtual File System

file-system interface

l

VFS interface

l , |

local file system local file system remote file system
type 1 type 2 type 1

3 8

Operating System 12




File System Internals

/_[ System call interface ﬁ
[minix] [ nfs ] [extz] [dosfs] [mmfs] [procfs]

| e

device driver |< $ $ $

File System /

Operating System 13



N Virtual File System

U Manages kernel-level file abstractions in one format for all file systems

U Receives system call requests from user-level (e.g., open, write, stat, etc.)
U Interacts with a specific file system based on mount point traversal
¥

Receives requests from other parts of the kernel, mostly from memory
management

U Translates file descriptors to VFS data structures (such as vnode)

N Linux: VFS common file model
U The superblock object
§ stores information concerning a mounted file system
U The inode object
§ stores general information about a specific file
U The file object
§ stores information about the interaction between an open file and a process

U The dentry object
§ stores information about the linking of a directory entry with the corresponding file

Operating System

14




Directory Implementation

N Linear list of file names with pointer to the data blocks
U simple to program
U time-consuming to execute

N Hash Table
U linear list with hash data structure
U decreases directory search time

U collisions
§ situations where two file names hash to the same location

u fixed size

Operating System 15



N The location of metadata
U In the directory entry

U In the separate
data structure
(e.g., i-node)

U A hybrid approach

Operating System

Directory Implementation

“foo” owner, size, ACL,
access time, location, ...
“bar” owner, size, ACL,
access time, location, ...
\\fOOII > owner
size
“bar” — owner ACL
size access time
ACL location, ...
access time
location, ...
“foo” location +—»
owner, size, ...
“bar” location —»
owner, size, ...

16




Allocation Methods

N An allocation method refers to how disk blocks are allocated for files
 Contiguous allocation
U Linked allocation
U Indexed allocation

Operating System 17



Contiguous Allocation

N Each file occupies a set of contiguous blocks on the disk

N Simple
U only starting location (block #) and length (number of blocks) are required

N Random access
N Wasteful of space (dynamic storage-allocation problem)

N Files cannot grow

Operating System 18




Contiguous Allocation of Disk Space

directory

start

count 0
tr 14
mail 19
list 28
f 6

file length

| 2|

| 6l

| 10|

| 13|

| 14]

117]

| 18]

mail

|21]

22|

| 25|

| 26]

list

129

| 30|

N~

Operating System 19



Extent-Based Systems

N Many newer file systems (l.e. Veritas File System) use a modified contiguous
allocation scheme

N Extent-based file systems allocate disk blocks in extents

N An extent is a contiguous block of disks
U Extents are allocated for file allocation
U A file consists of one or more extents

Operating System 20



Contiguous Allocation

N Advantages
U The number of disk seeks is minimal
U Directory entries can be simple:
<file name, starting disk block, length, etc.>

N Disadvantages
U Requires a dynamic storage allocation: First / best fit
U External fragmentation: may require a compaction
U The file size is hard to predict and varying over time

N Feasible and widely used for CD-ROMS

 All the file sizes are known in advance
U Files will never change during subsequent use

Operating System 21



Linked Allocation

N Each file is a linked list of disk blocks
U Blocks may be scattered anywhere on the disk

block

pointer

Operating System 22



Linked Allocation (Cont’d)

N Simple
U need only starting address

N Free-space management system
U no waste of space

N No random access

N File-allocation table (FAT)
U disk-space allocation used by MS-DOS and OS/2

Operating System 23



Linked Allocation

Operating System

directory

file start end
jeep 9 25

16[A]17[]18[]19[]
20 J21[J22[]23[]
24252627 ]
28[]29[]30[]31[]

24




File-Allocation Table

directory entry
L _test | .- | |

name start block

end-of-file

no. of disk blocks -1

Operating System 25



Linked Allocation

N Advantages
U Directory entries are simple:
<file name, starting block, ending block, etc.>

U No external fragmentation
§ the disk blocks may be scattered anywhere on the disk

U A file can continue to grow as long as free blocks are available

N Disadvantages
U It can be used only for sequentially accessed files
(1 Space overhead for maintaining pointers to the next disk block

U The amount of data storage in a block is no longer a power of two because the
pointer takes up a few bytes

