1.5 NP-Complete Problems

The principal technique used for demonstrating that two problems are related is that of reducing one problem into another by giving a  constructive transformation.

Many examples are there. Prof Dantzig[1960] reduced combinatorial optimization problems to 0-1 integer linear programming problem. Edmonds reduced the graph theoretic problems of covering all edges with minimum number of vertices and finding a maximum independent set of vertices to the general set covering problem. Reduction of TSP to shortest paths with negative edge weights allowed by Dantzig and others. These early reductions were really isolated. The foundation for the theory of NP-Completeness were laid down in a paper of Stephen Cook, presented in 1971 entitled “The Complexity of Theorem proving procedures”[1971]

First he emphasized the significance of polynomial time reducibility that is reduction for which the required transformations can be executed using polynomial time algorithms. Polynomial time reducibility ensures that a polynomial time algo of one solves the other also in polynomial time.

Second, he focused attention on the class NP of decision problems that can be solved in polynomial time by a nondeterministic computer.

Third, he proved that one particular problem in NP,c alled the satisfiability problem has the property that every other problem in NP can be polynomially reduced to it. If the satisfiability problem can be solved in polynomial time then so can be every problem in NP, and if any problem in NP is intractable then the satisfiability problem must also be intractable.

Finally Cook suggested that there might be some other problems in NP which share with the satisfiability problem  this property  of being the hardest member in NP.

He immediately showed that the problem “ Does a given graph G contain a complete subgraph on a given number of vertices. Then Karp supplied a  list of 6 very important problems that formed the core of NP complete class.
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Chapter 2 The Theory of NP-Completeness  

2.1 Decision Problems, Languages and Encoding Scheme

A Decision problem 
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consists of a set 
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SUBGRAPH ISOMORPHISM PROBLEM

INSTANCE: Two graphs 
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QUESTION: Does 
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 contain a subgraph isomorphic to 
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TRAVELLING SALESMAN

INSTANCE: A finite set of cities and non negative distances between them and a bound B

QUESTION: Is there a tour of length <=B?

While we study decision problems optimization problems can also be transformed into a series of decision problems. So long as cost functions are easy to evaluate decision problems are no harder than the optimization problems. Many decision problems can also be shown to be not easier than their corresponding optimization problems.

For any finite set of symbols 
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we denote by 
[image: image8.wmf]*

å

 the set of all finite strings of the symbol set. If L is a subset of 
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 then we call it a language. Every problem is encoded into a string of symbols. These strings can be partitioned into 3 subsets- those that are not encoding of the problem, that are examples of yes instances and that are examples of no instances.

Standard encoding scheme will map instances into structured strings.

a) The binary representation of an integer is  a structured string

b) If x is a structured string so is [x]

c) If x1,x2,…, xn are structured strings representing the objects then (x1,x2,…,xn) is a structured string representing the sequence

2.2 Deterministic Turing Machines and the Class P

DTM consists of a finite state control, a read-write head, and a tape made up of a two-way infinite sequence of tape squares -2,-1,0,1,2,…

A program for a DTM specifies the following information

a) A finite set       of tape symbols, including a subset      of input symbols and a distinguished blank symbol 

b) a finite set Q of states, including a distinguished start state q0 and two distinguished halt states qy and qn.

c) a transition function       
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