
Webots User Guide
release 4.0.9

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
www.cyberbotics.com

July 28, 2003

2

copyright c© 2002 Cyberbotics Ltd. All rights reserved.
All rights reserved

Permission to use, copy and distribute this documentation for any purpose and without fee is
hereby granted in perpetuity, provided that no modifications are performed on this documenta-
tion.

The copyright holder makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding this manual and the associated software. This manual is provided on anas-isbasis.
Neither the copyright holder nor any applicable licensor will be liable for any incidental or con-
sequential damages.

This software was initially developed at the Laboratoire de Micro-Informatique (LAMI) of the
Swiss Federal Institute of Technology, Lausanne, Switzerland (EPFL). The EPFL makes no war-
ranties of any kind on this software. In no event shall the EPFL be liable for incidental or
consequential damages of any kind in connection with use and exploitation of this software.

Trademark information

AiboTM is a registered trademark of SONY Corp.

GeForceTM is a registered trademark of nVidia, Corp.

JavaTM is a registered trademark of Sun MicroSystems, Inc.

KheperaTM and KoalaTM are registered trademarks of K-Team S.A.

LinuxTM is a registered trademark of Linus Torwalds.

Mac OS XTM is a registered trademark of Apple Inc.

MindstormsTM and LEGOTM are registered trademarks of the LEGO group.

PentiumTM is a registered trademark of Intel Corp.

Red HatTM is a registered trademark of Red Hat Software, Inc.

Visual C++TM, WindowsTM, Windows 95TM, Windows 98TM, Windows METM, Windows NTTM,
Windows 2000TM and Windows XPTMare registered trademarks of Microsoft Corp.

UNIXTM is a registered trademark licensed exclusively by X/Open Company, Ltd.

Foreword

Webots is a three-dimensional mobile robot simulator. It was originally developed as a research
tool for investigating various control algorithms in mobile robotics.

This user guide will get you started using Webots. However, the reader is expected to have a
minimal knowledge in mobile robotics, in C programming and in VRML 2.0 (Virtual Reality
Modeling Language).

The great innovation of the fourth version of Webots is that it includes a physics engine allow-
ing to define complex mobile robots with various locomotion schemes. Predefined objects like
shapes, sensors and servos allow users to create and run their own simulated robot. Thus, Webots
is no longer limited to differentially wheeled robots.

The GUI of Webots version 3 has been replaced by wxWindows, an Open Source Free Software
GUI toolkit.

If you have already developed programs using Webots 3, please read chapter 2 to update your
programs to run with the new version.

We hope that you will enjoy working with Webots 4.

3

4

Thanks

Cyberbotics is grateful to all the people who contributed to the development of Webots, Webots
sample applications, the Webots User Guide, the Webots Reference Manual, and the Webots web
site, including Jordi Porta, Emanuele Ornella, Yuri Lopez de Meneses, Auke-Jan Ijspeert, Gerald
Foliot, Allen Johnson, Michael Kertesz, Aude Billiard, and many others.

Moreover, many thanks are due to Prof. J.-D. Nicoud (LAMI-EPFL) and Dr. F. Mondada for
their valuable support.

Finally, thanks to Skye Legon, who proof-read this guide.

5

6

Contents

1 Installing Webots 11

1.1 Hardware requirements .11

1.2 Installation procedure .11

1.2.1 RedHat Linux i386 .11

1.2.2 Windows 95, 98, ME, NT, 2000 and XP12

1.2.3 Mac OS X, version 10.2 .12

1.3 Registration Procedure .13

1.3.1 Webots license .13

1.3.2 Registering .13

2 Upgrading from Webots 3 17

2.1 Controller .17

2.1.1 Controller includes .17

2.1.2 Controller library .17

2.1.3 Basic data type .17

2.1.4 Khepera .18

2.1.5 GTK+ GUI .18

2.2 World .18

3 Getting Started with Webots 21

3.1 Launching Webots .21

3.1.1 On Linux .21

3.1.2 On Mac OS X .21

3.1.3 On Windows .21

7

8 CONTENTS

3.2 Main Window: menus and buttons .22

3.2.1 File menu and shortcuts .22

3.2.2 Edit menu .24

3.2.3 Simulation menu and the simulation buttons24

3.2.4 Help menu .25

3.2.5 Navigation in the scene .25

3.2.6 Moving a solid object .26

3.2.7 Selecting a solid object .26

3.3 Scene Tree Window .27

3.3.1 Buttons of the Scene Tree Window .27

3.3.2 VRML nodes .29

3.3.3 Webots specific nodes .30

3.3.4 Principle of the collision detection .30

3.3.5 Writing a Webots file in a text editor .31

3.4 Citing Webots .31

4 Tutorial: Modeling and simulating your robot 33

4.1 My first world: kiki.wbt .33

4.1.1 Environment .33

4.1.2 Robot .37

4.1.3 A simple controller .47

4.2 My second world: akiki robot with a camera48

4.3 My third world: pioneer2.wbt .49

4.3.1 Environment .49

4.3.2 Robot with 16 sonars .49

4.3.3 Controller .56

5 Robot and Supervisor Controllers 59

5.1 Overview .59

5.2 Setting Up a New Controller .59

5.3 Webots Execution Scheme .60

5.3.1 From the controller’s point of view .60

CONTENTS 9

5.3.2 From the point of view of Webots .60

5.3.3 Synchronous versus Asynchronous controllers60

5.4 Reading Sensor Information .61

5.5 Controlling Actuators .61

5.6 Going further with the Supervisor Controller .62

6 Tutorial: Using the KheperaTM robot 63

6.1 Hardware configuration .63

6.2 Running the simulation .64

6.3 Understanding the model .66

6.3.1 The 3D scene .66

6.3.2 The Khepera model .67

6.4 Programming the Khepera robot .68

6.4.1 The controller program .68

6.4.2 Looking at the source code .68

6.4.3 Compiling the controller .71

6.5 Transferring to the real robot .71

6.5.1 Remote control .71

6.5.2 Cross-compilation and upload .72

6.6 Working extension turrets .73

6.6.1 The K213 linear vision turret .73

6.6.2 The Gripper turret .73

6.7 Support for other K-Team robots .74

6.7.1 KoalaTM .74

6.7.2 AliceTM .76

7 Tutorial: Using the LEGO Mindstorms TM robots 77

7.1 Building up the Rover robot .77

7.2 Webots model of the Rover robot .99

7.3 Transfering to the real Rover robot .100

7.3.1 leJOS .100

7.3.2 Installation .100

7.3.3 Cross-compilation and upload .101

7.3.4 How does it work ? .101

10 CONTENTS

8 ALife Contest 103

8.1 Previous Editions .103

8.2 Rules .103

8.2.1 Subject .103

8.2.2 Robot Capabilities .104

8.2.3 Programming Language .105

8.2.4 Scoring Rule .105

8.2.5 Participation .106

8.2.6 Schedule .106

8.2.7 Prize .106

8.3 Web Site .106

8.4 How to Enter the Contest .107

8.4.1 Obtaining the software .107

8.4.2 Running the software .108

8.4.3 Creating your own robot controller .108

8.4.4 Submitting your controller to the ALife contest109

8.4.5 Analysing the performance and improving your competing controller . .110

8.5 Developers’ Tips and Tricks .112

8.5.1 Practical issues .112

8.5.2 Java Security Manager .112

8.5.3 Levels of Intelligence .113

9 Practical Work: Robot Soccer 115

9.1 Setup .115

9.2 Rules .116

9.3 Programming .116

9.4 Extensions .116

9.4.1 Modifiying the soccer field .117

9.4.2 Modifying the robots .117

9.4.3 Modifying the match supervisor .117

Chapter 1

Installing Webots

1.1 Hardware requirements

Webots is available for RedHat Linux i386, Mac OS X, Windows 95, Windows 98, Windows
ME, Windows NT, Windows 200 and Windows XP. Other versions of Webots for other UNIX
systems (Debian Linux i386, Solaris, Linux PPC, Irix) may be available upon request.

OpenGL hardware acceleration is supported on Windows, Mac OS X and in some Linux config-
urations. It may also be available on other UNIX systems.

1.2 Installation procedure

To install Webots, you must follow the instructions corresponding to your computer / operating
system listed below:

1.2.1 RedHat Linux i386

Webots will run on RedHat Linux distributions, starting from RedHat 7.2. Webots may run on
other Linux distributions. For example, it can be easily installed on Debian Linux, using the
alien command to translate therpm package into adeb package before installation. If you do
use Red Hat Linux, please refer to your Linux distribution documentation to get the Webotsrpm

package installed.

1. Log on asroot

2. Insert the Webots CD-ROM, mount it (this might be automatic) and install the following
packages

11

12 CHAPTER 1. INSTALLING WEBOTS

mount /mnt/cdrom
rpm -Uvh /mnt/cdrom/linux/lib/mpeg_encode-1.5b-4.i386.rpm
mpeg_encode is useful only if you want to export MPEG movies
rpm -Uvh /mnt/cdrom/linux/webots/webots-4.0.9-1.i386.rpm
rpm -Uvh /mnt/cdrom/linux/webots/webots-kros-1.1.0-1.i386.rpm
webots-kros is useful only if you want to cross-compile
controllers for the Khepera robot

You may need to use the--nodeps or the--force if the rpm fails to install the packages.

1.2.2 Windows 95, 98, ME, NT, 2000 and XP

1. Uninstall any previous release of Webots or Webots-kros, if any, from theStart menu,
Control Panel , Add / Remove Programs . or from theStart menu,Cyberbotics , Uninstall
Webots or Uninstall Webots-kros .

2. Insert the Webots CD-ROM and open it.

3. Go to thewindows \webots directory on the CD-ROM.

4. Double click on thewebots-4.0.9 setup.exe file.

5. Follow the installation instructions.

6. Optionally, double click on thewebots-kros-1.1.0 setup.exe file to install the cross-
compiler for the Khepera robots.

In order to be able to compile controllers, you will need to install a C/C++ development envi-
ronment. We recommend to use Dev-C++ which is provided on the Webots CD-ROM (in the
windows/utils directory) as well as from the Bloodshed.net1 web site. Dev-C++ is an inte-
grated development environment (IDE) for C/C++ with syntax highlighting running on Windows.
It includes the MinGW distribution with the GNU GCC compiler and utilities. This software is
distributed under the terms of the GNU public license and hence is free of charge.

You may also choose to use Microsoft Visual C++TM if you own a license of this software.

1.2.3 Mac OS X, version 10.2

1. Insert the Webots CD-ROM and open it.

2. Go to themac:webots directory on the CD-ROM.

3. Double click on thewebots-4.0.9.tar.gz file.

1http://www.bloodshed.net

http://www.bloodshed.net

1.3. REGISTRATION PROCEDURE 13

4. This will uncompress theWebots folder. You may move this folder to your applications
directory or wherever you would like to install Webots.

In order to be able to compile controllers, you will need to install the Apple Mac OS X De-
veloper tools, included in the Mac OS X installation CD-ROMs. File editing and compilation
using Webots Makefiles can be achieved through these Apple tools. You will probably use the
Project Builder application to edit the source codes of the Webots controllers and the Terminal
application for invoking make from the directory in which your controller gets compiled.

The CodeWarriorTM development environment is not supported for the development of con-
trollers (although it may also work).

1.3 Registration Procedure

1.3.1 Webots license

Starting with Webots 4, a new license system has been introduced to facilitate the use of Webots.

When installing Webots, you will get a license file, calledwebots.key , containing your name,
address, serial number and computer ID. This encrypted file will enable you to use Webots ac-
cording to the license you purchased. This file is strictly personal: you are not allowed to provide
copies of it to any third party in any way, including publishing that file on any Internet server
(web, ftp, or any other server). Any copy of your license file is under your responsibility. If a
copy of your license file is used by an unauthorized third party to run Webots, then Cyberbotics
may engage legal procedures against you. Webots licenses are (1) non-transferable and (2) non-
exclusive. This means that (1) you cannot sell or give your Webots license to any third party, and
(2) Cyberbotics and its official Webots resellers may sell or give Webots licenses to third parties.

If you need further information about license issues, please send an e-mail to:

<license@cyberbotics.com >

Please read your license agreement carefully before registering. This license is provided within
the software package. By using the software and documentation, you agree to abide by all the
provisions of this license.

1.3.2 Registering

After installing Webots, you will need to register your copy of Webots to get a license file called
webots.key allowing you to use all the features of Webots corresponding to the license you
purchased.

14 CHAPTER 1. INSTALLING WEBOTS

Simple registration

In order to proceed, launch Webots on the computer on which you would like to install the license
file. Go theRegister menu item of theHelp menu of Webots and follow the instructions. If this
computer is connected to the Internet, everything will run smoothly, fill in the requested form
and you will shortly receive thewebots.key license file via e-mail. Otherwise, you will have
to fill in a form2 on the website of Cyberbotics (see figure 1.1). You will then receive an e-mail
containing thewebots.key file corresponding to your license.

Figure 1.1: Webots registration page

Please take care to properly fill in each field of this form. TheSerial Numberis the serial number
of your Webots package which is printed the CD-ROM under the headingS/N:. The computer
ID is given by Webots in theRegister menu item of theHelp menu.

2http://www.cyberbotics.com/registration/webots4.html

http://www.cyberbotics.com/registration/webots4.html

1.3. REGISTRATION PROCEDURE 15

After completing this form, click on theSubmit button. You will receive shortly thereafter an
e-mail containing your personal license filewebots.key which is needed to install a registered
copy of Webots as described below.

