09/09/2005

Lecture on Computational Complexity

Overview

Chapter 1 introduces problems, algorithms and their classifications, problem classification, P, NP, NP-Complete problems. Chapter 2 introduces the Theory of NP-Completeness. Chapter 3 discusses methods of proving NP completeness. Chapter 4 shows the way problems can be analyzed using NP-Completeness theory. Chapter 5 show the techniques for proving NP-Completeness. Chapter 6 discusses other intractable problems. Chapter 7 discusses other relevant issues.

1.1 Computers, Complexity, and Intractability

Consider the following situation:

After exhaustive brainstorming the recently recruited algorithm designer says to the boss “ I can’t find an efficient algorithm, I guess I’m just too dumb”

“ I can’t find an efficient algorithm, because no such algorithm is possible!”

“I can’t find an efficient algorithm, but neither can all these famous people.”- so recruiting somebody else will not save the employer.

Theory of computational complexity will enable you to assert the last statement if the problem you have been asked really falls into the category of difficult problems that well-know experts in the filed of algorithm could not solved it, and therefore, with a high probability you are not going to be fired.

1.2 Problems, Algorithms, and Complexity

A general question to be answered usually possessing several parameters, or free variables, whose values are left unspecified. A problem is described by giving: 1) a general description of all its parameters, and 2) a statement of what properties the answer or solution is required to satisfy.

 Example of TSP

Parameters: a finite set C={c1, c2,…, cm} of cities, and for each pair of cities
[image: image1.wmf]and

ij

cc

 the distance
[image: image2.wmf](,)

ij

dcc

 between them. A solution is an ordering <c
[image: image3.wmf]p

(1), c
[image: image4.wmf]p

(2), …,c
[image: image5.wmf]p

(m)>
[image: image6.wmf]p

of the given cities in order to minimize sum of distances of consecutive cities when they are arranged in a cycle in this order.

Notion of efficiency is related to use of computing resources- computing speed and memory. Time requirement is expressed in terms of a single variable called size of the problem determined by the amount of bits required to represent the problem in a computer. For TSP m can be treated as size, again m(m-1) + could also be treated as size. It depends upon he encoding scheme used.

Time complexity function for an algorithm expresses its time requirement by giving for each possible input length the largest amount of time needed by the algorithm to solve a problem instance of that size.

1.3 Polynomial Time algorithms and Intractable Problems

f(n) = O(g(n))
[image: image7.wmf]Û

[image: image8.wmf]|f(n)|
[image: image9.wmf]£

 c|g(n)|

A polynomial time algorithm is bounded by a polynomial. If an algorithm is not polynomial then it is exponential.

Comparison of several polynomial and exponential time algorithms show fast growing nature of expo algorithms.

	Time complexity functions
	Size n

	
	10
	20
	30
	40
	50
	60

	
[image: image10.wmf]n

	.00001 s
	.00002 s
	.00003 s
	.00004 s
	.00005 s
	.00006 s

	
[image: image11.wmf]2

n

	.0001 s
	.0004 s
	.0009 s
	.0016 s
	.0025 s
	.0036 s

	
[image: image12.wmf]3

n

	.001 s
	.008 s
	.027 s
	.064 s
	.125 s
	.216 s

	
[image: image13.wmf]5

n

	.1 s
	3.2 s
	24.3 s
	1.7 m
	5.2 m
	13.0 m

	
[image: image14.wmf]2

n

	.001 s
	1.0 s
	17.9 m
	12.7 d
	35.7 y
	366 cen

	
[image: image15.wmf]5

n

	.059 s
	58 m
	6.5 y
	3855cen
	2X108 cen
	1.3X1013cen

Fig. 1.2: Comparison of polynomial and exponential algorithms

Size of the largest problem instance solvable in 1 hour

	Time complexity function
	With present computer
	With computer 100 times faster
	with computer 1000 times faster

	
[image: image16.wmf]n

	
[image: image17.wmf]

 EMBED Equation.DSMT4 [image: image18.wmf]1

N

	
[image: image19.wmf]1

100

N

	
[image: image20.wmf]1

1000

N

	
[image: image21.wmf]2

n

	
[image: image22.wmf]2

N

	
[image: image23.wmf]2

10

N

	
[image: image24.wmf]2

31.6

N

	
[image: image25.wmf]3

n

	
[image: image26.wmf]3

N

	
[image: image27.wmf]3

4.64

N

	
[image: image28.wmf]3

10

N

	
[image: image29.wmf]5

n

	
[image: image30.wmf]4

N

	
[image: image31.wmf]4

2.5

N

	
[image: image32.wmf]4

3.98

N

	
[image: image33.wmf]2

n

	
[image: image34.wmf]5

N

	
[image: image35.wmf]5

6.64

N

+

	
[image: image36.wmf]5

9.97

N

+

	
[image: image37.wmf]5

n

	
[image: image38.wmf]6

N

	
[image: image39.wmf]6

4.19

N

+

	
[image: image40.wmf]6

6.29

N

+

Fig. 1.3 Effect of improved technology on polynomial and exponential algorithms

Figure 1.3 shows that even if our computers speed is multiplied the largest size of the problem that can be handled by the advanced computers will not be a multiple of the size of the problem the current computer can handle. This is why Jack Edmonds equated polynomial algorithms to good algorithms and problems not solvable by poly algorithms as not well-solved problems or intractable.