U Fragile: a pointer can be lost or damaged

Operating System 26



Linked Allocation using Clusters

N Collect blocks into multiples (clusters) and allocate the clusters to files
U e.qg., 4 blocks / 1 cluster

N Advantages
U The logical-to-physical block mapping remains simple
U Improves disk throughput (fewer disk seeks)
U Reduced space overhead for pointers

N Disadvantages
U Internal fragmentation

Operating System 27



Indexed Allocation

N Brings all pointers together into the index block
N Logical view

L OO O O

index table

N Need index table
N Random access

N Dynamic access without external fragmentation, but have overhead of index
block

Operating System 28



Example of Indexed Allocation

directory

index block
19

28[ 29[ ]30o[]31[]

Operating System 29




Indexed Allocation — Mapping (Cont’d)

B S I
— | ~
\ \\
M A B
\\
\\
outer-index
index table file

Operating System 30



Combined Scheme: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3)

size block

count

direct blocks

single indirect —

double indirect

triple indirect

Operating System 31



Indexed Allocation

N Advantages
U Supports direct access, without suffering from external fragmentation
U [-node need only be in memory when the corresponding file is open

N Disadvantages
U Space overhead for indexes:
(1) Linked scheme: link several index blocks
(2) Multilevel index blocks
(3) Combined scheme: UNIX
- 12 direct blocks, single indirect block, double indirect block,
triple indirect block

Operating System 32



Free-Space Management

N Bit vector (n blocks)

01 2 n-1

1 b block[i] free
O P Dblock]i] occupied

bit[i] =

Block number calculation

(number of bits per word) *
(number of O-value words) +
offset of first 1 bit

Operating System 33



Free-Space Management (Cont’d)

N Bit map requires extra space. Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

N Easy to get contiguous files

N Linked list (free list)
 Cannot get contiguous space easily
U No waste of space

N Grouping

n Counting

Operating System 34




Linked Free Space List on Disk

free-space list head

.
2

3

4’_@ e[ ] 7[]
s[{ o f1o[{11[]

12[ 113 ]14[ ]15[]
16] |17|'r 18] _]19[ ]
20[ J21[ ]22) ]23[ ]
24 125[ |26] [27[ F

28| |29 |30 |31] ]

N~

Operating System 35




Free Space Management

N Grouping
(0 Store the addresses of n free blocks in the first free block
U The addresses of a large number of free blocks can be found quickly

n Counting
U Keep the address of the free block and the number of free contiguous blocks

U The length of the list becomes shorter and the count is generally greater than 1
§ Several contiguous blocks may be allocated or freed simultaneously

Operating System 36



Efficiency and Performance

N Efficiency dependent on:
U Disk allocation and directory algorithms
U Types of data kept in file’s directory entry

N Performance
U Disk cache
§ separate section of main memory for frequently used blocks
U Free-behind and Read-ahead
§ techniques to optimize sequential access

U Improve PC performance by dedicating section of memory as virtual disk, or RAM
disk

Operating System 37



Buffer Cache

N Applications exhibit significant locality for reading and writing files

N lIdea: cache file blocks in memory to capture locality in buffer cache (or disk
cache)

U Cache is system wide, used and shared by all processes
U Reading from the cache makes a disk perform like memory
U Even a 4MB cache can be very effective

N Issues

U The buffer cache competes with VM
U Like VM, it has limited size
U Need replacement algorithms again

(References are relatively infrequent, so it is feasible to keep all the blocks in
exact LRU order)

Operating System 38




Various Disk-Caching Locations

ram disk

open-file table controller

block buffer

main memaory

Operating System 39



Page Cache

N A page cache caches pages rather than disk blocks using virtual memory
techniques

N Memory-mapped I/O uses a page cache
N Routine I/O through the file system uses the buffer (disk) cache

N This leads to the following figure

Operating System 40




I/0 Without a Unified Buffer Cache

/O using

memory-mapped I/O read( ) and write( )

I

page cache

N\

buffer cache

I

file system

Operating System 41



Unified Buffer Cache

N A unified buffer cache uses the same page cache to cache both memory-
mapped pages and ordinary file system I/O

. di
memory-mapped I/O read( ) and write( )