Registering several computers

If you need to register several computers, it may be convenient to register all the computers in
the samewebots.key license file. Hence this unique license file could be copied across all the
computers needing a Webots license.

In order to proceed, just enter several computer IDs on the web form, corresponding to all the
computers you want to register. The computer IDs have to be seperated by a simple space char-
acter.

Copying the license file

Once you received it by e-mail, just copy thewebots.key license file into theresources

directory of your Webots installation.

Under Linux, copy your personalwebots.key file into the/usr/local/webots/server/resources

directory where Webots was just installed.

Under Mac OS X, copy your personalwebots.key file into theWebots:resources directory
where Webots was just installed.

Under Windows, copy your personalwebots.key file into theC: \Program Files \Webots \resources

directory where Webots was just installed.

16 CHAPTER 1. INSTALLING WEBOTS

Chapter 2

Upgrading from Webots 3

If you have already worked with Webots 3, your existing programs may need to be modified for
use with Webots 4.

2.1 Controller

2.1.1 Controller includes

The include path of the device files is the same as in Webots 3.2, i.e.:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

2.1.2 Controller library

The name of the controller library to which you will link your executable files changed to ”Con-
troller.dll” on Windows and ”libController.so” on Linux. It is not any more ”GtkController.dll”
or ”libGtkController.so”. Please update your project files or make files appropriately.

2.1.3 Basic data type

Since GTK+ and glib are not used any more, the data type coming from the glib are not recog-
nized any more. Webots 4 uses the more standard C data types. Moreover, a couple of other
Webots specific data type have slightly changed to become more consistant with the rest of the
API. Please replace the following data types in your programs:

17

18 CHAPTER 2. UPGRADING FROM WEBOTS 3

Webots 3 Webots 4
gchar char
guchar unsigned char
guint8 unsigned char
gint8 char
gint int
guint unsigned int
gint32 int
guint32 unsigned int
gint16 short
guint16 unsigned short
gfloat float
gdouble double
gpointer void *
devicetag DeviceTag
noderef NodeRef

Table 2.1: Data types changes between Webots 3 and Webots 4

2.1.4 Khepera

If you developed controllers specifically for the Khepera robot, thekhepera live function
should be replaced byrobot live . Moreover, the#include <transfer/khepera.h >

should be removed. Please check also that themodel field of theDifferentialWheels node
corresponding to the Khepera robot is ”Khepera” or ”Khepera II”, so that it will be automatically
recognized by Webots as a Khepera controller for remote control and code upload.

2.1.5 GTK+ GUI

The GTK+ graphical user interface is not any more integrated within the controller library.
Hence, you are free to use any graphical user interface library, like wxWindows, GTK+, Mo-
tif, MFC, etc. To use for example GTK+, you have two options: (1) you can perform all the
graphical user interface operations inside a separate thread, or (2) you can setup the GUI in the
same thread and call repeatly thegtk main iteration do function inside the main loop. An
example of using wxWindows as the GUI of a controller in provided in thewxgui controller
sample.

2.2 World

Very few changes were introduce in the Webots worlds that breaks the compatibility. How-
ever, since Webots 4 uses a different collision detection engine,boundingObject made up of

2.2. WORLD 19

Extrusion or IndexedFaceSet have to be changed to composite objects made up ofBox,
Sphere and / orCylinder . A composite object is aGroup node containingTransform nodes
as children. TheseTransform nodes should contain the primitive shapes previously enumerated
and positioned appropriately.

20 CHAPTER 2. UPGRADING FROM WEBOTS 3

Chapter 3

Getting Started with Webots

To run a simulation in Webots, you need two things:

This chapter gives an overview of the basics of Webots, including the display of the world in the
main window and the structure of the.wbt file appearing in the scene tree window.

Robot and Supervisor controllers will be explained in detail later on in this book.

3.1 Launching Webots

3.1.1 On Linux

From an X terminal, typewebots to launch the simulator. You should see the world window
appear on the screen (see figure 3.1).

3.1.2 On Mac OS X

Open the directory in which you uncompressed the Webots package and double-click on the
Webots icon. You should see the world window appear on the screen (see figure 3.1).

3.1.3 On Windows

From theStart menu, go to theProgram Files — Cyberbotics menu and click on theWebots 4.0.9
menu item. You should see the world window appear on the screen (see figure 3.1).

21

22 CHAPTER 3. GETTING STARTED WITH WEBOTS

Figure 3.1: Webots main window

3.2 Main Window: menus and buttons

The main window allows you to display your virtual worlds and robots described in the.wbt

file. Four menus and a number of buttons are available.

3.2.1 File menu and shortcuts

TheNew menu item opens a new default world representing a chessboard of 10 x 10 plates on a
surface of 1 m x 1 m. The following button can be used as a shortcut:

New

3.2. MAIN WINDOW: MENUS AND BUTTONS 23

TheFile menu will also allow you to perform the standard file operations:Open... , Save andSave
As... , respectively, to load, save and save with a new name the current world.

The following buttons can be used as shortcuts:

Open...

Save

TheRevert item allows you to reload the most recently saved version of your.wbt file.

The following button can be used as a shortcut:

Revert

TheExport VRML item allows you to save the.wbt file as a.wrl file, conforming to the VRML
2.0 standard. Such a file can, in turn, be opened with any VRML 2.0 viewer. This is especially
useful for publishing a world created with Webots on the Web.

The Make Movie... item allows you to create a MPEG movie under Linux and Mac OS X or an
AVI movie under Windows. As movies are created on a 30 frame per second basis, you should
adapt the basic simulation step and the refresh display parameters in the general preferences to
obtain a movie running at real time. Setting the basic simulation step to 32 ms and the refresh
display each 1 ms should produce movies runnig close to real time.

TheScreenshot... item allows you to take a screenshot of the current view in Webots. It opens a
file dialog to save the current view as a PNG image.

ThePreferences item pops up a window with the following panels:

• General : TheStartup mode allows you to choose the state of the simulation when We-
bots is launched (stop, run, fast; see theSimulation menu).

TheBasic simulation step parameter defines the duration of the simulation step ex-
ecuted by Webots. It is expressed in milliseconds. Setting this value to a high value will
accelerate the simulation, but will decrease the accuracy of the simulation, especially for
physics simulation and collision detection This value is also used when theStep button is
pressed.

TheRefresh display parameter is multiplicated to the basic step value to define how
frequently the 3D display of the main window is refreshed in normalRun mode.

• Rendering : this tab controls the 3D rendering in the simulation window.

Checking theDisplay sensor rays check box displays the distance sensor rays of the
robot(s) as red lines.

Checking theDisplay lights check box displays the lights (PointLight in the world
so that they can be moved more accurately).

24 CHAPTER 3. GETTING STARTED WITH WEBOTS

• Files and paths : The default.wbt world which is open when launching Webots and
the user directory are defined here. The user directory should contain at least aworlds ,
controllers , andobjects directories where Webots will be looking for files.

3.2.2 Edit menu

TheScene Tree Window item opens the window in which you can edit the world and the robot(s).
A shortcut is available by double-clicking on a solid in the world. A solid is a physical object in
the world.

3.2.3 Simulation menu and the simulation buttons

In order to run a simulation a number of buttons are available corresponding to menu items found
under theSimulation menu:

Stop : interruptRun or Fast modes.

Step : execute one simulation basic step. The duration of such a step is defined in the
preferences of Webots and can be adjusted to suit your needs.

Run : execute simulation steps until theStop mode is entered. In run mode, the 3D display
of the scene is refreshed every n basic step, where n is defined in the Webots preferences.

Fast : same asRun , except that no display is performed (Webots PRO only). only.

The Fast mode performs a very fast simulation mode suited for heavy computation (genetic
algorithms, vision, learning, etc.). However, as the world display is disabled during aFast simu-
lation, the scene in the world window remains blank until theFast mode is stopped. This feature
is available only with Webots PRO.

TheWorld View / Robot View item allows you to switch between two different points of view:

• World View : this view corresponds to a fixed camera standing in the world.

• Robot View : this view corresponds to a mobile camera following a robot.

The default view is the world view. If you want to switch to theRobot View , first select the robot
you want to follow (click on the pointer button then on the robot), and then chooseRobot View
in theSimulation menu. To return to theWorld View mode, reselect this item.

A speedometer (see figure 3.2) allows you to observe the speed of the simulation on your com-
puter. It is displayed in the bottom right hand side of the main window and indicates how fast the

3.2. MAIN WINDOW: MENUS AND BUTTONS 25

simulation runs compared to real time. In other words, it represents the speed of the virtual time.
If the value of the speedometer is 2, it means that your computer simulation is running twice as
fast as the corresponding real robots would. This information is relevant both inRun mode and
Fast mode.

Figure 3.2: Speedometer

The basic simulation time step can be chosen from the preferences window. It is expressed
in virtual time milliseconds. The value of this time step defines the duration of the time step
executed during theStep mode. This step is multiplicated by the refresh parameter to define how
frequently the display is refreshed. The refresh parameter can be changed from the preferences
window.

In Run mode, with a time step of 64 ms and a fairly simple world displayed with the default
window size, the speedometer will typically indicate approximately 0.5 on a Pentium II / 266
Mhz without hardware acceleration and 12 on a Pentium III / 500 Mhz with an nVidia Geforce
II MX graphics card.

3.2.4 Help menu

In the Help menu, theAbout... item opens theAbout... window, displaying the license infor-
mation.

The Introduction item is a short introduction to Webots (HTML file). You can access the User
Guide and the Reference Manual with theUser Guide andReference Manual items (PDF files).
TheWeb site of Cyberbotics item lets you visit our Web site.

3.2.5 Navigation in the scene

The view of the scene is generated by a virtual camera set in a given position and orientation.
You can change this position and orientation to navigate in the scene using the mouse buttons.
Thex, y, zaxes mentioned below correspond to the coordinate system of the camera;z is the axis
corresponding to the direction of the camera.

• Rotate viewpoint: To rotate the camera around thex andy axis, you have to set the mouse
pointer in the 3D scene, press the left mouse button and drag the mouse:

26 CHAPTER 3. GETTING STARTED WITH WEBOTS

if you clicked on a solid object, the rotation will be centered around the origin of the local
coordinate system of this object.

if you clicked outside of any solid object, the rotation will be centered around the origin of
the world coordinate system.

• Translate viewpoint: To translate the camera in thex andy directions, you have to set the
mouse pointer in the 3D scene, press the right mouse button and drag the mouse.

• Zoom / Tilt viewpoint: set the mouse pointer in the 3D scene, then:

if you press both left and right mouse buttons (or the middle button) and drag the mouse
vertically, the camera will zoom in or out.

if you press both left and right mouse buttons (or the middle button) and drag the mouse
horizontally, the camera will rotate around itsz axis (tilt movement).

if you use the wheel of the mouse, the camera will zoom in or out.

3.2.6 Moving a solid object

In order to move an object, hold the shift key down while using the mouse.

• Translation: Pressing the left mouse button while the shift key is pressed allows you to
drag solid objects on the ground (xzplan).

• Rotation: Pressing the right mouse button while the shift key is pressed rotates solid ob-
jects: a first click is necessary to select a solid object, then a second press-and-drag rotates
the selected object around itsy axis.

• Lift: Pressing both left and right mouse buttons, the middle mouse button, or rolling the
mouse wheel while the shift key is pressed allows you to lift up or down the selected solid
object.

3.2.7 Selecting a solid object

Simply clicking on a solid object allows you to select this object. Selecting a robot enables the
choice ofRobot View in thesimulation menu. Double-clicking on a solid object opens the scene
tree window where the world and robots can be edited. The selected solid object appears selected
in the scene tree window as well.

3.3. SCENE TREE WINDOW 27

3.3 Scene Tree Window

As seen in the previous section, to access to the Scene Tree Window you can either chooseScene
Tree Window in theEdit menu, or click on the pointer button and double-click on a solid object.

The scene tree contains all information necessary to describe the graphic representation and sim-
ulation of the 3D world. A world in Webots includes one or more robots and their environment.

The scene tree of Webots is structured like a VRML file. It is composed of a list of nodes, each
containing fields. Fields can contain values (text string, numerical values) or nodes.

Some nodes in Webots are VRML nodes, partially or totally implemented, while others are
specific to Webots. For instance theSolid node inherits from theTransform node of VRML
and can be selected and moved with the buttons in the World Window.

This section describes the buttons of the Scene Tree Window, the VRML nodes, the Webots
specific nodes and how to write a.wbt file in a text editor.

Figure 3.3: Scene Tree Window

3.3.1 Buttons of the Scene Tree Window

The scene tree with the list of nodes appears on the left side of the window. Clicking on the+ in
front of a node or double-clicking on the node displays the fields inside the node, and similarly

28 CHAPTER 3. GETTING STARTED WITH WEBOTS

expands the fields. The field values can be defined on the top right side of the window. Five
editing buttons are available on the bottom right side of the window:

Cut

Copy

Paste after

These three buttons let you cut, copy and paste nodes and fields. However, you can’t perform
these operations on the three first nodes of the tree (WorldInfo, Viewpoint andBackground).
These nodes are mandatory and don’t need to be duplicated. Similarly, you can’t copy the
Supervisor node because only one supervisor is allowed. Please note that when you cut or
copy a robot node, like aDifferentialWheels or Supervisor node, thecontroller field
of this node is reset to"void" .

Delete : This button allows you to delete a node. It appears only if a node is selected. If a
field is selected, theDefault Value button appears instead.

Default Value : You can click on this button to reset the default value(s) of a field. A field
with values must be selected in order to perform this button. If a node is selected, theDelete
button replaces it.

Transform : This button allows you to transform a node into another one.