There are exceptions: for small sized problems some exponential algorithm may be better than poly as n5 is slower than 2n for n
[image: image41.wmf]20

£

Simplex algorithm although exponential performs on the average very well in practice although Klee and Zadeh were too critical to find examples where its exponential nature was revealed. Usually we do not get algorithms requiring
[image: image42.wmf]100992

10time complexity

norn

.

Reasonable encoding

Encoding scheme
string

length

V/E list
[image: image43.wmf]10

10

22

[1][2][3][4]([1][2])([2][3])

([2])([]3])([2])()

0100/1010/0010/0000

410//410()log

28//282log

1//1

vvvvvvvv

vvvv

vevevev

veveev

vvvv

++++

+++

+-+-

16/9/2005

1.4 Provably Intractable Problems

Two types of intractability- exponential time, exponential space. Later implies former. So we deal with time complexity. TSP with a bound B is an example of later. Possibly such problems are not well posed.

About 70 years back Alan Turing demonstrated that some problems are really undecidable- no algorithms exist for solving them.

It is impossible to specify an algorithm which given an arbitrary computer program and an arbitrary input to that program, can decide whether or not the program will eventually halt when applied to that input[1936]

Hilbert’s 10th problem(solvability of polynomial equations in integers) are examples.

The first results of intractable decidable problems were really artificially created. In the early 70s real life examples were produced by Meyer, Fisher, Rabin. These problems were from finite automata theory, formal language theory, mathematical logic.

1.5 NP-Complete Problems

The principal technique used for demonstrating that two problems are related is that of reducing one problem into another by giving a constructive transformation.

Many examples are there. Prof Dantzig[1960] reduced combinatorial optimization problems to 0-1 integer linear programming problem. Edmonds reduced the graph theoretic problems of covering all edges with minimum number of vertices and finding a maximum independent set of vertices to the general set covering problem. Reduction of TSP to shortest paths with negative edge weights allowed by Dantzig and others. These early reductions were really isolated. The foundation for the theory of NP-Completeness were laid down in a paper of Stephen Cook, presented in 1971 entitled “The Complexity of Theorem proving procedures”[1971]

First he emphasized the significance of polynomial time reducibility that is reduction for which the required transformations can be executed using polynomial time algorithms. Polynomial time reducibility ensures that a polynomial time algo of one solves the other also in polynomial time.

Second, he focused attention on the class NP of decision problems that can be solved in polynomial time by a nondeterministic computer.

Third, he proved that one particular problem in NP,c alled the satisfiability problem has the property that every other problem in NP can be polynomially reduced to it. If the satisfiability problem can be solved in polynomial time then so can be every problem in NP, and if any problem in NP is intractable then the satisfiability problem must also be intractable.

Finally Cook suggested that there might be some other problems in NP which share with the satisfiability problem this property of being the hardest member in NP.

He immediately showed that the problem “ Does a given graph G contain a complete subgraph on a given number of vertices. Then Karp supplied a list of 6 very important problems that formed the core of NP complete class.

23/9/2005

Chapter 2 The Theory of NP-Completeness

2.1 Decision Problems, Languages and Encoding Scheme

A Decision problem
[image: image44.wmf]P

consists of a set
[image: image45.wmf]D

P

of instances and a subset
[image: image46.wmf]YD

PP

Í

 of yes-instances.

SUBGRAPH ISOMORPHISM PROBLEM

INSTANCE: Two graphs
[image: image47.wmf]111222

(,),(,)

GVEGVE

==

QUESTION: Does
[image: image48.wmf]1

G

 contain a subgraph isomorphic to
[image: image49.wmf]2

G

?

TRAVELLING SALESMAN

INSTANCE: A finite set of cities and non negative distances between them and a bound B

QUESTION: Is there a tour of length <=B?

While we study decision problems optimization problems can also be transformed into a series of decision problems. So long as cost functions are easy to evaluate decision problems are no harder than the optimization problems. Many decision problems can also be shown to be not easier than their corresponding optimization problems.

For any finite set of symbols
[image: image50.wmf]å

we denote by
[image: image51.wmf]*

å

 the set of all finite strings of the symbol set. If L is a subset of
[image: image52.wmf]*

å

 then we call it a language. Every problem is encoded into a string of symbols. These strings can be partitioned into 3 subsets- those that are not encoding of the problem, that are examples of yes instances and that are examples of no instances.

Standard encoding scheme will map instances into structured strings.

a) The binary representation of an integer is a structured string

b) If x is a structured string so is [x]

c) If x1,x2,…, xn are structured strings representing the objects then (x1,x2,…,xn) is a structured string representing the sequence

2.2 Deterministic Turing Machines and the Class P

DTM consists of a finite state control, a read-write head, and a tape made up of a two-way infinite sequence of tape squares -2,-1,0,1,2,…

A program for a DTM specifies the following information

a) A finite set of tape symbols, including a subset of input symbols and a distinguished blank symbol

b) a finite set Q of states, including a distinguished start state q0 and two distinguished halt states qy and qn.

c) a transition function
[image: image53.wmf]:((,)){1,1}

QqnqyQ

d

-´G®´G´-+

Date: 30/9/2005

An NDTM program is specified in exactly the same way as a DTM programming, including the tape alphabet
[image: image54.wmf]G

, input alphabet
[image: image55.wmf]S

, blank symbol b, state set Q, initial state q, halt states qy,qn, and transition function
[image: image56.wmf]:((,)){1,1}

QqnqyQ

d

-´G®´G´-+

 Computation takes in 2 steps: The first stage is the guessing stage. Input string is written in squares 1 through x and read write head is at 1 the write only head at -1 and finite state control inactive. The guessing module directs write only head one step at a time either to write something on the tape square being scanned and move one sq left or right or stop at which point the guessing module is inactive and the finite state control is activated at q0.