N/

buffer cache

|

1/O using |

file system

Operating System 42




Caching Writes

N Synchronous writes are very slow

N Asynchronous writes (or write-behind, write-back)
U Maintain a queue of uncommitted blocks
U Periodically flush the queue to disk

U Unreliable: metadata requires synchronous writes (with small files, most writes
are to metadata)

Operating System 43



Read-Ahead

N File system predicts that the process will request next block
U File system goes ahead and requests it from the disk

U This can happen while the process is computing on previous block, overlapping
I/O with execution

U When the process requests block, it will be in cache
N Compliments the disk cache, which also is doing read ahead
N Very effective for sequentially accessed files

N File systems try to prevent blocks from being scattered across the disk during
allocation or by restructuring periodically

n Cf) Free-behind

Operating System 44



Block Size Performance vs. Efficiency

N Block size
U Disk block size vs. file system block size
U The median file size in UNIX is about 1KB

1000 |- P S W~ Y —. -~ ~q 0
Disk space utilization '\\ 100
=
© 800 |- -180 28
@ =
o N
o0 ==
=~ 600 |- 160 3§
@ -
o L11]
o g8
@ 400 J4 28
a [
200 |- 420 B
Data rate ~
0 . | | I | | 0
0 128 256 512 1K 2K 4K 8K 16K 0
Block size ' (All files are 2KB)

Operating System 45



Recovery

N Consistency checking

(0 compares data in directory structure with data blocks on disk, and tries to fix
Inconsistencies

N Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape)

N Recover lost file or disk by restoring data from backup

Operating System 46



Reliability

N File system consistency

U File system can be left in an inconsistent state if cached blocks are not written out
due to the system crash

U It is especially critical if some of those blocks are i-node blocks, directory blocks,
or blocks containing the free list

U Most systems have a utility program that checks file system consistency
§ Windows: scandisk
§ UNIX: fsck

Operating System 47



Log Structured File Systems

N Log structured (or journaling) file systems record each update to the file
system as a transaction

N All transactions are written to a log
U A transaction is considered committed once it is written to the log
U However, the file system may not yet be updated

N The transactions in the log are asynchronously written to the file system
U When the file system is modified, the transaction is removed from the log

N If the file system crashes, all remaining transactions in the log must still be
performed

Operating System 48



Log Structured File Systems

N Journaling file systems

U Fsck’ing takes a long time, which makes the file system restart slow in the event
of system crash

U Record a log, or journal, of changes made to files and directories to a separate
location (preferably a separate disk)

U If a crash occurs, the journal can be used to undo any partially completed tasks
that would leave the file system in an inconsistent state

O IBM JFS for AlX, Linux
Veritas VXFS for Solaris, HP-UX, Unixware, etc.
SGI XFS for IRIX, Linux
Reiserfs, ext3 for Linux
NTFS for Windows

Operating System 49



The Sun Network File System (NFS)

N An implementation and a specification of a software system for accessing
remote files across LANs (or WANS)

N The implementation is part of the Solaris and SunOS operating systems

running on Sun workstations using an unreliable datagram protocol (UDP/IP
protocol and Ethernet)

Operating System 50




NFS (Cont’d)

N Interconnected workstations viewed as a set of independent machines with
Independent file systems, which allows sharing among these file systems in a
transparent manner

U A remote directory is mounted over a local file system directory. The mounted

directory looks like an integral subtree of the local file system, replacing the
subtree descending from the local directory

U Specification of the remote directory for the mount operation is nontransparent;
the host name of the remote directory has to be provided. Files in the remote
directory can then be accessed in a transparent manner

U Subject to access-rights accreditation, potentially any file system (or directory
within a file system), can be mounted remotely on top of any local directory

Operating System 51




NFS (Cont’d)

N NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures

U The NFS specifications independent of these media

N This independence is achieved through the use of RPC primitives built on top
of an External Data Representation (XDR) protocol used between two
Implementation-independent interfaces

N The NFS specification distinguishes between the services provided by a
mount mechanism and the actual remote-file-access services

Operating System 52



Three Independent File Systems

Operating System 53



Mounting in NFS

Mounts Cascading mounts

Operating System A




NFS Mount Protocol

N Establishes initial logical connection between server and client

N Mount operation includes name of remote directory to be mounted and name
of server machine storing it