Insert after : With this button, you can insert a node after the one currently selected. This
new node contains fields with default values, which you can of course modify to suit your needs.
This button also allows you to add a node to achildren field. In all cases, the software only
permits you to insert a coherent node.

Insert Node : Use this to insert a node into a field whose value is a node. You can insert
only a coherent node.

Export Node : Use this button to export a node into a file. Usually, nodes are saved in your
objects directory. Such saved nodes can then be reused in other worlds.

Import Node : Use this button to import a previously saved node into the scene tree. Usually,
saved nodes are located in the Webotsobjects directory or in your ownobjects directory.
The Webotsobjects directory already contains a few nodes that can be easily imported.

3.3. SCENE TREE WINDOW 29

3.3.2 VRML nodes

A number of VRML 2.0 nodes are partially or completely supported in Webots.

The exact features of VRML 2.0 are the subject of a standard managed by the International
Standards Organization (ISO/IEC 14772-1:1997).

You can find the complete specifications on the official VRML Web site:\texttt{http://www.vrml.org}.

The VRML nodes supported in Webots are the following:

• Appearance

• Background

• Box

• Color

• Cone

• Coordinate

• Cylinder

• DirectionalLight

• ElevationGrid

• Fog

• Group

• ImageTexture

• IndexedFaceSet

• IndexedLineSet

• Material

• PointLight

• Shape

• Sphere

• Switch

• TextureCoordinate

30 CHAPTER 3. GETTING STARTED WITH WEBOTS

• TextureTransform

• Transform

• Viewpoint

• WorldInfo

The Reference Manual gives a comprehensive list of nodes with associated fields.

3.3.3 Webots specific nodes

In order to implement powerful simulations including mobile robots with two-wheel differential
steerings, a number of nodes specific to Webots have been added to the VRML set of nodes.

VRML uses a hierarchical structure for nodes. For example, theTransform node inherits from
the Group node, such that, like theGroup node, theTransform node has achildren field,
but it also adds three additional fields:translation , rotation andscale .

In the same way, Webots introduces new nodes which inherit from the VRMLTransform node,
principally theSolid node. Other Webots nodes (DifferentialWheels , DistanceSensor ,
Camera, etc.) inherit from thisSolid node.

The Reference Manual gives a complete description of all Webots nodes and their respective
fields.

3.3.4 Principle of the collision detection

The collision detection engine is able to detect a collision between twoSolid nodes. It calculates
the intersection between the bounding objects of the solids. A bounding object (described in the
boundingObject field of theSolid node) is a geometric shape or a group of geometric shapes
which bounds the solid. If theboundingObject field is NULL, then no collision detection is
performed for thisSolid node. list ofchildren of the Solid node are used to compute the
bounding object.

The collision detection is mainly of use between a robotDifferentialWheels node) and an
obstacle (Solid node), and between two robots. TwoSolid nodes can never inter-penetrate
each other; their movement is stopped just before the collision.

Example: a solid with a bounding box different from its list of children.

Let us consider the Khepera robot model. It is not exactly aSolid node, but the principle for the
boundingObject is the same. Open thekhepera.wbt file and look at theboundingObject

field of theDifferentialWheels node. The bounding object is a cylinder which has been
transformed. See figure 3.4.

3.4. CITING WEBOTS 31

Figure 3.4: The bounding box of the Khepera robot

3.3.5 Writing a Webots file in a text editor

It is possible to write a Webots world file (.wbt) using a text editor. A world file contains a
header, nodes containing fields and values. Note that only a few VRML nodes are implemented,
and that there are nodes specific to Webots. Moreover, comments can only be written in the DEF,
and not like in a VRML file.

The Webots header is:

#VRML_SIM V4.0 utf8

After this header, you can directly write your nodes. The three nodesWorldInfo , Viewpoint

andBackground are mandatory.

Note: we recommend that you write your file using the tree editor. However it may be easier to
make some particular modifications using a text editor (like using the search and replace feature
of a text editor).

3.4 Citing Webots

When writing a scientific paper, or describing your project involving Webots on a web site, it
is always appreciated to make a correct reference to Webots, mentionning Cyberbotics web site

32 CHAPTER 3. GETTING STARTED WITH WEBOTS

explicitely. In order to help you in such a task, we provide here some citation examples, including
a BibTex entry that you can freely reuse in your own documents:

This project usesWebots1, a commercial mobile robot simulation software developed by Cyber-
botics Ltd.

This project uses Webots (http://www.cyberbotics.com), a commercial mobile robot simulation
software developed by Cyberbotics Ltd.

The BibTex reference entry may look odd, as it is very different from a standard paper citation
and we want the specified fields to appear in the normal plain citation mode of LaTeX.

@Misc{Webots,
author={Webots},
title={http://www.cyberbotics.com},
note={Commercial Mobile Robot Simulation Software},
editor={Cyberbotics Ltd.},
url={http://www.cyberbotics.com}

}

Once compiled with LaTeX, it should display as follow:

References

[1] Webots. http://www.cyberbotics.com. Commercial Mobile Robot Simulation Software.

1http://www.cyberbotics.com

http://www.cyberbotics.com

Chapter 4

Tutorial: Modeling and simulating your
robot

The aim of this chapter is to give you several examples of robots, worlds and controllers. The first
world is very simple, nevertheless it introduces the construction of any basic robot, and explains
how to program a controller. The second example will show you how to model a camera on this
simple robot. The third example will show you how to build a virtual Pioneer 2TM robot from
ActivMedia Robotics. The fourth part will explain how to work with robots from K-Team.

4.1 My first world: kiki.wbt

As a first introduction, we are going to simulate a very simple robot made up of a box, two wheels
and two infra-red sensors (see figure 4.1), controlled by a program inspired by a Braitenberg
algorithm, in a simple environment surrounded by a wall.

4.1.1 Environment

We just want to have a simple world with a surrounding wall. We will represent this wall using
anExtrusion node. The coordinates of the wall are shown in figure 4.2.

First, go to theFile menu,New item to open a new world. Then open theScene Tree Window
(from theEdit menu). We are going to change the lighting of the scene:

1. Select thePointLight node, and click on the + just in front of it. You can now see the
different fields of thePointLight node. SelectambientIntensity and enter 0.6 as a
value, then selectintensity and enter 0.8, then selectlocation and enter 0.5 0.5 0.5
as values. Pressreturn .

33

34 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

wheels

IR sensors

Figure 4.1: Thekiki robot

2. Select thePointLight node, copy and paste it. In this newPointLight node, type -0.5
0.5 0.5 in thelocation field.

3. Repeat this paste twice again with -0.5 0.5 -0.5 in thelocation field of the thirdPointLight

node, and 0.5 0.5 -0.5 in thelocation field of the fourth and lastPointLight node.

4. The scene is now better lit.

Secondly, let us create the wall:

1. Select the lastTransform node and click on theinsert after button.

2. Choose aSolid node.

3. Type ”wall” in the name field.

4. Select thechildren field andInsert after a Shape node.

5. Insert a newAppearance node in theappearance field. Insert a newMaterial node
in thematerial field of theAppearance node. Select thediffuseColor field of the
Material node and choose a color to define the color of the wall.

6. Now insert anExtrusion node in thegeometry field of theShape .

7. Setconvex to FALSE. Then, set the wall corner coordinates in thecrossSection field.
You will have to re-enter the first point (0) at the last position (10) to complete the last face
of the extrusion.

8. In thespine field, write that the wall ranges between 0 and 0.1 along the y axis.

4.1. MY FIRST WORLD: KIKI.WBT 35

0

x

1 2

34

8

9
5

0 (−0.489, −0.5)

5 (−0.49, −0.5)

1 (−0.489, −0.49)
2 (0.49, −0.49)
3 (0.49, 0.49)
4 (−0.49, 0.49)

6 (−0.5, −0.5)
7 (−0.5, 0.5)
8 (0.5, 0.5)
9 (0.5, −0.5)

6

7

z

(x,z) coordinates:

Figure 4.2: Thekiki world

9. As we want our robot to detect the wall, we have to fill in theboundingObject field. The
bounding object can have exactly the same shape as the wall, soinsert a DEF at the level of
geometry Extrusion : WALL. Then, in theboundingObject field, insert USE WALL.

10. Close the tree editor, save your file and look at the result.

The wall in the tree editor is represented in figure 4.3, while the same wall in the world editor is
visible in figure 4.4

36 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.3: The wall in the tree editor

Figure 4.4: The wall in the world window

4.1. MY FIRST WORLD: KIKI.WBT 37

4.1.2 Robot

The aim of this subsection is to model thekiki robot. This robot is made up of aDifferentialWheels

node, in which we find several children: aTransform node for the body, twoSolid nodes for
the wheels, twoDistanceSensor nodes for the infra-red sensors and aShape node with a
texture.

The origin and the axis of the coordinate system of the robot and its dimensions are shown in
figure 4.5.

0.08

y

LEFT SIDE VIEW

z

y

0.05

0.08

0.01

0.08

Ø 0.050.02

x

FRONT VIEW

Figure 4.5: Coordinate system and dimensions of thekiki robot

To model the body of the robot:

1. Open the scene tree window.

2. Select the lastSolid node.

3. Insert after a DifferentialWheels node, give it a name: ”kiki”.

38 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

4. In the children field, first introduce aTransform node that will contain a box shape.
In the newchildren field, insert after a Shape node. Choose a color, as described
previously. In thegeometry field, insert a Box node. Set the dimension of the box to
[0.08 0.08 0.08]. Now set thetranslation values to [0 0.06 0] in theTransform node
(see figure 4.6)

Figure 4.6: Body of thekiki robot: a box

To model the left wheel of the robot:

1. Select the previousTransform and insert after a Solid node in order to model the left
wheel. Type ”left wheel” in the name field, so that thisSolid node is recognized as the
left wheel of the robot and will rotate according to the motor command.

2. The axis of rotation of the wheel isx. The wheel will be made of aCylinder rotated
of pi/2 radians around thez axis. To obtain proper movement of the wheel, you must pay
attention not to confuse these two rotations. consequently, you must add aTransform

node to the children of theSolid node.

3. After adding thisTransform node, introduce aShape with aCylinder in its geometry

field. The dimensions of the cylinder are 0.01 for theheight and 0.025 for theradius .
Set therotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is false,
the wheel will turn in the wrong direction.

4. In theSolid node, set the translation to [-0.045 0.025 0] to position the left wheel, and set
the rotation of the wheel around thex axis: [1 0 0 0].

4.1. MY FIRST WORLD: KIKI.WBT 39

5. Give aDEFname to yourTransform : WHEEL; notice that you positioned the wheel in
translation at the level of theSolid node, so that you can reuse theWHEEL Transform

for the right wheel.

6. Close the tree window, look at the world and save it. Use the navigation buttons to change
the point of view.

To model the right wheel of the robot:

1. Select the left wheelSolid node andinsert after anotherSolid node. Type ”right wheel”
in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0 0 0].

2. In thechildren , insert after USE WHEEL. PressReturn , close the tree window and save
the file. You can examine your robot in the world editor, move it and zoom in on it.

The robot and its two wheels are shown in figure 4.7 and figure 4.8.

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their
diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so that
the sensor rays point in the right direction, toward the front of the robot.

1. In the children of the DifferentialWheels node,insert after a DistanceSensor

node.

2. Type the name ”ir0”. It will be used by the controller program.

3. Now, we will attach a cylinder shape to this sensor. In thechildren of theDistanceSensor

node,insert after aTransform node. Give aDEFname to it: INFRARED, which you will
use for the second IR sensor.

4. In thechildren of theTransform node,insert after a Shape node. Choose an appear-
ance andinsert aCylinder in thegeometry field. Type 0.004 for the height and 0.08 for
the radius.

5. Set the rotation for theTransform node to [0 0 1 1.57] to adjust the orientation of the
cylinder.

6. In theDistanceSensor node, set the translation to position the sensor and its ray: [0.02
0.08 -0.042]. In theFile menu,Preferences , Rendering , check theDisplay sensor rays box.
In order to have the ray directed toward the front of the robot, you must set the rotation to
[0 1 0 1.57].

7. In theDistanceSensor node, you must introduce some values of distance measurements
of the sensors to thelookupTable field, according to figure 4.9. These values are:

40 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.7: Wheels of thekiki robot

lookupTable [0 1024 0,
0.05 1024 0,
0.15 0 0]

8. To model the second IR sensor, select theDistanceSensor node andinsert after a new
DistanceSensor node. Type ”ir1” as a name. Set its translation to [-0.02 0.08 -0.042]
and its rotation to [0 1 0 1.57]. In thechildren , insert after USE INFRARED. In the
lookupTable field, type the same values as shown above.

The robot and its two sensors are shown in figure 4.10 and figure 4.11.

Note: a texture can only be mapped on an IndexedFaceSet shape. ThetexCoord andtexCoordIndex

entries must be filled. The image used as a texture must be a.png or a .jpg file, and its size

4.1. MY FIRST WORLD: KIKI.WBT 41

Figure 4.8: Body and wheels of thekiki robot

must be(2n̂) * (2n̂) pixels (for example 8x8, 16x16, 32x32, 64x64, 128x128 or 256x256 pixels).
Transparent images are not allowed in Webots. Moreover, PNG images should use either the 24
or 32 bit per pixel mode (lowerbpp or gray levels are not supported). Beware of the maximum
size of texture images depending on the 3D graphics board you have: some old 3D graphics
boards are limited to 256x256 texture images while more powerful ones will accept 2048x2048
texture images.