Notice that NDTM program M will have an infinite # of possible computations for a given input string x, one for each possible guessed string from
[image: image57.wmf]*

G

. We say that NDTM program accepts x if at least one of these is an accepting computation.

[image: image58.wmf]*

{:accepts}

M

LxMx

=ÎS

[image: image59.wmf]{: there is a polynomial time NDTM progr

am M for which }

M

NPLLL

==

2.4 The Relationship Between P and NP

[image: image60.wmf]PNP

Í

Theorem 2.1 If
[image: image61.wmf],

NP

PÎ

then there is a polynomial p such that
[image: image62.wmf]P

 can be solved by a deterministic algorithm having time complexity
[image: image63.wmf]()

(2)

pn

O

[image: image64.wmf]2

1

()

c

qncn

=

If A is an algorithm requiring q(n) time then an NDTM need only guess strings of length at most q(n) to get to the accepted state. Number of guesses can be as large at most as
[image: image65.wmf]()

qn

k

2.5 Polynomial Transformations and NP-Completeness

P and NP-P is meaningful if
[image: image66.wmf]PNP

¹

A polynomial transformation from a language
[image: image67.wmf]**

1122

toalanguageL

L

ÍSÍS

 is a function
[image: image68.wmf]**

12

:

f

S®S

 that satisfies the following two conditions:

a) There is a polynomial time DTM program that computes f

b)
[image: image69.wmf]*

112

,()

xxLfxL

"ÎSÎÛÎ

Lemma 2.1 If
[image: image70.wmf]12

LL

¥

, then
[image: image71.wmf]21

impliesL

LPP

ÎÎ

HAMILTONIAN CIRCUIT

INSTANCE: A graph G=(V,E)

QUESTION: Does G contain a Hamiltonian Circuit?

Lemma 2.2 If
[image: image72.wmf]122313

,

LLLLLL

¥¥Þ¥

Lemma 2.3 If L1 and L2 belong to NP, L1 is No-Complete, and L1 poly reducible to L2, then L2 id NP-Complete.

Theorem 2.1 (Cook’s Theorem) SATISFIABILITY is NP-Complete.

In NP is obvious. Now every language in NP can be described by a polynomial time NDTM program that recognizes it.

3. Proving NP-Completeness Results

1) Showing that
[image: image73.wmf]NP

PÎ

2) selecting a know NP-Complete problem
[image: image74.wmf]¢

P

3) constructing a polynomial transformation f from
[image: image75.wmf]to

¢

PP

4) proving that f is a (polynomial) transformation.

3.2 Six Basic NP-Complete Problems

3-SATISFIABILITY (3-SAT)

INSTANCE: Collection C={c1,c2,…,cm} of clauses on a finite set U of variables such that |ci|=3 for all i

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE:
[image: image76.wmf]MWXY

Í´´

, where W,X,Y are disjoint sets having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset M’ in M such that |M’|=q and no 2 elements of M’ agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph G=(V,E) and a positive integer K<=|V|

QUESTION: Is there a vertex cover of size K or less for G, that is a subset V’ of V such that |V’|<=K and for each edge (u,v) in E, at least one of u and v belongs to V’?

CLIQUE

INSTANCE: A graph G=(V,E) and a positive integer J<=|V|

QUESTION: Does G contain a clique of size J or more, that is a subset of vertices V’ in V such that {V’|>=J and every 2 vertices of V’ are joined by an edge in E?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G=(V,E)

QUESTION: Does G contain a HC, that is, an ordering<v1,v2,…,vn> of the vertices such that all consecutive edges are there including from the last to the first vertex in G?

PARTITION

INSTANCE: A finite set A and a size s(a) +ve for each a in A.

QUESTION: Is there a subset A’ in A such that sum of elements in both the partitions are the same?

SATISFIABILITY TO 3SAT TO (3DM AND VC), 3DM TO PARTITION VC TO (HC AND CLIQUE)

14102005

Proving NP-Completeness Results

3-SATISFIABILITY is a restricted version of satisfiability in which all instances have exactly three literals per clause.

Theorem 3.1 3-SATISFAIABILITY is NP-Complete.

Proof: it is easy to show that
[image: image77.wmf]3

SATNP

Î

 since a NDTM need only guess a truth assignment for the variables and check in polynomial time whether that truth setting satisfies all the given 3-literal clauses.

