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Coping with NP-Complete problems
We discuss here how to obtain provable “performance guarantees” for algorithms. The alternatives can be divided roughly into two general categories.

The first category consists of those approaches that, while acknowledging the apparent inevitability of exponential time complexity, seek to obtain as much improvement over straight forward exhaustive search as possible. Among the most widely used approaches to reducing the search effort are those based on “branch-and-bound” or “implicit enumeration” techniques. These generate “partial solutions” within a tree-structured search format and utilize powerful bounding methods to recognize partial solutions that cannot possibly be extended to actual solutions, thereby eliminating entire branches of the search in a single step. Other approaches that provide alternative ways of organizing the search, and which sometimes are used in conjunction with branch-and-bound, include dynamic programming, cutting plane methods and Lagrangian techniques. In addition, it is sometimes possible to reduce substantially the worst case time complexity of exhaustive search merely by making a more clever choice of the objects over which the exhaustive search is performed.

The second category of approaches pertains solely to optimization and involves what might be called a “lowering of our sights”. Here we no longer focus on finding an optimal solution, but instead try to find a “good” solution within an acceptable amount of time. Algorithms that do this are loosely termed “heuristic” algorithms, since they frequently are based on sensible “rules of thumb”. The methods used for designing such algorithms tend to be rather problem specific, although a few guiding principles have been identified and can provide a useful starting time.
Recently, however, a  number of results have been obtained that show that heuristic algorithms may not always be so immune to formal analysis. In some cases it is possible to prove that the solutions obtained by a heuristic algorithm will never differ from optimal by more than some specified percentage. Results like this can be viewed as providing “performance guarantees” for algorithms.

Performance Guarantees for Approximation Algorithms
Let us begin by presenting a formal description of what we will mean by an “optimization problem”.

A combinatorial optimization problem 
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 is either a minimization or a maximization problem and consists of the following 3 parts:

a) a set 
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 of instances;

b) for each instance 
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 a finite set 
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 of candidate solutions for I; and
c) a function 
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that assigns to each instance 
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and each candidate solution 
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 a positive rational number 
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 called the solution value for 
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Consider the “bin packing” problem.: Given a  finite set
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 of items and a rational size 
[image: image11.wmf](){0,1} for each item 

suuU

ÎÎ

, find a partition of U into disjoint subsets 
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 such that the sum of the sizes of the items in each 
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 is no more than 1and such that k is as small as possible.

The problem is NP-Hard in the strong sense (it contains 3-PARTITION as a special case), so there is little hope of finding even a pseudo-polynomial time optimization algorithm for it. However, there are a number of simple approximation algorithms for it that are worth considering.

On of these is known as the “First Fit” algorithm. Imagine that we start with an infinite sequence 
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of unit-capacity bins, all of which are empty. The algorithm then places the items into bins, one at a time, in order of increasing index. It does so according to the following simple rule: always place the next item 
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into the lowest-indexed bin for which the sum of sizes of the items already in that bin does not exceed 
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. In other words ith item is placed into the first bin in which it will fit. 
Intuitively this seems to be a very natural and reasonable algorithm. It never starts a new bin until all the non-empty bins are too full. What can be proved about its performance?

A first observation relates the number of bins used by First Fit to a natural function pf the problem parameters. Let us use “FF” as an abbreviation to “First Fit”. Then we have, so long as 
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This is because there can be at most one non-empty bin in the First Fit packing whose contents total ½ or less. That this bound is essentially the best possible is apparent when we consider instances of the form 
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. Here no 2 items will fit in the same bin, so FF(I)=n, even though the sum of the item sizes is 
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, which can be made as close to n/2 as desired by choosing 
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suitably small.

This observation also gives us a bound on how bad a FF packing can be relative to an optimal packing, since we clearly have
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We thus conclude that, for all instances I FF(I)<2.OPT(I). However, FF actually obeys a better bound of this form given by the following theorem.

Theorem6.1 . For all instances I of the bin packing problem, 
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A better approximation algorithm is obtained by observing that the worst performance for FF seems to occur when the smaller items appear before the larger items in the ordering used by the algorithm. Suppose that, instead of merely taking items from U in the given order, we first sort them by size and reindex them so that 
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. The algorithm that applied FF to such a reordered list is called First Fir decreasing algorithm, performance of which has been guaranteed by the following theorem.

Theorem 6.2 For all instances I of the bin packing problem, 
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We can also have an approximation algorithm for TSP optimization problem in which the nearest unvisited city is visited. We have the following result:

Theorem 6.3 For all m-city instances I of the Travelling Salesman Problem with triangle inequality, 
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However, if we construct a spanning tree and then traverse it twice to obtain a tour, which though will be visiting the same vertex more than once, then we have the following performance guarantee
Theorem 6.4 For all instances I of the traveling Salesman Problem with triangle inequality MST(I)<2OPT(I)

The idea behind the MST algorithm has been extended by Christofides to devise an even better performing heuristic for this problem. It combines the use of matching techniques with the notions of an Eulerian graph and an Eulerian tour. The step are a) find an MST, b) find vertices of odd degree, c) their number is even in a spanning tree. So find a minimum matching to convert the spanning tree together with the paths corresponding to minimum matching. This gives us along with the triangle inequality
Theorem 6.5 For all instances I of the traveling salesman problem with triangle inequality MM(I)<3/2OPT(I), where MM(I) is the tour length using minimum matching.
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