To paste a texture on the face of the robot:

1. Select the lastDistanceSensor node andinsert after a Shape node.

2. In theappearance field, insert anAppearance node. In thetexture field of this node,
insert an ImageTexture node with the following URL:"kiki/kiki.png" .

3. In the geometry field, insert an IndexedFaceSet node, with aCoordinate node in
thecoord field. Type the coordinates of the points in thepoint field.

[0.015 0.05 -0.041,
0.015 0.03 -0.041,

-0.015 0.03 -0.041,
-0.015 0.05 -0.041]

42 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Measured
value

Distance to
the wall

1024

0
0.05 0.15

Figure 4.9: Distance measurements of thekiki sensors.

andinsert after thecoordIndex field the values 0, 1, 2, 3, -1.

4. In the texCoord field, insert a TexureCoordinate node. In thepoint field, enter the
coordinates of the texture:

[0 0
1 0
1 1
0 1]

and in thetexCoordIndex field, type 3, 0, 1, 2.

5. The texture values are shown in figure 4.12.

To finish with theDifferentialWheels node, you must fill in a few more fields:

1. In the controller field, type the name ”simple”. It will be used by the controller pro-
gram.

2. The boundingObject field can contain aTransform node with aBox, as a box as
a bounding object for collision detection is sufficient to bound thekiki robot. Insert a
Transform node in theboundingObject field, with thetranslation set to [0 0.05
-0.002] and aBox node in itschildren . Set the dimension of theBox to [0.1 0.1 0.084].

3. In theaxleLength field, enter the length of the axle between the two wheels: 0.09 (ac-
cording to figure 4.5).

4. In thewheelRadius field, enter the radius of the wheels: 0.025.

5. Values for other fields are shown in figure 4.13 and the finished robot in its world is shown
in figure 4.14.

4.1. MY FIRST WORLD: KIKI.WBT 43

Figure 4.10: The DistanceSensor nodes of thekiki robot

44 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.11: Thekiki robot and its sensors

4.1. MY FIRST WORLD: KIKI.WBT 45

Figure 4.12: Defining the texture of thekiki robot

46 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.13: The other fields of the DifferentialWheels node

Figure 4.14: Thekiki robot in its world

4.1. MY FIRST WORLD: KIKI.WBT 47

Thekiki.wbt is included in the Webots distribution, in theworlds directory.

4.1.3 A simple controller

This first controller is very simple and thus namedsimple . The controller program simply reads
the sensor values and sets the two motors speeds, in such a way thatkiki avoids the obstacles.

Below is the source code for thesimple.c controller:

#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

#define SPEED 100

static DeviceTag ir0,ir1;

void reset(void) {
ir0 = robot_get_device("ir0");
ir1 = robot_get_device("ir1");
// printf("ir0=134531395 ir1=1108542220\n",ir0,ir1);

}

int main() {
short left_speed,right_speed;
unsigned short ir0_value,ir1_value;

robot_live(reset);
distance_sensor_enable(ir0,64);
distance_sensor_enable(ir1,64);
for(;;) { /* The robot never dies! */

ir0_value = distance_sensor_get_value(ir0);
ir1_value = distance_sensor_get_value(ir1);
if (ir1_value>200) {

left_speed = -20;
right_speed = 20;

} else if (ir0_value>200) {
left_speed = 20;
right_speed = -20;

} else {
left_speed =SPEED;
right_speed=SPEED;

}
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);

48 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

robot_step(64); /* run one step */
}
return 0;

4.2 My second world: akiki robot with a camera

The camera to be modeled is a color 2D camera, with an image 80 pixels wide and 60 pixels
high, and a field of view of 60 degrees (1.047 radians).

We can model the camera shape as a cylinder, on the top of thekiki robot at the front. The
dimensions of the cylinder are 0.01 for the radius and 0.03 for the height. See figure 4.15.

Figure 4.15: Thekiki robot with a camera

Try modeling this camera. Thekiki camera.wbt file is included in the Webots distribution, in
theworlds directory, in case you need any help.

A controller program for this robot, namedcamera is also included in the Webots distribution,
in thecontrollers directory.

4.3. MY THIRD WORLD: PIONEER2.WBT 49

4.3 My third world: pioneer2.wbt

We are now going to model and simulate a commercial robot from ActivMedia Robotics: Pioneer
2-DXTM, as shown on the ActivMedia Web site: http://www.activrobots.com. First, you must
model the robots environment. Then, you can model a Pioneer 2TM robot with 16 sonars and
simulate it with a controller.

Please refer to theworlds/pioneer2.wbt andcontrollers/pioneer2 files for the world
and controller details.

4.3.1 Environment

The environment consists of:

• a chessboard: aSolid node with anElevationGrid node.

• a wall around the chessboard:Solid node with anExtrusion node.

• a wall inside the world: aSolid node with anExtrusion node.

This environment is shown in figure 4.16.

4.3.2 Robot with 16 sonars

The robot (aDifferentialWheels node) is made up of six main parts:

1. the body: anExtrusion node.

2. a top plate: anExtrusion node.

3. two wheels: twoCylinder nodes.

4. a rear wheel: aCylinder node.

5. front an rear sensor supports: twoExtrusion nodes.

6. sixteen sonars: sixteenDistanceSensor nodes.

The Pioneer 2 DXTM robot is depicted in figure 4.17.

Open the tree editor and add aDifferentialWheels node.Insert in thechildren field:

1. for the body: aShape node with ageometry Extrusion . See figure 4.18 for the coor-
dinates of theExtrusion .

50 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Figure 4.16: The walls of the Pioneer 2TM robot world

2. for the top plate: aShape node with ageometry Extrusion . See figure 4.19 for the
coordinates of theExtrusion .

3. for the two wheels: twoSolid nodes. EachSolid node children contains aTransform

node, which itself contains aShape node with ageometry Cylinder . EachSolid

node has a name: ”left wheel” and ”right wheel”. See figure 4.20 for the wheels dimen-
sions.

4. for the rear wheel: aTransform node containing aShape node with ageometry Cylinder

, as shown in figure 4.21

5. for the sonar supports: twoShape nodes with ageometry Extrusion . See figure 4.22
for theExtrusion coordinates.

6. for the 16 sonars: 16DistanceSensor nodes. EachDistanceSensor node contains
a Transform node. TheTransform node has aShape node containing ageometry

Cylinder . See figure 4.23 and the text below for more explanation.

Modeling the sonars:

The principle is the same as for thekiki robot. The sonars are cylinders with a radius of 0.0175
and a height of 0.002. There are 16 sonars, 8 on the front of the robot and 8 on the rear of the

4.3. MY THIRD WORLD: PIONEER2.WBT 51

Figure 4.17: The Pioneer 2 DXTM robot

robot (see figure 4.23). The angles between the sonars and the initial position of theDEF SONAR

Transform are shown in figure 4.24. ADEF SONAR Transform contains aCylinder node in
a Shape node with a rotation around thez axis. ThisDEF SONAR Transform must be rotated
and translated to become the sensors FL1, RR4, etc.

52 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

z

x

01

2

3

4 5

6

7

Coordinates of the crossSection field of
the extrusion node:
0: x=−0.1, z=0.215
1: x=0.1, z=0.215
2: x=0.135, z=0.185
3: x=0.135, z=−0.095
4: x=0.08, z=−0.11
5: x=−0.08, z=−0.11
6: x=−0.135, z=−0.095
7: x=−0.135, z=0.185

FRONT

BACK

0.059 < y <0.234

Figure 4.18: Body of the Pioneer 2TM robot

z

x

FRONT

BACK

0
1

2

3

4

5
6

7
8

9
10 11 12

13
14

15

16
17

18

19

20
21

Coordinates of the crossSection field
of the Extrusion node:
0: x=0 z=−0.174
1: x=−0.056 z=−0.166
2: x=−0.107 z=−0.145
3: x=−0.155 z=−0.112
4: x=−0.190 z=−0.064
5: x=−0.190 z=0.074
6: x=−0.160 z=0.096
7: x=−0.160 z=0.151
8: x=−0.155 z=0.2
9: x=−0.107 z=0.236
10: x=−0.056 z=0.256
11: x=0 z=0.264
12: x=0.056 z=0.256
13: x=0.107 z=0.236
14: x=0.155 z=0.2
15: x=0.160 z=0.151
16: x=0.160 z=0.096
17: x=0.190 z=0.074
18: x=0.190 z=−0.064
19: x=0.155 z=−0.112
20: x=0.107 z=−0.145
21: x=0.056 z=−0.166

0.234 < y < 0.24

Figure 4.19: Top plate of the Pioneer 2TM robot

4.3. MY THIRD WORLD: PIONEER2.WBT 53

x

y

RIGHT
WHEEL

LEFT
WHEEL

0.3206

Z

Radius of the wheels: 0.0825
Depth of the wheels: 0.037

Figure 4.20: Wheels of the Pioneer 2TM robot

y

x

z

REAR
WHEEL

0.2147

Radius of the wheel: 0.0325
Width of the wheel: 0.024

Figure 4.21: Rear wheel of the Pioneer 2TM robot

54 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

z

x

0

1

2

3
4

5

6

7

8

0

1

2

3
4

5

6

7

8

Coordinates of the crossSection field of the

4: x=0 z=−0.168

Coordinates of the crossSection field of the

 4: x=0 z=0.258

0.184 < y < 0.234

0: x=−0.136 z=0.135
1: x=−0.136 z=0.185
2: x=−0.101 z=0.223

5: x=0.054 z=0.248

3: x=−0.054 z=0.248

6: x=0.101 z=0.223
7: x=0.136 z=0.185
8: x=0.136 z=0.135

0: x=0.136 z=−0.046
1: x=0.136 z=−0.096
2: x=0.101 z=−0.134
3: x=0.054 z=−0.159

5: x=−0.054 z=−0.159
6: x=−0.101 z=−0.134
7: x=−0.136 z=−0.096
8: x=−0.136 z=−0.046

 REAR SONAR
SUPPORT

FRONT SONAR
SUPPORT

Extrusion node "Rear sonar support":

Extrusion node "Front sonar support":

Figure 4.22: Sonar supports of the Pioneer 2TM robot

z

x

RL4

RL3

RL2

RL1RR1

RR2

RR3

RR4

FL3

FL4

FL2

FL1FR1

FR2

FR3

FR4

RR: Rear Right Sonar
RL: Rear Left Sonar
FR: Front Right Sonar
FL: Front Left SonarREAR SONAR

SUPPORT

FRONT SONAR
SUPPORT

Figure 4.23: Sonars location on the Pioneer 2TM robot

4.3. MY THIRD WORLD: PIONEER2.WBT 55

FR1

FR2

FR3

FR4

z

x

80 degrees

40

60

DEF SONAR Transform
Sonar ray

Figure 4.24: Angles between the Pioneer 2TM sonar sensors

56 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Each sonar is modeled as aDistanceSensor node, in which can be found a rotation around
they axis, a translation, and aUSE SONAR Transform, with a name (FL1, RR4, ...) to be used
by the controller.

Sonar name translation rotation
FL1 -0.027 0.209 -0.164 0 1 0 1.745
FL2 -0.077 0.209 -0.147 0 1 0 2.094
FL3 -0.118 0.209 -0.11 0 1 0 2.443
FL4 -0.136 0.209 -0.071 0 1 0 3.14
FR1 0.027 0.209 -0.164 0 1 0 1.396
FR2 0.077 0.209 -0.147 0 1 0 1.047
FR3 0.118 0.209 -0.116 0 1 0 0.698
FR4 0.136 0.209 -0.071 0 1 0 0
RL1 -0.027 0.209 0.253 0 1 0 -1.745
RL2 -0.077 0.209 0.236 0 1 0 -2.094
RL3 -0.118 0.209 0.205 0 1 0 -2.443
RL4 -0.136 0.209 0.160 0 1 0 -3.14
RR1 0.027 0.209 0.253 0 1 0 -1.396
RR2 0.077 0.209 0.236 0 1 0 -1.047
RR3 0.118 0.209 0.205 0 1 0 -0.698
RR4 0.136 0.209 0.160 0 1 0 0

Table 4.1: Translation and rotation of the Pioneer 2TM DEF SONAR Transforms

To finish modeling the Pioneer 2TM robot, fill in the remaining fields of theDifferentialWheels

node as shown in figure 4.25.

4.3.3 Controller

The controller of the Pioneer 2TM robot is fairly complex. It implements a Braitenberg controller
to avoid obstacles using its sensors. An activation matrix was determined by trial and error to
compute the motor commands from the sensor measurements. However, since the structure of
the Pioneer 2TM is not circular some tricks are used, such as making the robot go backward in
order to rotate safely when avoiding obstacles. The source code of this controller is a good
programming example. The name of this controller ispioneer2 .

4.3. MY THIRD WORLD: PIONEER2.WBT 57

Figure 4.25: Some fields of the Pioneer 2TMDifferentialWheels node

58 CHAPTER 4. TUTORIAL: MODELING AND SIMULATING YOUR ROBOT

Chapter 5

Robot and Supervisor Controllers

5.1 Overview

A robot controller is a program usually written in C, C++ or Java used to control one robot. A
supervisor controller is a program usually written in C or C++ used to control a world and its
robots.

5.2 Setting Up a New Controller

In order to develop a new controller, you must first create acontrollers directory in your user
directory to contain all your robot and supervisor controller directories. Each robot or supervisor
controller directory contains all the files necessary to develop and run a controller. In order
to tell Webots where your controllers are, you must set up your user directory in the Webots
preferences. Webots will first search for acontrollers directory in your user directory, and if
it doesn’t find, it will then look in its owncontrollers directory. Now, in your newly created
controllers directory, you must create a controller subdirectory, let’s call itsimple . Inside
simple , several files must be created:

• a number of C source files, likesimple.c which will contain your code.