We transform SAT to 3SAT. Let
[image: image78.wmf]12

{,,...,}

n

Uuuu

=

 be a set of variables and
[image: image79.wmf]12,

{,...,}

m

Cccc

=

 be a set of clauses making up an arbitrary instance of SAT. We shall construct a collection
[image: image80.wmf]C

¢

of 3-literal clauses on a set
[image: image81.wmf]U

¢

of variables such that
[image: image82.wmf]C

¢

is satisfiable iff
[image: image83.wmf]C

 is satisfiable. Now we have

[image: image84.wmf](

)

and

j

UUUC

¢

¢¢

=È=

U

 EMBED Equation.DSMT4 [image: image85.wmf]j

C

¢

U

Thus we need only to show how
[image: image86.wmf]and

jj

CU

¢¢

can be constructed from
[image: image87.wmf]j

c

. Let
[image: image88.wmf]j

c

 be given by
[image: image89.wmf]12

{,,...,}

k

zzz

where the
[image: image90.wmf]i

z

’s are all literals derived from the variables in
[image: image91.wmf]U

. The way these variables are clauses are formed depends on the value of
[image: image92.wmf]k

Case 1.
[image: image93.wmf]12

12121212

1111

1,{,}

{,,},{,,},{,,},{,,}

jjj

jjjjjjjjj

kUyy

Czyyzyyzyyzyy

¢

==

¢

=

Case 2.
[image: image94.wmf]111

1212

2,{},{{,,},{,,}

jjjjj

kUyCzzyzzy

¢¢

===

Case 3.
[image: image95.wmf]3,,{{}}

jjj

kUCc

¢¢

==Æ=

Case 4.
[image: image96.wmf]

 EMBED Equation.DSMT4 [image: image97.wmf]3,

k

>

[image: image98.wmf]3,{:13}

i

jj

kUyik

¢

>=££-

[image: image99.wmf]11

122

{{,,}}{{,,}:14}

ii

jjjij

Czzyyzyik

+

+

¢

=È££-

[image: image100.wmf]3

1

{{,,}}

k

jkk

yzz

-

-

È

To prove that this is indeed a transformation, we must show that the set
[image: image101.wmf]C

¢

is satisfiable iff C is satisfiable. It is very easy to show that transformations are polynomial and that if the sets of clauses are simultaneously satisfied.

3.1.2 3-DIMENSIONAL MATCHING

INSTANCE:
[image: image102.wmf]MWXY

Í´´

, where W,X,Y are disjoint sets having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset
[image: image103.wmf]M

¢

 in M such that
[image: image104.wmf]||

Mq

¢

=

| and no 2 elements of
[image: image105.wmf]M

¢

 agree in any coordinate?

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-Complete.

It is easy to show that
[image: image106.wmf]3

DMNP

Î

 since a nondeterministic algorithm need only guess a subset
[image: image107.wmf]||||||

qWXY

===

 triples from M and check in polynomial time that no two of the guessed triples agree in any coordinate.
We will transform 3SAT to 3DM. Let
[image: image108.wmf]12

{,,...,}

n

Uuuu

be the set of variables and
[image: image109.wmf]12

{,,...,}

m

Cccc

=

be the set of clauses in an arbitrary instance of 3SAT. We must construct disjoint sets W,X and Y, with
[image: image110.wmf]||||||

WXY

==

 and a set
[image: image111.wmf]MWXY

Í´´

such that M contains a matching iff C is satisfiable.

The set of ordered triples can be partitioned into 3 separate classes, grouped according to their intended functions: “truth-setting and fan-out(TSFO)”, satisfaction-testing(SF)”, or “garbage collection(GC)”.
Each TSFO corresponds to a single variable
[image: image112.wmf]uU

Î

, and its structure depends on the total number m of clauses in C. In general TSFO component for a variable
[image: image113.wmf]i

u

 involves “internal” elements
[image: image114.wmf][]and [],1

jj

ii

aXbYjm

££

, which will not occur in any triples outside of this component, and “external” elements
[image: image115.wmf][],[],1

ii

ujujWjm

Î££

, which will occur in other triples. The triples making up this component can be divided into 2 sets:

[image: image116.wmf]{[],[],[]:1}

{[],[],[]:1}{([],[1],[])}

t

iiii

ft

iiiiiiii

Tujajbjjm

TujajbjjmTumabm

=££

=£<=

U

Since none of the internal elements
[image: image117.wmf][]and [],1

jj

ii

aXbYjm

££

will appear in nay triples outside of
[image: image118.wmf]tf

iii

TTT

=È

, it is easy to see that any matching
[image: image119.wmf]M

¢

will have to include exactly m triples from
[image: image120.wmf]i

T

, either all from
[image: image121.wmf]or all from

tf

ii

TT

. So this will be forcing a matching to make a choice between setting
[image: image122.wmf]i

u

true or false.
Each ST component in M corresponds to a single clause
[image: image123.wmf]j

cC

Î

. It involves only 2 internal elements
[image: image124.wmf]12

[]and []

sjXsjY

ÎÎ

and external elements from
[image: image125.wmf][],[],1

ii

ujujWin

Î££

, determined by which literals occur in clause
[image: image126.wmf]j

c

. The set of triples making this component is defined as follows:

[image: image127.wmf]1212

{([],[],[]):}{([],[],[]):}

jiijiij

Cujsjsjucujsjsjuc

=ÎÎ

U

Thus any matching
[image: image128.wmf]MM

¢

Í

will have to choose exactly one triple from
[image: image129.wmf]j

C

. This can only be done, however, if some
[image: image130.wmf][]or []

ii

ujuj

 does not occur in triples
[image: image131.wmf]i

TM

¢

Ç

, which will be the case if and only if truth setting determined by
[image: image132.wmf]M

¢

satisfies clause
[image: image133.wmf]j

c

.
The construction is completed by means of one large GC component G, involving internal elements
[image: image134.wmf]12

[]and g[],1(1)

gkXkYkmn

ÎÎ££-

 and external elements of the form
[image: image135.wmf][]or []

ii

ujujW

Î

. It consists of the following triples:

[image: image136.wmf]1212

{([],[],[]),([],[],[]):1(1),1,1}

ii

Gujgkgkujgkgkkmninjm

=££-££££

Thus each pair
[image: image137.wmf]12

[]and g[]

gkXkY

ÎÎ

 must be matched with a unique
[image: image138.wmf][]or []

ii

ujuj

 that does not occur in any triples
[image: image139.wmf].