U Mount request is mapped to corresponding RPC and forwarded to mount server
running on server machine

U Export list — specifies local file systems that server exports for mounting, along
with names of machines that are permitted to mount them

N Following a mount request that conforms to its export list, the server returns
a file handle — a key for further accesses
N File handle

U A file-system identifier, and an inode number to identify the mounted directory
within the exported file system

N The mount operation changes only the user’s view and does not affect the
server side

Operating System 55



NFS Protocol

N Provides a set of remote procedure calls for remote file operations
N The procedures support the following operations:

U searching for a file within a directory

U reading a set of directory entries

U manipulating links and directories

U accessing file attributes

U reading and writing files
N NFS servers are stateless

U Each request has to provide a full set of arguments

N Modified data must be committed to the server’s disk before results are
returned to the client (lose advantages of caching)

N The NFS protocol does not provide concurrency-control mechanisms

Operating System 56



Three Major Layers of NFS Architecture

N UNIX file-system interface
U Based on the open, read, write, and close calls, and file descriptors

N Virtual File System (VFS) layer

U Distinguishes local files from remote ones, and local files are further distinguished
according to their file-system types

U The VFS activates file-system-specific operations to handle local requests
according to their file-system types

U Calls the NFS protocol procedures for remote requests

N NFS service layer
U Bottom layer of the architecture
U Implements the NFS protocol

Operating System 57



Schematic View of NFS Architecture

client server

system-calls interface

y

VFS interface l VFS interface

v v l

Y
other types of UNIX 4.2 file . UNIX 4.2 file
file systems I systems NS cliont NFoisanver systems I

l |

RPC/XDR RPC/XDR]

i

Operating System 58




NFS Path-Name Translation

N Performed by breaking the path into component names and performing a
separate NFS lookup call for every pair of component name and directory

vhode

N To make lookup faster, a directory name lookup cache on the client’s side
holds the vnodes for remote directory names

59

Operating System



NFS Remote Operations

N Nearly one-to-one correspondence between regular UNIX system calls and
the NFS protocol RPCs (except opening and closing files)

N NFS adheres to the remote-service paradigm, but employs buffering and
caching technigues for the sake of performance
N File-blocks cache

U When a file is opened, the kernel checks with the remote server whether to fetch
or revalidate the cached attributes

U Cached file blocks are used only if the corresponding cached attributes are up to
date

N File-attribute cache
U The attribute cache is updated whenever new attributes arrive from the server

N Clients do not free delayed-write blocks until the server confirms that the data
have been written to disk

Operating System 60



Appendix) Implementation
Examples




Fast File System

N Fast file system (FFS)
U The original Unix file system (70’s) was very simple and straightforwardly
implemented:
§ Easy to implement and understand
§ But very poor utilization of disk bandwidth (lots of seeking)
U BSD Unix folks redesigned file system called FFS
§ McKusick, Joy, Fabry, and Leffler (mid 80’s)
§ Now it is the file system from which all other UNIX file systems have been compared
U The basic idea is aware of disk structure
§ Place related things on nearby cylinders to reduce seeks
§ Improved disk utilization, decreased response time

Operating System 62



Fast File System (Cont’d)

N Data and i-node placement
U Original Unix FS had two major problems:

(1) Data blocks are allocated randomly in aging file systems
§ Blocks for the same file allocated sequentially when FS is new
§ As FS “ages” and fills, need to allocate blocks freed up when other files are deleted
§ Problem: Deleted files essentially randomly placed
§ So, blocks for new files become scattered across the disk

(2) i-nodes are allocated far from blocks

§ Alli-nodes at the beginning of disk, far from data

§ Traversing file name paths, manipulating files and directories require going back and
forth from i-nodes to data blocks

U Both of these problems generate many long seeks!