• a Makefile which can be copied (or inspired) from the Webotscontrollers direc-
tories. Note that Windows users have several alternatives to the Makefile: They can
use a Dev-C++ project or a Microsoft Visual C++ project, as exemplified in the Webots
controllers/braiten directory.

You can compile your program by typingmake in the directory of your controller.

As an introduction, it is recommended that you copy thesimple controller directory from the
Webotscontrollers to your owncontrollers directory and then try to compile it.

59

60 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

Under Windows, if you usemake and would like that your controller program opens up a DOS
console to displayprintf messages, add the following line in yourMakefile :

DOS_CONSOLE=1

5.3 Webots Execution Scheme

5.3.1 From the controller’s point of view

Each robot controller program is built in the same manner. An initialization with the func-
tion robot live is necessary before starting the robot. A callback function is provided to the
robot live function in order to identify the devices of the robot (see section 5.4). Then an end-
less loop (usually implemented as afor(;;) { } statement) runs the controller continuously
until the simulator decides to terminate it. This endless loop must contain at least one call to
therobot step function which asks the simulator to advance the simulation time a given num-
ber of milliseconds, thus advancing the simulation. Before callingrobot step , the controller
can enable sensor reading and set actuator commands. Sensor data can be read immediately af-
ter callingrobot step . Then you can perform your calculations to determine the appropriate
actuator commands for the next step.

5.3.2 From the point of view of Webots

Webots receives controller requests from possibly several robots controllers. Each request is
divided into two parts: an actuator command part which takes place immediately, and a sensor
measuring part which is scheduled to take place after a given number of milliseconds (as defined
by the parameter of the step function). Each request is queued in the scheduler and the simulator
advances the simulation time as soon as it receives new requests.

5.3.3 Synchronous versus Asynchronous controllers

Each robot (DifferentialWheels or Supervisor) may be either synchronous or asynchronous.
Webots waits for the requests of synchronous robots before it advances the simulation time; it
doesn’t wait for asynchronous ones. Hence an asynchronous robot may be late (if the controller
is computationally expensive, or runs on a remote computer with a slow network connection).
In this case, the actuator command occurs later than expected. If the controller is very late, the
sensor measurement may also occur later than expected. However, this delay can be verified by
the robot controller by reading the return value of therobot step function (see the Reference
Manual for more details). In this way the controller can adapt its behavior and compensate.

5.4. READING SENSOR INFORMATION 61

Synchronous controllers are recommended for robust control, while asynchronous controllers
are recommended for running robot competitions where computer resources are limited, or for
networked simulations involving several robots dispatched over a computer network with an
unpredictable delay (like the Internet).

5.4 Reading Sensor Information

To obtain sensor information, the sensor must be:

1. identified: this is performed by therobot get device function which returns a handler
to the sensor from its name. This needs to be done only once in the reset callback function,
which is provided as an argument to therobot live function. The only exception to this
rule concerns the root device of a robot (DifferentialWheels or CustomRobot node) which
doesn’t need to be identified, because it is the default device (it always exists and there is
only one of such device in each robot).

2. enabled: this is performed by the appropriateenable function specific to each sensor (see
distance sensor enable for example). It can be done once, before the endless loop,
or several times inside the endless loop if you decide to disable and enable the sensors
from time to time to save computation time.

3. run: this is performed by therobot step function inside the endless loop.

4. read: finally, you can read the sensor value using a sensor specific function call, like
distance sensor get value inside the endless loop.

5.5 Controlling Actuators

Actuators are easier to handle than sensors. They don’t need to be enabled. To control an actuator,
it must be:

1. identified: this is performed by therobot get device function which returns a handler
to the actuator from its name. This needs to be done only once in the reset callback func-
tion, which is provided as an argument to therobot live function. As with sensors, the
only exception to this rule concerns the root device of a robot.

2. set: this is performed by the appropriateset function specific to each actuator (seedifferential wheels set speed

for an example). It is usually called in the endless loop with different computed values at
each step.

3. run: this is done by therobot step function inside the endless loop.

62 CHAPTER 5. ROBOT AND SUPERVISOR CONTROLLERS

5.6 Going further with the Supervisor Controller

The supervisor can be seen as a super robot. It is able to do everything a robot can do, and more.
This feature is especially useful for sending messages to and receiving messages from robots,
using theReceiver andEmitter nodes. Additionally, it can do many more interesting things.
A supervisor can move or rotate any object in the scene, including theViewpoint , change the
color of objects, and switch lights on and off. It can also track the coordinate of any object which
can be very useful for recording the trajectory of a robot. As with any C program, a supervisor
can write this data to a file. Finally, the supervisor can also take a snapshot of the current scene
and save it as ajpeg or PNGimage. This can be used to create a ”webcam” showing the current
simulation in real-time on the Web!

Chapter 6

Tutorial: Using the KheperaTM robot

The goal of this chapter is to explain you how to use Webots with your Khepera robot. Khepera
is a mini mobile robot developed by K-Team SA, Switzerland (www.k-team.com).

Webots can use the serial port of your computer to communicate with the Khepera robot.

6.1 Hardware configuration

1. Configure your Khepera robot in mode 1, for serial communication protocol at 9600 baud
as described in figure 6.1.

2. Plug the serial connection cable between your Khepera robot and the Khepera interface.

3. Plug the Khepera Interface into a serial port of your computer (eitherCOM1or COM2, at
your convenience).

4. Check the the Khepera robot power switch is OFF and plug the power supply to the Khep-
era Interface.

Note: Linux and Mac OS X users may want to redefine theCOM1, COM2, COM3andCOM4ports
by settingWEBOTSCOM1, WEBOTSCOM2 WEBOTSCOM3and/orWEBOTSCOM4environment vari-
ables to point to the appropriate/dev device files.

On Linux, if these environment variables are not set, Webots will use respectively/dev/ttyS0 ,
/dev/ttyS1 , /dev/ttyS2 and /dev/ttyS3 for COM1, COM2 COM3and COM4(note the -1
difference). For example, if your laptop running Linux has no serial port, you may want to
use a USB-RS232 converter, in which case it may be useful to type something like:export

WEBOTSCOM1 /dev/ttyUSB0 to allow Webots to communicate with the Khepera through the
USB port.

63

64 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

0
246

8
A C E

leds mode selector
set to 1

serial port

Top View

Figure 6.1: Khepera II mode selection

On Mac OS X, onlyCOM1has a default value which is set to"/dev/tty.USB Serial" , corre-
sponding to the default USB to serial converter (like the one installed by the USB232-P9 convert-
ers). Other USB to serial converters may require that you define theWEBOTSCOM1environment
variable to match their specific value. For example, the KeySpan USB to serial converter will
need that you defineWEBOTSCOM1as "/dev/tty.USA28X1213P1.1" . Please consult the
documentation of your USB serial adapter to know the exact file name to be defined.

That’s it. Your system is operational: you will now be able to simulate, remote control and
transfer controllers to your Khepera robot.

6.2 Running the simulation

Launch Webots: on Windows, double click on the lady bug icon, on Linux, typewebots in a
terminal. Go to theFile Open menu item and open the file namedkhepera.wbt , which contains
a model of a Khepera robot (see figure 6.2) associated with a Khepera controller (see figure 6.3).
If the Khepera controller window do not show up, press theStep button in the main window of
Webots.

You can navigate in the scene using the mouse pointer. To rotate the scene, click on the left
button and drag the mouse. To translate the scene, use the right button. To zoom and tilt, use the
middle button. You may also use the mouse wheel to zoom in or out.

Using these controls, try to find a good view of the Khepera robot. You have probably noticed
that clicking on an object in the scene would select it. Select the Khepera robot and choose the

6.2. RUNNING THE SIMULATION 65

Figure 6.2: Khepera example world

Simulation Robot View menu item. This way, the camera will follow the robot moves. Then,
click on theRun button to start up the simulation. You will see the robot moving, while avoiding
obstacles.

To visualize the range of the infra red distance sensors, go to theFile Preferences... menu item to
pop up the Preferences window. Then, check theDisplay sensor rays check box in theRendering
tab.

In the controller windows, the values of the infra-red distance sensors are displayed in blue,
while the light measurement values are displayed in light green. You can also observe the speed
of each motor, displayed in red and the incremental encoder values displayed in dark green (see
figure 6.3).

66 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.3: Khepera Controls

6.3 Understanding the model

6.3.1 The 3D scene

In order to better understand what is going on with this simulation, let’s take a closer look at the
scene structure. Double click on an object in the scene, or select theEdit Scene Tree Window to
open the scene tree window. If you double clicked on an object, you will see that object selected
in the scene tree (see figure 6.4). Clicking on the little cross icon of an object name in the scene
tree, will expand that object, displaying its properties.

We will not describe in details the Webots scene structure in this chapter. It is build as an
extension of the VRML97 standard. For a more complete description, please refer to the Webots
user guide and reference manuals. However, let’s have a first overview.

You can see that the scene contains several objects, which we call nodes. You can play around
with the nodes, expanding them to look into their fields, and possibly change some values. The
WorldInfo node contains some text description about the world. TheViewpoint node defines
the camera from which the scene is viewed. TheBackground node defines the color of the
background of the scene which is blue in this world. ThePointLight node defines a light
which is visible from the light sensors of the robot. The light location can be displayed in the
scene by checkingDisplay Lights in theRendering tab of the preferences window. The remaining
nodes are physical objects and have aDEFname for helping identifying them.

The GROUND Transform is not a Solid which means no collision detection is performed

6.3. UNDERSTANDING THE MODEL 67

Figure 6.4: Scene tree window for the Khepera world

with this node. On the other hand, theWALLandBOXnodes areSolid nodes. They have a
boundingObject field used for collision detection. Finally, theKHEPERA DifferentialWheels

node defines the Khepera robot.

6.3.2 The Khepera model

As you can guess, aDifferentialWheels node defines any differentially wheeled robot. The
parameters provided here correspond to the size and functionalities of a Khepera robot. For
example, if you expand the children list, you will be able to find some shapes defining the body of
the robot and a number of sensors, including distance and light sensors. Although on the Khepera
robot, the light and distance sensors are the same device, they are divided into two logical devices
in the Webots model. This makes the simulator more modular and generic. Moreover, you will
notice that each device (DifferentialWheels , DistanceSensor , LightSensor , etc.) has
a list of children defining either sub devices or 3D shapes.

Webots recognizes thisDifferentialWheels as a Khepera robot because itsmodel field is
set to ”Khepera”. Moreover, each sensor is named in a specific way in order to be recognized by
Webots. For example, the distance sensor with aname set to ”ds0” corresponds to the first infra-
red distance sensor. The Khepera interface recognized distance sensors named ”ds0” to ”ds7”,
light sensors named ”ls0” to ”ls7”, camera sensor named ”k213”, and distance sensors named
”fs0” to ”fs2” (optional floor color sensors). This allows Webots to display the Khepera window
when you double-click on the Khepera robot in the 3D world or when you choose theShow
Robot Window menu item in theSimulation menu while the corresponding robot is selected.

68 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

The differential wheels model

The differential wheels model of a robot is defined by a number of parameters, including the
axle length, the wheel radius, the maximum speed, maximum acceleration, the speed unit, slip
noise and encoder noise. Values for these parameters are provided in this example to match
approximately a Khepera robot. You may need to refine them if you need a very precise model.
Please refer to the Webots user guide for a complete description of these parameters.

The sensor model

The distance sensors are simulated by computing the collision between a single sensor ray and
objects in the scene. The response of the sensor is computed according to itslookupTable and
modulated by the color of the object (since these sensors are of ”infra-red”type , red objects are
seen better than green ones). ThelookupTable is actually a table of floating point values which
is extrapolated to compute the response of the sensor. The first value is the distance expressed
in meters (increasing the biggest distance value will make the sensor look further). The second
value is the response read by the controller of the robot and the third value is the percentage of
white noise associated to the distance and response, expressed in the range [0;1]. For a more
complete discussion on the distance sensor model, please refer to the Webots user guide.

Light sensors are pretty similar to distance sensors. They also rely on alookupTable for
computing their return value according the measured value.

6.4 Programming the Khepera robot

6.4.1 The controller program

Among the fields of aDifferentialWheels node, you may have noticed thecontroller

field. This field defines an executable program that will control the robot. By default executable
programs are searched in the Webotscontrollers directory, but you can define another lo-
cation in the PreferencesFiles and paths tab, under theUser path: label. This path define a
directory in webots will look for aworlds and acontrollers directory. Thecontrollers

directory should contain subdirectories named after the names of the controllers (i.e.,khepera

in our case). Thiskhepera directory should contain an executable file namedkhepera.exe

on Windows orkhepera on Linux. Moreover, along with the executable file, you will also find
sources files and possibly makefiles or project files used to build the executable from the sources.