MG

¢

-

 There are exactly
[image: image140.wmf](1)

mn

-

such uncovered external elements.

To summarize we set

[image: image141.wmf]11

1111

{[],[]:1,1}

,where {[]:1,1}

{[]:1},{[],1(1)}

ii

i

Wujujinjm

XASGAajinjm

SsjjmGgjjmn

=££££

=ÈÈ=££££

=££=££-

[image: image142.wmf]22

2222

, where {[]:1,1}

{[],1},{[]:1(1)}

i

YBSGBbjinjm

SsjjmGgjjmn

=ÈÈ=££££

=££=££-

[image: image143.wmf]and

()()

ij

MTC

G

=

UU

UU

Notice that
[image: image144.wmf]MWXY

Í´´

as required. Furthermore since M contains only
[image: image145.wmf]2

232(1)

mnmmnn

++-

triples the construction is polynomial.

It is easily verifiable that M cannot contain a matching unless C is satisfiable. We now show that the existence of a satisfying truth assignment for C implies that M contains a matching.

Let
[image: image146.wmf]:{,}

tUTF

®

 be any satisfying truth assignment for C. We construct a matching
[image: image147.wmf]MM

¢

Í

as follows: For each clause
[image: image148.wmf]j

cC

Î

, let
[image: image149.wmf]{,,1}

jiij

zuuinc

Î££Ç

 be a literal that is set true by t(one must exist). We then set

[image: image150.wmf]12

{([],[],[])}

(

)()(), where

tf

iij

TT

Mzjsjsj

GG

ÈÈ

¢

=È

¢¢

UUU

is appropriately chosen subcollection of G that includes all
[image: image151.wmf]12

[],[]

gkgk

 and remaining u variables.
EXACT COVER BY 3-SETS(X3C)

INSTANCE: A finite set X with |X|=3q and a collection of 3-element subsets of X/

QUESTION: Does C contain an exact cover for X, that is, a subcollection
[image: image152.wmf]CC

¢

Í

such that every element of X occurs in exactly one member of
[image: image153.wmf]C

¢

?

Note that every instance of 3DM can be viewed as an instance of X3C simply by regarding it as an unordered subset of
[image: image154.wmf]WXY

´´

. Thus 3DM is just a restricted version of X3C.
21102005

VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently useful for proving NP-Completeness results, they are just really different ways of looking at the same problem. To see this, it is convenient to consider them in conjunction with a third problem, called INDEPENDENT SET.

An independent set in a graph G=(V,E) is a subset
[image: image155.wmf]|,(,)

VVuvVuvE

¢¢

Í"ÎÏ

. The INDEPENDENT SET problem asks, for a given graph G=(V,E), and a positive integer
[image: image156.wmf]||

JV

£

whether G contains an independent set
[image: image157.wmf]having ||

VVJ

¢¢

³

. The following relationships between independent sets, cliques, and vertex covers are easy to verify,

Lemma 3.1 For any graph G=(V,E), and subset
[image: image158.wmf]VV

¢

Í

, the following statements are equivalent:

a)
[image: image159.wmf]V

¢

 is a vertex cover for G

b)
[image: image160.wmf]VV

¢

-

 is an independent set for G.

c)
[image: image161.wmf]VV

¢

-

 is a clique in the complement
[image: image162.wmf]c

G

 of G, where
[image: image163.wmf](,)with {,}:,and {,}

{}

ccc

GVEEuvuvVuvE

==ÎÏ

Thus we see that in a strong sense these three problems might be regarded as “different versions” of one another.

Theorem 3.3 VERTEX COVER is NP-Complete.

Proof: It is easy to see that
[image: image164.wmf]VCNP

Î

 since a nondeterministic algorithm need only guess a subset of vertices and check in polynomial time whether that subset contains at least one endpoint of every edge and has the appropriate size.

We transform 3SAT to VERTEX COVER. Let
[image: image165.wmf]1212

{,,...,}and {,,...,}

nm

UuuuCccc

==

be any instance of 3SAT. We must construct a graph G=(V,E) and a positive integer
[image: image166.wmf]||

KV

£

 such that G has a vertex cover of size K or less iff C is satisfiable.
The construction is as follows:

For each variable
[image: image167.wmf]i

uU

Î

, there is a truth setting component
[image: image168.wmf](,)with {,} and {{,}}

iiiiiiiii

TVEVuuEuu

===

 Note that any vertex cover will have to contain at least one of the vertices
[image: image169.wmf],

ii

uu

For each clause
[image: image170.wmf]j

cC

Î

, there is a satisfaction testing component
[image: image171.wmf](,)

jjj

SVE

¢¢

=

, consisting of 3 vertices and 3 edges joining them to form a triangle:

[image: image172.wmf]113

121323

{[],[],[]}

{[],[]},{[],[]},{[],[]}

{}

j

j

Vajbjaj

Eajajajajajaj

¢

=

¢

=

Note that any vertex cover will have to contain at least 2 vertices from
[image: image173.wmf]j

V

¢

 in order to cover all the edges of the triangle.
The only part of the construction that depends on which literals occur in which clauses is the collection of communication edges. These are best viewed from the vantage point of satisfaction testing components. For each clause
[image: image174.wmf]j

cC

Î

, let the 3 literals be denoted by
[image: image175.wmf],,and

jjj

xyz

. Then the communication edges emanating from
[image: image176.wmf]j

S

are given by:

[image: image177.wmf]123

{[],},{[],},{[],}

{}

jjjj

Eajxajyajz

¢¢

=

The construction of our instance of VC is completed by setting
[image: image178.wmf]2and (,),

KnmGVE

=+=

 where

[image: image179.wmf])

))

()(

()((

ij

ijj

VV

EE

V

EE

=

=

¢

¢¢¢

UU

UUU

U

UU

It is easy to see how the construction can be accomplished in polynomial time. All that remains to be shown is that C is satisfiable iff G has a vertex cover of size K or less.

