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1.3 Polynomial Time algorithms and Intractable Problems

f(n) = O(g(n)) 
[image: image1.wmf]Û

 
[image: image2.wmf]|f(n)| 
[image: image3.wmf]£

 c|g(n)|

A polynomial time algorithm is bounded by a polynomial. If an algorithm is not polynomial then it is exponential.

Comparison of several polynomial and exponential time algorithms show fast growing nature of expo algorithms. 
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Fig. 1.2: Comparison of polynomial and exponential algorithms

Size of the largest problem instance solvable in 1 hour
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Fig. 1.3 Effect of improved technology on polynomial and exponential algorithms

Figure 1.3 shows that even if our computers speed is multiplied the largest size of the problem that can be handled by the advanced computers will not be a multiple of the size of the problem the current computer can handle. This is why Jack Edmonds equated polynomial algorithms to good algorithms and problems not solvable by poly algorithms as not well-solved problems or intractable.

There are exceptions: for small sized problems some exponential algorithm may be better than poly as n5 is slower than 2n for n
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Simplex algorithm although exponential performs on the average very well in practice although Klee and Zadeh were too critical to find examples where its exponential nature was revealed. Usually we do not get algorithms requiring 
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1.4 Provably Intractable Problems

Two types of intractability- exponential time, exponential space. Later implies former. So we deal with time complexity. TSP with a bound B is an example of later. Possibly such problems are not well posed.

About 70 years back Alan Turing demonstrated that some problems are really undecidable- no algorithms exist for solving them. 

It is impossible to specify an algorithm which given an arbitrary computer program and an arbitrary input to that program, can decide whether or not the program will eventually halt when applied to that input[1936]

Hilbert’s 10th problem(solvability of polynomial equations in integers) are examples.

The first results of intractable decidable problems were really artificially created. In the early 70s real life examples were produced by Meyer, Fisher, Rabin. These problems were from finite automata theory, formal language theory, mathematical logic.
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