6.4.2 Looking at the source code

The source code of the example controller is located in the following file under the Webots
directory:

6.4. PROGRAMMING THE KHEPERA ROBOT 69

controllers/khepera/khepera.c

It contains the following code:

#include <stdio.h>
#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>
#include <device/light_sensor.h>

#define FORWARD_SPEED 8
#define TURN_SPEED 5
#define SENSOR_THRESHOLD 40

DeviceTag ds1,ds2,ds3,ds4,ls2,ls3;

void reset(void) {
ds1 = robot_get_device("ds1"); /* distance sensors */
ds2 = robot_get_device("ds2");
ds3 = robot_get_device("ds3");
ds4 = robot_get_device("ds4");
ls2 = robot_get_device("ls2"); /* light sensors */
ls3 = robot_get_device("ls3");

}

int main() {
short left_speed=0,right_speed=0;
unsigned short ds1_value,ds2_value,ds3_value,ds4_value,ls2_value,ls3_value;
int left_encoder,right_encoder;

robot_live(reset);
distance_sensor_enable(ds1,64);
distance_sensor_enable(ds2,64);
distance_sensor_enable(ds3,64);
distance_sensor_enable(ds4,64);
light_sensor_enable(ls2,64);
light_sensor_enable(ls3,64);
differential_wheels_enable_encoders(64);
for(;;) { /* The robot never dies! */

ds1_value = distance_sensor_get_value(ds1);
ds2_value = distance_sensor_get_value(ds2);
ds3_value = distance_sensor_get_value(ds3);
ds4_value = distance_sensor_get_value(ds4);
ls2_value = light_sensor_get_value(ls2);
ls3_value = light_sensor_get_value(ls3);
if (ds2_value>SENSOR_THRESHOLD &&

70 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

ds3_value>SENSOR_THRESHOLD) {
left_speed = -TURN_SPEED; /* go backward */
right_speed = -TURN_SPEED;

}
else if (ds1_value<SENSOR_THRESHOLD &&

ds2_value<SENSOR_THRESHOLD &&
ds3_value<SENSOR_THRESHOLD &&

ds4_value<SENSOR_THRESHOLD) {
left_speed = FORWARD_SPEED; /* go forward */
right_speed = FORWARD_SPEED;

}
else if (ds3_value>SENSOR_THRESHOLD ||

ds4_value>SENSOR_THRESHOLD) {
left_speed =-TURN_SPEED; /* turn left */
right_speed = TURN_SPEED;

}
if (ds1_value>SENSOR_THRESHOLD ||

ds2_value>SENSOR_THRESHOLD) {
right_speed=-TURN_SPEED; /* turn right */
left_speed=TURN_SPEED;

}
left_encoder = differential_wheels_get_left_encoder();
right_encoder = differential_wheels_get_right_encoder();
if (left_encoder>9000)

differential_wheels_set_encoders(0,right_encoder);
if (right_encoder>1000)

differential_wheels_set_encoders(left_encoder,0);
/* Set the motor speeds */
differential_wheels_set_speed(left_speed,right_speed);
robot_step(64); /* run one step */

}
return 0;

}

This program is made up of two functions: a main function, as in any C program and function
namedreset which is a callback function used for getting references to the sensors of the
robot. A number of includes are necessary to use the different devices of the robot, including the
differential wheels basis itself.

The main function starts up by initializing the library by calling thekhepera live function,
passing as an argument a pointer to thereset function declared earlier. Thisreset function
will be called each time it is necessary to read or reread the references to the devices, called
device tags. The device tag names, like ”ds1”, ”ds2”, etc. refer to thename fields you can see in
the scene tree window for each device. The reset function will be called the first time from the

6.5. TRANSFERRING TO THE REAL ROBOT 71

khepera live function. So, from there, you can assume that the device tag values have been
assigned.

Then, it is necessary to enable the sensor measurements we will need. The second parameter of
the enable functions specifies the interval between updates for the sensor in millisecond. That is,
in this example, all sensor measurements will be performed each 64 ms.

Finally, then main function enters an endless loop in which the sensor values are read, the motor
speeds are computed according to the sensor values and assigned to the motors, and the encoders
are read and sometimes reset (although this make no special sense in this example). Please note
the robot step function at the end of the loop which takes a number of milliseconds as an
argument. This function tells the simulator to run the simulation for the specified amount of
time. It is necessary to include this function call, otherwise, the simulation may get frozen.

6.4.3 Compiling the controller

To compile this source code and obtain an executable file, a different procedure is necessary
depending on your development environment. On Linux, simply go to the controller directory
where thekhepera.c resides, and typemake. On Windows, you may do exactly the same if
you are working with Cygwin. If you use Dev-C++ or Microsoft Visual C++, you will need to
create a project file and compile your program from your Integrated Development Environment.
Template project files for both Dev-C++ and Visual C++ are available in thebraiten controller
directory.

Once compiled, reload the world in Webots using theRevert button (or relaunch Webots) and
you will see your freshly compiled run in Webots.

6.5 Transferring to the real robot

6.5.1 Remote control

The remote control mode consists in redirecting the inputs and outputs of your controller to a real
Khepera robot using the Khepera serial protocol. Hence your controller is still running on your
computer, but instead of communicating with the simulated model of the robot, it communicates
with the real device via connected to the serial port.

To switch to the remote control mode, your robot needs to be connected to your computer as de-
scribed in section 6.1. In the robot controller window, select theCOM popup menu corresponding
to the serial port to which your robot is connected. Then, just click on thesimulation popup menu
in the controller window and selectremote control instead. After a few seconds, you should see
your Khepera moving around, executing the commands sent by your controller. The controller
window now displays the sensor and motor values of the real Khepera.

72 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

You may press the simulationstop to stop the real robot. Therun will restart it. Thestep button
is helpful to run the real robot step by step. To return to the simulation mode, just use the popup
menu previously used to start the remote control mode. You may remark that it is possible to
change the baud rate for communicating with the robot. The default value is 57600 baud, but
you may choose another value from the popup menu.

Important: If you change the baud rate with the popup menu, don’t change the mode on the
Khepera robot, since the baud rate is changed by software. The mode on the Khepera robot
should always remain set to 1 (i.e., serial protocol at 9600 bauds).

6.5.2 Cross-compilation and upload

We assume in this subsection, that you have installed thewebots-kros package provided with
Webots.

Cross-compiling a controller program creates a executable file for the Khepera micro-controller
from your C source file. In order to produce such an executable, you can use either theMakefile.kros

file (for the Khepera robot) or theMakefile.kros2 file (for the Khepera II robot). These files
are provided within thekhepera controller directory. From Linux, just type:

make -f Makefile.kros

for Khepera, or:

make -f Makefile.kros2

for Khepera II.

From Windows, launch the Webots-kros application and follow the instructions. In both cases
you see the following messages telling you that the compilation is progressing successfully:

Compiling khepera.c into khepera.s
Assembling khepera.s into khepera.o
Linking khepera.o into khepera.s37
khepera.s37 is ready for Khepera (II) upload

It may be necessary to remove any previouskhepera.o which may conflict with the one gener-
ated by the cross-compiler. In order to do so, you can type:

make -f Makefile.kros clean

Finally, to upload the resultingkhepera.s37 executable file onto the Khepera robot, click on
theupload button in the controller window. Please note that you don’t need to change the mode
of the Khepera robot since the upload mode is activated by software from the mode 1. The green
LED of your Khepera should switch on while uploading the program. It lasts for a few seconds
or minutes before completing the upload. Once complete, the robot automatically executes the
new program.

6.6. WORKING EXTENSION TURRETS 73

6.6 Working extension turrets

6.6.1 The K213 linear vision turret

The example worldkhepera k213.wbt contains a complete working case for the K213 linear
vision turret. The principles are the same as for the simple Khepera example, except that ad-
ditional functions are used for enabling and reading the pixels from the camera. The function
camera get image returns an array of unsigned characters representing the image. The macro
camera image get grey is used to retrieve the value of each pixel. As seen on figure 6.5, the
camera image is displayed in the controller window as grey levels and as an histogram.

Figure 6.5: Khepera K213 controls

6.6.2 The Gripper turret

figure 6.6 shows thekhepera gripper.wbt example. In this example a model of a Khepera is
equipped with a Gripper device. It can grab red cylinders, carry them away and put them down.
From a modeling point of view, the Gripper turret is made up of two Webots devices:

• A Servo node which represents the servo motor controlling the height of the gripper (ro-
tation).

• A Gripper node which represents the gripping device: the two fingers.

These devices can be configured to match more precisely the real one or to try new designs. For
example, it is possible to configure the maximum speed and acceleration of theServo node,
simply by changing the corresponding fields of that node in the scene tree window.

74 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

Figure 6.6: Khepera Gripper

When clicking on a Khepera robot equipped with a gripper turret. The Khepera window poping
up shows the gripper device (see figure 6.7). It shows the rotation of the gripper arm, the aperture
of the grips, the presence of an object within the grips and the resistivity of a gripper object. If
you have a real gripper mounted on a Khepera robot, it can be remote controlled by Webots.

6.7 Support for other K-Team robots

6.7.1 KoalaTM

The Webots distribution contains an example world with a model of a Koala robot. This robot is
much bigger than the Khepera and has 16 infra-red sensors, as seen on figure 6.8. The example
can be found inworlds/koala.wbt .

6.7. SUPPORT FOR OTHER K-TEAM ROBOTS 75

Figure 6.7: Khepera gripper controls

Figure 6.8: The Koala robot

76 CHAPTER 6. TUTORIAL: USING THE KHEPERATM ROBOT

6.7.2 AliceTM

An example of Alice robot is also provided. Alice is much smaller than Khepera and has two to
four infra-red sensors. In our example, we have only two infra-red sensors (see figure 6.9). The
example can be found inworlds/alice.wbt .

Figure 6.9: The Alice robot

Chapter 7

Tutorial: Using the LEGO Mindstorms TM

robots

In this chapter, you will learn how to use Webots with the LEGOTM MindstormsTM robots. The
LEGOTMMindstormsTM is a series of LEGOTM products allowing to build robots from LEGOTM

bricks. A special brick called RCX is used to control the robot. This brick contains a micro-
controller chip, a LCD display, a buzzer, 3 sensor inputs and 3 actuator outputs. Available sensors
include touch sensors, light sensors, rotation sensors, temperature sensors. Actuators include
motors and lights. The basic box, called ”Robotics Invention System” includes two motors, two
touch sensors and one light sensor. This chapter will be based on this basic box. However,
Webots is not limited to this basic box and you could easily go beyond this chapter by creating
much more complex virtual robots based on advanced LEGOTM MindstormsTM elements.

The first section describes step by step instructions to build up the Rover robot. This robot will
be used thoughout this tutorial.

The second section describes the Webots model corresponding to the Rover robot. It explains
how to program its controller in Java and how to compile it.

Finally, the last section explains how to cross-compile the Java controller you used for simulating
the Rover in Webots. Once cross-compiled, your controller can be uploaded into a real Rover
robot!

7.1 Building up the Rover robot

One of the most interesting model that can be build straight out the ”Robotics Invention System”
box is the Rover robot. This robot is described in this section. It has a two differential wheels
drive system, a light sensor looking down to the ground and two touch sensors.

The following tables describe the construction of the Rover robot, first the bumper, then the rear
wheel, the eyes, the body and the antennas.

77

78 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

In the following tables, the numbers in parentheses are the length of the axles.

Warning : the yellow elastic of the bumper is not represented ; The connectors’ wires are not
represented ; the real antennas are not exactly the same as the ones on the pictures.

7.1. BUILDING UP THE ROVER ROBOT 79

Figure 7.1: The Rover robot

80 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the bumper

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 81

Step Pieces Modeling the bumper

4

5

6

82 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the bumper

7

8

9

7.1. BUILDING UP THE ROVER ROBOT 83

Step Pieces Modeling the bumper

10

11

12

84 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the rear wheel

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 85

Step Pieces Modeling the rear wheel

4

86 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the eyes

1

2

3

7.1. BUILDING UP THE ROVER ROBOT 87

Step Pieces Modeling the eyes

4

88 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the light sensor

1

2

7.1. BUILDING UP THE ROVER ROBOT 89

Step Pieces Modeling the body

1

2

3

4

90 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

5

6

7

7.1. BUILDING UP THE ROVER ROBOT 91

Step Pieces Modeling the body

8

9

10

92 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

11

12

13

7.1. BUILDING UP THE ROVER ROBOT 93

Step Pieces Modeling the body

14

15

16

94 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

17

18

7.1. BUILDING UP THE ROVER ROBOT 95

Step Pieces Modeling the body

19

20

21

96 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the body

22

23

7.1. BUILDING UP THE ROVER ROBOT 97

Step Pieces Modeling the antennas

1

2

98 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Step Pieces Modeling the antennas

3

7.2. WEBOTS MODEL OF THE ROVER ROBOT 99

7.2 Webots model of the Rover robot

Webots already includes a model for the Rover robot you just built. So, you won’t have to
rebuild a virtual copy of this robot. The world file containing this model is namedrover.wbt

and depicted in figure 7.2. This file lies in the Webotsworlds directory.

Figure 7.2: The Rover model in Webots

Before opening this file in Webots, Windows and Linux users should check that have properly
installed java on their computer. Thejava -version command should answer this question.

Once you have launched Webots and opened therover.wbt world, press the stop button to stop
the simulation and study carefully the scene. Open the scene tree window by double-clicking on
the robot. The scene is very simple. It countains a surrounding wall, a textured ground displaying
a track and a Rover robot. Let’s open theDifferentialWheels node corresponding to the
Rover robot. Looking at itschildren list will reveal the robot is equipped with one distance
sensor (looking down) and a couple of touch sensors, i.e., the bumpers. The two wheels are
implemented asSolid nodes with ”left wheel” and ”right wheel” as names to allow the simulator
to make them rotate when necessary. Finally the controller field of thisDifferentialWheels

node is set to ”Rover”. The fact the name of the controller begin with a capital letter means that
the robot is programmed using the Java langage. If you press the run button, the Rover robot will
start moving on, following the track drawn on the floor, as programmed in its controller.