First, suppose that
[image: image180.wmf]VV

¢

Í

 is a vertex cover of G with
[image: image181.wmf]||.

VK

¢

£

 By our previous remarks,
[image: image182.wmf]V

¢

 must contain at least one vertex from each
[image: image183.wmf]i

T

 and at least 2 vertices from each
[image: image184.wmf]j

S

. Since this gives a total of at least
[image: image185.wmf]2

nmK

+=

vertices,
[image: image186.wmf]V

¢

 must in fact contain exactly one vertex from each
[image: image187.wmf]i

T

 and exactly 2 vertices from each
[image: image188.wmf]j

S

. Thus we can use the way in which
[image: image189.wmf]V

¢

 intersects each truth setting component to obtain a truth assignment
[image: image190.wmf]:{,}

tUTF

®

. We merely set
[image: image191.wmf]()if and ()if .

iiii

tuTuVtuFuV

¢¢

=Î=Î

To see that this truth assignment satisfies each of the clause
[image: image192.wmf]j

cC

Î

, consider the 3 edges in
[image: image193.wmf]j

E

¢¢

. Only 2 of these edges can be covered by vertices in
[image: image194.wmf]j

VV

¢¢

Ç

, so one of them must be covered by a vertex from
[image: image195.wmf]i

V

that belongs to
[image: image196.wmf]V

¢

. But that implies that the corresponding literal
[image: image197.wmf]or

ii

uu

 from clause
[image: image198.wmf]j

c

is true under the truth assignment t, it follows that t is satisfying truth assignment for C.
Conversely suppose that
[image: image199.wmf]:{,}

tUTF

®

 is a satisfying truth assignment for C. The corresponding vertex cover
[image: image200.wmf]

 EMBED Equation.DSMT4 [image: image201.wmf]V

¢

 includes one vertex from each
[image: image202.wmf]i

T

 and 2 vertices from each
[image: image203.wmf]j

S

. The vertex from
[image: image204.wmf]i

T

 in
[image: image205.wmf]V

¢

 is
[image: image206.wmf]i

u

if
[image: image207.wmf]i

()and uif()

ii

tuTtuF

==

. This ensures that at least one of the 3 edges from each set
[image: image208.wmf]j

E

¢¢

 is covered, because t satisfies each clause
[image: image209.wmf]j

c

. Therefore we need only include in
[image: image210.wmf]V

¢

 the endpoints from
[image: image211.wmf]j

S

 of the other 2 edges in
[image: image212.wmf]j

E

¢¢

.

HAMILTONIAN CIRCUIT(HC)
For convenience whenever
[image: image213.wmf]12

,,...,

n

vvv

<>

is a Hamiltonian circuit, we shall refer to
[image: image214.wmf]11

{,},1,and {,}

iin

vvinvv

+

£<

as the edges in the circuit.

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-Complete.

Proof: it is easy to see that
[image: image215.wmf]HCNP

Î

, because a nondeterministic algorithm need only guess an ordering of the vertices and check in polynomial time that all the required edges belong to the edge set of a given graph.
We transform VERTEX COVER to HC. Let an arbitrary instance of VC be given by the graph G=(V,E) and the positive integer
[image: image216.wmf]||

KV

£

. We must construct a graph
[image: image217.wmf](,)

GVE

¢¢¢

=

 such that
[image: image218.wmf]G

¢

 has a HC if G has a vertex cover of size K or less.
Once more our construction can be viewed in terms of components connected together by communication links. First, the graph
[image: image219.wmf]G

¢

 has K selector vertices
[image: image220.wmf]12

,,...,

k

aaa

 which will be used to select K vertices from the vertex set V of G. Second for each edge in E,
[image: image221.wmf]G

¢

contains a cover testing component that will be used to ensure that at least one endpoint of that edges is among the selected K vertices. The component for
[image: image222.wmf]{,}

euvE

=Î

 has 12 vertices
[image: image223.wmf]{

(,,),(,,):16}

e

V

ueiveii

¢

=

££

 and 14 edges
[image: image224.wmf](,,),(,,1)(,,),(,,1)15

(,,3),(,,1)(,,3),(,,1)(,,6),(,,4)(,,6),(

,,4)

{},{}:

{},{}{},{}

{}

{}{}

e

Eueiueiveiveii

ueveveueueveveue

¢

=++££

U

U

In the completed construction, the only vertices from this cover-testing component that will be involved in any additional edges are (u,e,1),(v,e,1), (u,e,6) and (v,e,6).