Operating System 63



Fast File System (Cont’d)

N Cylinder groups
U BSD FFS addressed these problems using the notion of a cylinder group
U Disk partitioned into groups of cylinders
U Data blocks from a file all placed in the same cylinder group
U Files in same directory placed in the same cylinder group
U I-nodes for files allocated in the same cylinder group as file’s data blocks

Operating System 64



Fast File System (Cont’d)

N Free space reserve

O If the number of free blocks falls to zero, the file system throughput tends to be
cut in half, because of the inability to localize blocks in a file

U A parameter, called free space reserve, gives the minimum acceptable
percentage of file system blocks that should be free

U If the number of free blocks drops below this level, only the system administrator
can continue to allocate blocks

U Normally 10%; this is why df may report > 100%

Operating System 65




Fast File System (Cont’d)

N Fragments
0 Small blocks (1KB) caused two problems:
§ Low bandwidth utilization
§ Small max file size (function of block size)
U FFS fixes by using a larger block (4KB)
§ Allows for very large files
(1MB only uses 2 level indirect)
§ But introduces internal fragmentation: there are many small files (i.e., < 4KB)
U FFS introduces “fragments” to fix internal fragmentation
§ Allows the division of a block into one or more fragments (1K pieces of a block)

Operating System 66



Fast File System (Cont’d)

N Media failures
U Replicate master block (superblock)

N File system parameterization

U Parameterize according to disk and CPU characteristics
§ Maximum blocks per file in a cylinder group
§ Minimum percentage of free space
§ Sectors per track
§ Rotational delay between contiguous blocks
§ Tracks per cylinder, etc.

( Skip according to rotational rate and CPU latency

Operating System 67



Linux Ext2 File System

N History

U Evolved from Minix file system

§ Block addresses are stored in 16bit integers — maximal file system size is restricted to
64MB

§ Directories contain fixed-size entries and the maximal file name was 14 characters
0 Virtual File System (VFS) is added
U Extended Filesystem (Ext FS), 1992

§ Added to Linux 0.96c

§ Maximum file system size was 2GB, and the maximal file name size was 255
characters

U Second Extended File-system (Ext2 FS), 1994

Operating System 68



Linux Ext2 File System (Cont’d)

N Ext2 Features
U Configurable block sizes (from 1KB to 4KB)
§ depending on the expected average file size
U Configurable number of i-nodes
§ depending on the expected number of files
U Partitions disk blocks into groups
§ lower average disk seek time
U Preallocates disk data blocks to regular files
§8 reduces file fragmentation
U Fast symbolic links
§ If the pathname of the symboilic link has 60 bytes or less, it is stored in the i-node
U Automatic consistency check at boot time

Operating System

69




Linux Ext2 File System (Cont’d)

N Disk layout
U Boot block
§ reserved for the partition boot sector
U Block group

§ Similar to the cylinder group in FFS
§ All the block groups have the same size and are stored sequentially

Boot
Block Block group O —5 % Block group n
¢, ------------
Super Group Data block i-node | i-node o
Block Descriptors Bitmap Bitmap Table DEIE B0
1 block N blocks 1 block 1 block n block N blocks

Operating System 70



Linux Ext2 File System (Cont’d)

N Block group

U Superblock: stores file system metadata
§ Total number of i-nodes
§ File system size in blocks
§ Free blocks /i-nodes counter
§ Number of blocks / i-nodes per group
§ Block size, etc.
( Group descriptor
§ Number of free blocks / i-nodes / directories in the group
§ Block number of block / i-node bitmap, etc.

U Both the superblock and the group descriptors are duplicated in each block group
§ Only those in block group 0 are used by the kernel
§ fsck copies them into all other block groups

§ When data corruption occurs, fsck uses old copies to bring the file system back to a
consistent state

Operating System 71



Linux Ext2 File System (Cont’d)

N Block group size

U The block bitmap must be stored in a single block

§ In each block group, there can be at most 8xb blocks, where b is the block size in bytes
U The smaller the block size, the larger the number of block groups
U Example: 8GB Ext2 partition with 4KB block size

§ Each 4KB block bitmap describes 32K data blocks

= 32K * 4KB = 128MB
§ At most 64 block groups are needed

Operating System 2



Linux Ext2 File System (Cont’d)

N Directory structure

record
inode length name

o 21 | 12 . \0'\0'\O
12| @ 22 12 .. \0\O
24 - 53 16 ‘om e 1:\0\0\O
40| 67 @ | 28 s r\0
62| = 0 16 1'd'f i | e \O
68| '« 34 12 i n\0

N IR INININIDN

O |0 |C | T

\"OO\IOOU'II\)H

N

name length file type

Operating System 73