100 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Let’s have a look at the Java controller for the Rover robot. This controller lies in theRover

subdirectory of the Webotscontrollers directory. It contains a single Java source file named
Rover.java and aMakefile file which are used for the compilation. To compile your con-
troller, just typemake in the Rover directory and it will produce aRover.class java binary
file that is used by Webots to control the robot.

Now, have a look at the source code. Open theRover.java in your favorit text editor and try
to understand what it contains. Useful comments should help you understand some details. If
you are familiar with Java you will very easily understand everything since it is a very simple
example. Basically, it gets references to the distance sensor and the touch sensors, enable these
sensors for measurements each 64 milliseconds and enter an endless loop in which it perform a
simple line following algorithm using only the distance sensor looking down to read the color
of the floor. You may modify this program, recompile it and see how your modified version
performs.

7.3 Transfering to the real Rover robot

7.3.1 leJOS

Now that you have a simulation model running as you like, it is time to transfer to the real robot
to see if it behaves the same. In order to proceed, you will need to install the leJOS software.
The leJOS software is a replacement firmware for the LEGOTMMindstormsTM RCX brick. It is a
Java Virtual Machine (JVM) that fits into the 32KB memory on the RCX hence allowing you to
program your RCX in Java. The leJOS software is included on the Webots CD-ROM. Windows
users will find a Windows version in thelib subdirectory of thewindows directory. Macintosh
and Linux users will find a source version thelib subdirectory of thecommondirectory. The
documentation, including installation instructions, is located in thecommon doc robots rcx

directory. Please take some time to read this documentation to undestand how leJOS works.
leJOS is also available from the leJOS web site1.

7.3.2 Installation

Once you installed leJOS, as described in the installation instructions, you will have to up-
load the leJOS firmware into the RCX brick, replacing the LEGOTM operating system. Please
follow the leJOS instructions to perform this installation. Note that you can easily revert to
the LEGOTMoperating system using the LEGOTMCD-ROM. Finally, you will have to set the
LEJOS HOMEenvironment variable to point to the location where leJOS was installed. It is also
necessary to add the leJOSbin directory into yourPATHenvironment variable, so that you can
use the leJOS tools from the command line.

1http://www.lejos.org

http://www.lejos.org

7.3. TRANSFERING TO THE REAL ROVER ROBOT 101

7.3.3 Cross-compilation and upload

If everything was installed properly, cross-compilation and upload should be an easy task. Be
sure that your robot is ready to receive a leJOS program. Go to theRover controller directory and
simply typemake -f Makefile.lejos to launch the cross-compilation and upload processes.
Note that it may be necessary to perform amake clean just before to remove anyclass file
used for simulation. The cross-compilation process uses a differentclass file. Upload should
happen just after cross-compilation and you should be able to run your controller on the real
Rover robot.

7.3.4 How does it work ?

TheMakefile.kros links your controller with a special Java wrapper class named Controller.
This class lies in the Webotslib directory, in theRCXController.jar archive. It is a simple
wrapper class between Webots Java API and leJOS API. Thanks to this system, the same Java
source code can be used for both simulated robots and real robots. However, you should read
carefully the limitations of leJOS Java implementation to avoid using Java features or libraries
that are not supported by leJOS.

102 CHAPTER 7. TUTORIAL: USING THE LEGO MINDSTORMSTM ROBOTS

Chapter 8

ALife Contest

A programming contest based on Webots in organized permanently on the Internet. The web site
of the contest1 may provide more up to date information about it than this manual. ALife stands
for ”Artificial Life”.

8.1 Previous Editions

This is actually the third edition of the ALife contest. Two editions were organized in 1999 and
2000. Each competition gathered about 10 teams worldwide made up of one to three individu-
als. The winners were respectively Keith Wiley from the University of New Mexico, USA and
Richard Szabo from Budapest University, Hungary.

8.2 Rules

8.2.1 Subject

Two robots are roaming a maze-like environment (see figure 8.1), looking for energy. Energy is
provided by chargers (see figure 8.2). However, chargers are scattered all around the environment
and it is not so easy for the robots to find them. Moreover, once used by a robot, a charger will
be unavailable for a while (see figure 8.3). Hence, the robot will have to go away and look for
another charger. A robot will die if it fails finding an available charger before it runs out of
energy. Then, the remaining robot will be declared the winner of the match.

The world configuration is choosen randomly for each match. A number of world configu-
rations is provided within the Webots package, They are namedalife.wbt , alife1.wbt ,
alife2.wbt , etc. Please note that the initial position and orientation of the robots may also be
choosen randomly.

1http://www.cyberbotics.com/contest/

103

http://www.cyberbotics.com/contest/
http://www.cyberbotics.com/contest/

104 CHAPTER 8. ALIFE CONTEST

Figure 8.1: The world used in the contest

8.2.2 Robot Capabilities

All robots have the same capabilities. They are based on a model of Khepera robot equipped
with a K6300 color matrix vision turret. Hence each robot has a differential wheels basis with
incremental encoders, eight infra-red sensors for light and distance measurement, and a color
matrix camera plugged on the top of the robot, looking in front. The resolution of this camera was
scaled down to 80x60 pixels with a color depth of 32 bits. As you may have already understood,
analyzing the camera image is a crucial issue in developing an efficient robot controller and you
probably need to perform vision based navigation, using landmarks and mapping.

Figure 8.2: A charger full of energy

8.2. RULES 105

Figure 8.3: An empty charger

8.2.3 Programming Language

For the contest, the robots can be programmed in Java only. This ensures that the binaries carry
no viruses or cheating systems. Hence, the executables files (.class files) can be easily shared
among competitors without disclosing source code. Beware, that very good Java decompilers
exists and that it may be possible for a cheating competitors to restore your code from your
.class . He will just miss your comments... You may protect your Java code from such piracy
by obfuscating it using a Java code obfuscator. This will make the code resulting from Java
decompilation very difficult to understand, and practically unusable. Free even open source Java
source code obfuscators may be found on the Internet.

They is no limit on the computation time a robot can use. However, since the simulator runs ap-
proximately in real time without any synchronization with the robots, robots performing exten-
sive computations may miss some sensor information or react too late in some critical situations.

8.2.4 Scoring Rule

Once submitted on the web site, your robot will be appended at the bottom of the hall of fame.
Then, it will engage matches each round. Ifn robots are presents in the hall of fame,n-1matches
will be played each round. The first match will confront the last robot (bottom rank in the hall of
fame) to the last but one robot (rank #n-1). If the last robot wins, the two robots will swap their
positions in the hall of fame, making the last robot win one position and the last but one robot fall
down to the bottom position. Otherwise, nothing is changed. Then, the new last but one robot
(which may have just changed) will play against the last but two robot. If the last but one robot
robot wins, they will swap their positions, otherwise nothing occurs. And so on until we reach
the top of the hall of fame. This way a robot can theoretically climp up from the bottom to the
top position within a single round. However, a robot can loose only one rank per round. This is
to encourage new competitors to submit their robots and have a chance to climb up the hall of
fame rapidly. A round will be played every day during the contest.

106 CHAPTER 8. ALIFE CONTEST

It is always possible to introduce a new version of an existing robot controller, by simply upload-
ing the versions of the.class files, erasing any previous ones. When a new version of a robot
controller is introduced in the contest, its position in the hall of fame remains unchanged. The
next matches are run using the new version.

8.2.5 Participation

The contest is open to any people from any country. Competitors may choose run for themself or
to represent their university or company. However, although competitors can update their robot
controller by submitting new versions, only a single robot controller per competitor is allowed.
If someone submits several robot controllers with different names into the contest, this person
and the corresponding robot controllers will be banned out the contest.

8.2.6 Schedule

The contest started on July 1st 2002. From this date, competitors could download all the contest
material and develop their robot controller. Matches between resulting controllers are held con-
tinuously from the middle of the summer until the end of the competition, on May 1st 2003. It is
possible to enter the contest at any time before May 1st, 2003.

8.2.7 Prize

The winner of the contest will be the robot ranked at first position on May 1st, 2003. The authors
of this robot will receive a Khepera II robot and a Webots PRO package (see figure 8.4).

8.3 Web Site

The web site of the contest2 allows you to view matches running in real time, to view the results,
especially the hall of fame that contains the ranking of the best robots with their score. It is
also possible to visit the home page of each robot engaged in the contest, including a small
description of the robot’s algorithm, the flag of the robot and possibly the e-mail of the author.
You can even download the Java binary controller (.class files) of the some robots. This can be
useful to understand why a robot performs so well and to confront on your computer your own
robot against a possibly better one.

2http://www.cyberbotics.com/contest/

http://www.cyberbotics.com/contest/

8.4. HOW TO ENTER THE CONTEST 107

Figure 8.4: First prize: a Khepera II robot and a Webots PRO package.

8.4 How to Enter the Contest

If you are willing to challenge the other competitors of the contest, here is the detailed procedure
on how to enter the ALife contest. You will need either a Windows or a Linux machine to
program your robot controller.

8.4.1 Obtaining the software

All the software for running the contest may be obtained free of charge.

• The Webots software to be used for the contest is available from the Webots download
page3. This is an evaluation version of Webots which contains all the necessary material
to develop a robot controller for the contest, except the Java environment. Follow the
instructions on the Webots download page to install the Webots package.

• The Java 2 Standard Edition (J2SE) Software Development Kit (SDK) may be downloaded
from Sun web site4 for free. Please use the version 1.4 of the SDK. Follow the instructions
from Sun to install the SDK.

3http://www.cyberbotics.com/products/webots/download.html
4http://java.sun.com/j2se/1.4/download.html

http://www.cyberbotics.com/products/webots/download.html
http://www.cyberbotics.com/products/webots/download.html
http://java.sun.com/j2se/1.4/download.html

108 CHAPTER 8. ALIFE CONTEST

8.4.2 Running the software

Launch Webots and open the world namedalife.wbt . Click on therun to start the simulation.
You will see two robots moving around in the world. Each robot is controlled by a Java program
named respectivelyALife0 andALife1 located in the Webotscontrollers directory. You
may enter their directory and have a look a the source code of the programs.

8.4.3 Creating your own robot controller

The simplest way to create your own robot controller is to start from the existingALife0 or
ALife1 controllers.

Installation

It is safer and cleaner to install a local copy of the material you will need to modify while
developing your intelligent controller. Here is how to proceed:

1. Create a working directory which you will store all your developments. Let’s call this
directory my alife . It may be in your Linux home directory or in your WindowsMy

Documents directory or somewhere else.

2. Enter this directory and create two subdirectories calledcontrollers andworlds .

3. Copy the filealife.wbt from the Webotsworlds directory to your ownworlds you just
created. Copy also the thealife directory and all its contents from the Webotsworlds

directory to your ownworlds directory. You may replace the imagesAlife0.png and
Alife1.png in thealife directory by your own custom images. These images are ac-
tually texture flags associated to the robots. Their size must be 64x64 pixels with 24 or
32 bits depth. They should not represent a green rectangle, possibly faking the face of a
charger and hence confusing the opponent. If a flag appears to be a charger fake, it will be
removed.

4. Copy the wholeALife0 directory from the Webotscontrollers directory to your own
controllers directory you just created. Repeat this with theALife1 directory. This
way you could modify the example controllers without loosing the original files.

5. In order to indicate Webots where the files are, launch Webots, go to theFile menu and
select thePreferences... menu item to open the Preferences window. Select theFiles
and paths tab. Setalife.wbt as the Default world and indicate the absolute path to
your my alife directory, which may be/home/myname/my alife on Linux orC: \My

Documents \my alife on Windows.

From there, you can modify the source code of the controllers in yourcontrollers directory,
recompile them and test them with Webots.

8.4. HOW TO ENTER THE CONTEST 109

Modifying and Compiling your controller

If you know a little bit of Java, it won’t be difficult to understand the source code of theALife0

andALife1 controllers, which are stored respectively in theALife0.java andALife1.java .
You may use any standard Java objects provided with the Java SDK. The documentation for
the Controller class is actually the same as for the C programming interface, since all the
methods of theController class are similar to the C functions of the Controller API described
in the Webots Reference Manual, except for one function,robot live which is useless in Java.
Before modifying a controller, it is recommended to try to compile the copy of the original
controllers.

To compile theALife0 controller, just go to theALife0 directory and type the following on the
command line:

javac -classpath "C: \Program Files \Webots \lib \Controller.jar;." ALife0.java

on Windows.

javac -classpath "/usr/local/webots/lib/Controller.jar:." ALife0.java on
Linux.

If everything goes well, it should produce a newALife0.class file that will be used by Webots
next time you launch it (or reload thealife.wbt world).

Now, you can start developing! Edit theALife0.java , add lines of code, methods, objects.
You may also create other files for other objects that will be used by the ALife0 class. Test your
controller in Webots to see if it performs well and improve it as long as you think it is necessary.

8.4.4 Submitting your controller to the ALife contest

Once you think you have a good, working controller for your robot, you can submit it to the on-
line contest. In order to proceed, you will have to find a name for your robot. Let’s say ”MyBot”
(but please, choose another name). Copy yourALife0.java to a file namedMyBot.java . Edit
this new file and replace the line:

public abstract class ALife0 extends Controller {

by:

public abstract class MyBot extends Controller {

Save the modified file and compile it using a similar command line as seen previously. You
should get aMyBot.class file that you could not test, but that will behave the same way as
ALife0.class .

Register to the contest from the main contest web page5, providing ”MyBot” as the name of the
robot. Then, upload all the necessary files in your MyBot directory. This includes the following:

5http.//www.cyberbotics.com/contest

110 CHAPTER 8. ALIFE CONTEST

• MyBot.class file and possibly some other.class files corresponding to other java ob-
jects you created (it is useless to upload theALife0.class file)

• A text file nameddescription.txt of about 10 lines that may include some HTML
tags, like hyperlinks.