It may be verified that any HC will have to meet the edges in
[image: image225.wmf]e

E

¢

in exactly one of 3 configurations. This for example, if the circuit enters this component at (u,e,1) it will have to exit at (u,e,6) and visit wither all 12 vertices in the component or just the 6 vertices (u,e,i), 1<=i<=6, or (u,e,1)-(u,e,2)-(u,e,3)- (v,e,1)-(v,e,2)-(v,e,3)- (v,e,4)-(v,e,5)-(v,e,6)- (u,e,4)-(u,e,5)-(u,e,6)

Additional edges in our construction will serve to join pairs of cover-testing components or to join a cover-testing component to a selector vertex. For each vertex v of V, let the edges incident on v be ordered as
[image: image226.wmf][1][2][deg()]

,,...,

vvvv

eee

[image: image227.wmf][][1]

(,,6),(,,1)deg()

{}:1

{}

vvivi

Evevev

i

+

¢

=<

£

The final connecting edges in
[image: image228.wmf]G

¢

 join the first and last vertices from each of these paths to every one of the selector vertices
[image: image229.wmf]12

,,...,

k

aaa

. These edges are specified as follows:

[image: image230.wmf][1][deg()]

,(,,1},{,(,,6)}:1,

{

{}

ivivv

EveveiKvV

aa

¢¢

=££Î

The completed graph
[image: image231.wmf](,)

GVE

¢¢¢

=

 has

[image: image232.wmf]{:1})and

()()

(

ie

ev

VaiKV

EEEE

¢¢

=££È

¢¢¢¢¢

=ÈÈÈ

U

U

It is not hard to see that
[image: image233.wmf]G

¢

 can be constructed from G and K in polynomial time.
We claim that
[image: image234.wmf]G

¢

 has a HC iff G has a vertex cover of size K or less.

3.1.5 PARTITION

Theorem 3.5 PARTITION is NP-Complete

Proof: It is easy to see that PARTITION∈NP, since a non-deterministic algorithm need only guess a subset
[image: image235.wmf]

 EMBED Equation.DSMT4 [image: image236.wmf]A

¢

 of A and check in polynomial time that the sum of the sizes of the elements in
[image: image237.wmf]A

¢

 is the same as that fro the elements remaining in
[image: image238.wmf]AA

¢

-

We transform 3DM to PARTITION. Let the sets W,X,Y, with , and
[image: image239.wmf]MWXY

Í´´

 be an arbitrary instance of 3DM. Let the elements of these sets be denoted by

[image: image240.wmf]12

12

12

{,,...,}

{,,...,}

{,,...,}

q

q

q

Wwww

Xxxx

Yyyy

=

=

=

And

[image: image241.wmf]12

{,,...,}

k

Mmmm

=

Where |M|=k. We must construct a set A, and a size
[image: image242.wmf]()

saZ

+

Î

 for each
[image: image243.wmf]aA

Î

 such that A contains a subset
[image: image244.wmf]A

¢

 satisfying

[image: image245.wmf]()()

aAaAA

sasa

¢¢

ÎÎ-

=

åå

 iff M contains a matching.

The set A will contain a total of k+2 elements and will be constructed in two steps. The first k elements of A are
[image: image246.wmf]{:1}

i

aik

££

, where the element
[image: image247.wmf]i

a

is associated with the triple
[image: image248.wmf]i

mM

Î

. The size
[image: image249.wmf]()

i

sa

 of
[image: image250.wmf]i

a

 will be specified by giving its binary representation in terms of strings of 0’s and 1’s divided into 3q “zones” of
[image: image251.wmf]2

log(1)

pk

=+

 each of these zones is labeled by an element of
[image: image252.wmf]WXY

ÈÈ

The representation for
[image: image253.wmf]()

i

sa

 depends on the corresponding triple. It has a 1 in the rightmost bit position of the zones labeled by
[image: image254.wmf]()()()

,,

figihi

wxy

 and 0’s everywhere else. Alternatively we can write

[image: image255.wmf](3())(2())(())

()222

pqfipqgipqhi

i

sa

=++

Since each
[image: image256.wmf]()

i

sa

 can be expressed in binary with no more than 3pq bits, it is clear that s(a) can be constructed from the given 3DM instance in polynomial time.

The important thing to observe about this part of construction is that, if we sum up all the entries in any zone, over all elements of
[image: image257.wmf]{:1}

i

aik

££

, thee total number never exceed
[image: image258.wmf]21

p

k

=-

. Hence in adding up
[image: image259.wmf]()

aA

sa

¢

Î

å

 for any subset
[image: image260.wmf]{:1}

i

Aaik

¢

Í££

 there will be never any carries from one zone to the other. It follows that if we let

[image: image261.wmf]31

0

2

q

pj

j

B

-

=

=

å

 then any subset
[image: image262.wmf]{:1}

i

Aaik

¢

Í££

 will satisfy
[image: image263.wmf]

 EMBED Equation.DSMT4 [image: image264.wmf]()

aA

saB

¢

Î

=

å

.
The final step of the construction specifies the last 2 elements of A. These are denoted by
[image: image265.wmf]12

bandb

 and have sizes defined by

[image: image266.wmf]1

1

2

1

()2()

()()

()

()

k

i

i

k

i

i

sbsa

sbsa

B

B

=

=

=

=

-

+

å

å

Both of these can be specified in binary with no more that 3pq+1 bits and thus can be constructed in polynomial time of the size of 3DM.