• A PNG image namedflag.png that will be used as a texture to decorate your robot, so
that you can recognize it from the webcam. This image should be a 64x64 pixels with a
bit depth of 24 or 32. It should not represent a green rectangle, trying to fake the face of a
charger, otherwise it will be cancelled.

That’s it. Once this material uploaded, your robot will automatically enter the competition with
an initial score of 10. A contest supervisor program will use you controller to run matches and
update your score and position in the hall of fame. You can check regularly the contest web site
to see how your robot performs.

8.4.5 Analysing the performance and improving your competing controller

Match movies

During each round, a number of match movies are generated. They are calledSomeRobot vs SomeOtherRobot.dat

and stored in theresults directory of the contest home page. These files can be played back
with Webots. Just download them and save them in thealife playback directory which lies
in the Webotscontrollers directory. Rename the file tomatch.dat (overwriting the existing
match.dat file) and open the world namedalife playback.wbt with Webots. You should
then see the match playback running. To know who was the winner in a.dat file, just look at
the two bottom lines of the file. If the last line ends with 0, then the first robot wins (i.e., its name
is displayed on the first line of the file). Otherwise the second robot wins.

Debug and error log

In order to debug your program, or at least to understand what went wrong or right during a
round match, you can save data into a log file. This will help you developing your controller,
especially on Windows where the DOS console closes immediately after a controller crashes and
doesn’t let you read the printed messages in this console. Moreover, it may also be useful to
do it during the contest matches running on the match server to understand exactly how your
controller behaved during a contest match. Your log file can be retrieved from the match server
after the round completed as a zipped file.

To proceed, you first need to create such a log file and then log useful information using the
println statement:

8.4. HOW TO ENTER THE CONTEST 111

import java.io.*;
...

PrintStream log;
FileOutputStream file;
try {

file = new FileOutputStream("log.txt");
log = new PrintStream(file);

} catch (Exception e) { }
...
log.println("My estimated coords: ("+x+","+y+") my state="+state);
...
log.println("My energy level: "+energy);
...

log.close();
file.close();

...

During each round, for each competitor using this log file facility, a log file calledlog.zip is
stored in the controller directory of thecompetitors directory of the contest home page. This
file is the compressed version of yourlog.txt file. It contains all the debug messages produced
by your controller along the different matches of the last round. Please note that this log file will
be visible by all the other competitors, so be cautious and don’t reveal your secret algorithms.
Also useful, in theresults directory, a file callederrors.zip contains the error log of the
last round, which may be useful to detect if your controller crashed, producing a java exception.
Note that these files are erased at the beginning of each new round and replaced by new ones
corresponding to the new round.

Robot memory

It may be useful for your robot to store some data corresponding to knowledge aquired across
the different matches. Such data should be saved regularly during a normal run or, if you prefer,
just when the controller energy reaches a small value (like below 3), that is the match is about
to complete. The data can be in turn re-read by the controller when it starts up a new match, to
refresh its memory. Here is how to implement it:

import java.io.*;

// to create/write into the file
Random r = new Random();
try {

DataOutputStream s=new DataOutputStream(new FileOutputStream("memory.dat"));
s.writeInt(100); // save 100 int
for (int i=0; i<100;i++) s.writeInt(r.nextInt(100));

112 CHAPTER 8. ALIFE CONTEST

// you should rather save some useful info here instead of random garbage!
} catch (Exception e) {

e.printStackTrace(System.out);
}

// to read from that file
try {

DataInputStream s =
new DataInputStream(new FileInputStream("memory.dat"));
int t = s.readInt(); // read the size of the data
int[] a = new int[t];
for(int i=0; i<t; i++) a[i] = s.readInt(); // read back my garbage
for (int i=0; i<t; i++) System.out.print(a[i]+"\t");

} catch (Exception e) {
e.printStackTrace(System.out);

}

Thememory.dat file of each competitor is also made available for download to all competitors
on the contest web site. This file is stored at the same place as thelog.zip file, that is, within
the controller directory of thecompetitors directory on the contest web site.

8.5 Developers’ Tips and Tricks

This section contains some hints to develop efficiently an intelligent robot controller.

8.5.1 Practical issues

The ALife0 example program display a Java image for showing the viewpoint of the camera,
after some image processing. This is pretty computer expensive and you may speed up the
simulation by disabling this display, which should be used only for debug. By the way, during
contest matches, the Java security manager is set so that your Java controller cannot open a
window or display anything.

8.5.2 Java Security Manager

To avoid cheating or viruses, a Java security manager is used for contest matches ran by the auto-
matic contest supervisor. This security manager will prevent your Java controller from opening
any file for writing or reading and doing any networking stuff.

8.5. DEVELOPERS’ TIPS AND TRICKS 113

8.5.3 Levels of Intelligence

It is possible to distinguish a number of level in the complexity of the control algorithms. These
level can be ranked as follow:

1. The robot is able to move and avoid obstacles. However, it does not use the camera in-
formation at all and will find chargers only by chance. This correspond to theALife0

controller.

2. In addition to level 1, the robot is able to recognize if a full charger is in front of it, even far
away. In this case, it will be able to adjust its movement to reach the charger if not obstacles
are on the way. Otherwise, the robot will look into another direction for chargers.

3. In addition to level 2, the robot is able to move around obstacles preventing a movement
toward a full charger.

4. In addition to level 3, the robot is able to perform an almost complete exploration of the
world, reaching places difficult to reach for simpler robots (you will rapidly notice that
some places are more difficult to reach than others, the problem is that these places may
contain chargers...).

5. In addition to level 4, the robot is able to build a map of its environment (mapping), so that
once a charger is found, it is placed on the map, thus facilitating the procedure for finding
it back. After completing the map, the robot can efficiently navigate between chargers
without loosing time to search for them.

6. In addition to level 5, the robot tries to chase its opponent, blocking it, preventing it to
reach chargers or emptying chargers just before it arrives.

During the previous editions of the contest, the best competitors reached level 4 (and even one
reached level 5 after the contest ended). We believe that reaching level 5 or 6 may lead to
significant performance improvements and probably to the first place of the hall of fame...

114 CHAPTER 8. ALIFE CONTEST

Chapter 9

Practical Work: Robot Soccer

Robotics soccer has become an increasingly attractive research application for mobile robotics.
Many contests are organized world wide, among them the most famous are probably the FIRA
contest and the RoboCup contest. This chapter will get you started with a robot soccer application
in Webots.

9.1 Setup

Webots contains a setup for robotics soccer as depicted in figure 9.1 . This setup is freely inspired
from the official FIRA Small League MiroSot Games Rules. It can be modified to suit your needs.

Figure 9.1: A soccer simulation in Webots: soccer.wbt

Each team is composed of three robots. Each robot has a controller program which is aware of

115

116 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

the the position and orientation of every robot in the soccer field. Each robot can drive its motors
wheels to move in the soccer field. A supervisor process is responsible for counting the time.
By default, a match lasts for 10 simulated minutes which may correspond to 1 minute if your
computer is powerful and if you run the match without the real time option checked in. The
supervisor process also counts the goals and reset the ball and the robots to their initial positions
after a goal has been scored.

9.2 Rules

The rules are very simple: you have to drive your robots so that you score a maximum of goal
within the 10 minutes of the match. There are no fouls, no penalty kick or free kick.

There is no obligation to have a goal keeper, you may decide to have three players all over the
field, or to have one, two or even three goal keepers!

You cannot modify robots, i.e., change their shape, add sensors, etc.

9.3 Programming

In order to program your robot, a single controller program is used for each team. Thesoccer blue

controller program is used for the blue team while thesoccer yellow controller program is
used for the yellow team. Each of these controller programs will be run as three concurrent
processes. In each instance of these programs, a test is done to determine the number of the
robot which can be 1, 2 or 3, according to the name of the DifferentialWheels node. One
can also test the team color the same way. The provided examples shows how to distinguish
the goal keeper (number 3) from the other players (numbers 1 and 2). Hence, it is possible
to have a genericsoccer.c source code and to compile it to either asoccer blue.exe or
a soccer yellow.exe executable file. Please note that on Linux and Mac OS X, the.exe

extension is not used.

In order to get starting programming a robot soccer team, you should have a look in details to
thesoccer blue.c or soccer yellow.c source codes. These examples shows how to obtain
the x, y and orientation for each robot from the supervisor, as well as the coordinates of the ball.
They contain useful macros for that. Moreover, they show how to program each independant
robot according to its number. Finally, they show how to make a fairly intelligent goal keeper
that will get placed according to the ball position. The behavior of players 1 and 2 is random in
this example and it is up to you to make them more intelligent!

9.4 Extensions

This very simple robotics soccer system can be configured or extended according to your needs.

9.4. EXTENSIONS 117

9.4.1 Modifiying the soccer field

It is possible to redesign the soccer field as you need. You can enlarge it, resize the goals, change
the ground texture, etc. Moreover, you can change the ball properties, like its mass, its bounce
parameter, etc. All these changes are possible from the scene tree window. For resizing the field,
you will have to edit the coordinates of the components of the field. It will also be necessary to
update the respective bounding objects accordingly.

For example, if you want to change the bounce parameter of the ball to make it bounce less, just
double click on the ball, open the ball node in the scene tree window, open the physics node of
the ball node and set the bounce parameter to 0.2 instead of 0.7. This will make the ball.

9.4.2 Modifying the robots

Similarly, it is possible to modify the robots. You can change the number of robot per team,
add new sensors to the robots, like distance sensors or cameras, remove the receiver sensor if
you want to prevent the robots to be aware of global coordinates provided by the supervisor. All
these operation can be performed through the scene tree window, using copy and paste functions
and editing the robots properties. This way, it is possible to turn the soccer robots into fully
autonomous robots relying only on local information and not on global coordinates provided by
the supervisor.

9.4.3 Modifying the match supervisor

If you would like to modify the rules, you will probably have to modify the match supervi-
sor. This is a small C supervisor controller program calledsoccer supervisor lying in the
controllers directory. The match supervisor has only three functions: (1) it measures the time
decreasing from 10 minutes to zero, (2) it count the goals, update the score and reset the robots
and the ball after a goal and (3) it provides each robot with global coordinates and orientation for
each robot and global coordinates for the ball. You may change any of these features, and add
additional features, like fouls when a robot hits another robot.

For example, let’s assume you want that the robots should not touch each other, otherwise a
penalty kick is called. Your supervisor program should compute the distance between each
robots of different teams. If this distance drops below the size of a robot, you call the penalty.
Do to so, just set the ball and robots positions so that the robot which benefit of the penalty kick
is ready to kick.

This way, it is possible to add many new rules, like prevent the goal keeper to leave its goal, etc.

118 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

9.4. EXTENSIONS 119

120 CHAPTER 9. PRACTICAL WORK: ROBOT SOCCER

	Installing Webots
	Hardware requirements
	Installation procedure
	RedHat Linux i386
	Windows 95, 98, ME, NT, 2000 and XP
	Mac OS X, version 10.2

	Registration Procedure
	Webots license
	Registering

	Upgrading from Webots 3
	Controller
	Controller includes
	Controller library
	Basic data type
	Khepera
	GTK+ GUI

	World

	Getting Started with Webots
	Launching Webots
	On Linux
	On Mac OS X
	On Windows

	Main Window: menus and buttons
	File menu and shortcuts
	Edit menu
	Simulation menu and the simulation buttons
	Help menu
	Navigation in the scene
	Moving a solid object
	Selecting a solid object

	Scene Tree Window
	Buttons of the Scene Tree Window
	VRML nodes
	Webots specific nodes
	Principle of the collision detection
	Writing a Webots file in a text editor

	Citing Webots

	Tutorial: Modeling and simulating your robot
	My first world: kiki.wbt
	Environment
	Robot
	A simple controller

	 My second world: a kiki robot with a camera
	My third world: pioneer2.wbt
	Environment
	Robot with 16 sonars
	Controller

	Robot and Supervisor Controllers
	Overview
	Setting Up a New Controller
	Webots Execution Scheme
	From the controller's point of view
	From the point of view of Webots
	Synchronous versus Asynchronous controllers

	Reading Sensor Information
	Controlling Actuators
	Going further with the Supervisor Controller

	Tutorial: Using the Khepera™ robot
	Hardware configuration
	Running the simulation
	Understanding the model
	The 3D scene
	The Khepera model

	Programming the Khepera robot
	The controller program
	Looking at the source code
	Compiling the controller

	Transferring to the real robot
	Remote control
	Cross-compilation and upload

	Working extension turrets
	The K213 linear vision turret
	The Gripper turret

	Support for other K-Team robots
	Koala™
	Alice™

	Tutorial: Using the LEGO Mindstorms™ robots
	Building up the Rover robot
	Webots model of the Rover robot
	Transfering to the real Rover robot
	leJOS
	Installation
	Cross-compilation and upload
	How does it work ?

	ALife Contest
	Previous Editions
	Rules
	Subject
	Robot Capabilities
	Programming Language
	Scoring Rule
	Participation
	Schedule
	Prize

	Web Site
	How to Enter the Contest
	Obtaining the software
	Running the software
	Creating your own robot controller
	Submitting your controller to the ALife contest
	Analysing the performance and improving your competing controller

	Developers' Tips and Tricks
	Practical issues
	Java Security Manager
	Levels of Intelligence

	Practical Work: Robot Soccer
	Setup
	Rules
	Programming
	Extensions
	Modifiying the soccer field
	Modifying the robots
	Modifying the match supervisor