_1190742306.unknown

_1191656486.unknown

_1191660819.unknown

_1191663936.unknown

_1191923651.unknown

_1191924545.unknown

_1191925156.unknown

_1191925265.unknown

_1191925376.unknown

_1191925423.unknown

_1191925454.unknown

_1191925339.unknown

_1191925189.unknown

_1191924843.unknown

_1191925117.unknown

_1191924772.unknown

_1191924264.unknown

_1191924344.unknown

_1191924418.unknown

_1191924288.unknown

_1191924320.unknown

_1191924035.unknown

_1191924090.unknown

_1191924108.unknown

_1191924217.unknown

_1191924070.unknown

_1191923865.unknown

_1191923997.unknown

_1191923724.unknown

_1191922774.unknown

_1191923497.unknown

_1191923568.unknown

_1191923071.unknown

_1191922726.unknown

_1191922747.unknown

_1191922450.unknown

_1191662089.unknown

_1191662811.unknown

_1191663305.unknown

_1191663479.unknown

_1191662856.unknown

_1191662477.unknown

_1191662512.unknown

_1191662138.unknown

_1191660983.unknown

_1191661126.unknown

_1191661880.unknown

_1191661109.unknown

_1191660877.unknown

_1191659001.unknown

_1191660639.unknown

_1191660732.unknown

_1191659341.unknown

_1191660579.unknown

_1191660535.unknown

_1191659160.unknown

_1191659310.unknown

_1191659054.unknown

_1191659091.unknown

_1191657894.unknown

_1191658256.unknown

_1191658604.unknown

_1191658877.unknown

_1191658467.unknown

_1191658389.unknown

_1191658442.unknown

_1191657988.unknown

_1191658211.unknown

_1191656906.unknown

_1191657679.unknown

_1191657719.unknown

_1191657855.unknown

_1191657607.unknown

_1191656527.unknown

_1191656741.unknown

_1191656503.unknown

_1191568811.unknown

_1191570604.unknown

_1191571437.unknown

_1191656244.unknown

_1191656422.unknown

_1191656453.unknown

_1191656380.unknown

_1191656085.unknown

_1191656200.unknown

_1191571572.unknown

_1191570870.unknown

_1191571278.unknown

_1191571388.unknown

_1191571277.unknown

_1191570815.unknown

_1191570844.unknown

_1191570762.unknown

_1191569374.unknown

_1191569715.unknown

_1191570092.unknown

_1191570296.unknown

_1191569777.unknown

_1191569628.unknown

_1191569688.unknown

_1191569453.unknown

_1191569102.unknown

_1191569223.unknown

_1191569264.unknown

_1191569222.unknown

_1191568991.unknown

_1191569041.unknown

_1191568952.unknown

_1191566276.unknown

_1191568268.unknown

_1191568593.unknown

_1191568738.unknown

_1191568776.unknown

_1191568642.unknown

_1191568427.unknown

_1191568527.unknown

_1191568303.unknown

_1191567547.unknown

_1191567883.unknown

_1191568177.unknown

_1191567753.unknown

_1191567579.unknown

_1191567615.unknown

_1191566429.unknown

_1191566463.unknown

_1191566333.unknown

_1190743691.unknown

_1190744255.unknown

_1191566106.unknown

_1191566149.unknown

_1190744256.unknown

_1190744155.unknown

_1190744254.unknown

_1190744199.unknown

_1190743877.unknown

_1190742900.unknown

_1190743278.unknown

_1190743646.unknown

_1190743132.unknown

_1190742406.unknown

_1190742433.unknown

_1190742354.unknown

_1190023331.unknown

_1190024604.unknown

_1190740576.unknown

_1190741989.unknown

_1190742205.unknown

_1190742238.unknown

_1190742171.unknown

_1190741220.unknown

_1190741596.unknown

_1190740577.unknown

_1190736974.unknown

_1190740354.unknown

_1190740400.unknown

_1190740199.unknown

_1190026439.unknown

_1190736814.unknown

_1190025732.unknown

_1190023641.unknown

_1190023753.unknown

_1190023905.unknown

_1190024576.unknown

_1190024603.unknown

_1190023780.unknown

_1190023904.unknown

_1190023700.unknown

_1190023733.unknown

_1190023679.unknown

_1190023496.unknown

_1190023570.unknown

_1190023597.unknown

_1190023536.unknown

_1190023398.unknown

_1190023480.unknown

_1190023461.unknown

_1190023346.unknown

_1189507962.unknown

_1189510934.unknown

_1190022986.unknown

_1190023256.unknown

_1190023268.unknown

_1190022053.unknown

_1190022105.unknown

_1190022130.unknown

_1190022157.unknown

_1190022072.unknown

_1190021076.unknown

_1190021134.unknown

_1190021456.unknown

_1189513213.unknown

_1189513248.unknown

_1189513352.unknown

_1189511648.unknown

_1189510061.unknown

_1189510533.unknown

_1189510857.unknown

_1189510892.unknown

_1189510663.unknown

_1189510344.unknown

_1189510470.unknown

_1189510160.unknown

_1189509650.unknown

_1189509884.unknown

_1189510019.unknown

_1189509848.unknown

_1189508501.unknown

_1189508596.unknown

_1189508034.unknown

_1188208182.unknown

_1188969848.unknown

_1188970030.unknown

_1189507939.unknown

_1188969959.unknown

_1188969417.unknown

_1188969446.unknown

_1188969398.unknown

_1188207194.unknown

_1188207329.unknown

_1188207880.unknown

_1188207231.unknown

_1188206628.unknown

_1188206661.unknown

_1188206621.unknown

_1188206599.unknown

