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Proving NP-Completeness Results

3-SATISFIABILITY is a restricted version of satisfiability  in which all instances have exactly three literals per clause.

Theorem 3.1 3-SATISFAIABILITY is NP-Complete.

Proof: it is easy to show that 
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 since a NDTM need only guess a truth assignment for the variables and check in polynomial time whether that truth setting satisfies all the given 3-literal clauses.

We transform SAT to 3SAT. Let 
[image: image2.wmf]12

{,,...,}

n

Uuuu

=

 be a set of variables and 
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 be a set of clauses making up an arbitrary instance of SAT. We shall construct a collection 
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of 3-literal clauses on a set 
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of variables such that 
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is satisfiable iff 
[image: image7.wmf]C

 is satisfiable. Now we have
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Thus we need only to show how 
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can be constructed from 
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. Let 
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where the 
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’s are all literals derived from the variables in 
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. The way these variables are clauses are formed depends on the value of 
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Case 1. 
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Case 2. 
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Case 3. 
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Case 4. 
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To prove that this is indeed a transformation, we must show that the set 
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is satisfiable iff C is satisfiable. It is very easy to show that transformations are polynomial and that if the sets of clauses  are simultaneously satisfied.

3.1.2 3-DIMENSIONAL MATCHING

INSTANCE:  
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, where W,X,Y are disjoint sets having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset 
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 in M such that 
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| and no 2 elements of 
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 agree in any coordinate?

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-Complete.

It is easy to show that 
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 since a nondeterministic algorithm need only guess a subset 
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 triples from M and check in polynomial time that no two of the guessed triples agree in any coordinate.
We will transform 3SAT to 3DM. Let 
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be the set of variables and 
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be the set of clauses in an arbitrary instance of 3SAT. We must construct disjoint sets W,X and Y, with 
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 and a set 
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such that M contains a matching iff C is satisfiable.

The set of ordered triples can be partitioned into 3 separate classes, grouped according to their intended functions: “truth-setting and fan-out(TSFO)”, satisfaction-testing(SF)”, or “garbage collection(GC)”.

Each TSFO corresponds to a single variable 
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, and its structure depends on the total number m of clauses in C. In general TSFO component for a variable 
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 involves “internal” elements 
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, which will not occur in any triples outside of this component, and “external” elements 
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, which will occur in other triples. The triples making up this component can be divided into 2 sets:
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Since none of the internal elements 
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will appear in nay triples outside of 
[image: image42.wmf]tf

iii

TTT

=È

, it is easy to see that any matching 
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will have to include exactly m triples from 
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. So this will be  forcing a matching to make a choice between setting 
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true or false.

Each ST component in M corresponds to a single clause 
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. It involves only 2 internal elements 
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and external elements from 
[image: image49.wmf][],[],1

ii

ujujWin

Î££

, determined by which literals occur in clause 
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Thus any matching 
[image: image52.wmf]MM

¢

Í

will have to choose exactly one triple from 
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 does not occur in triples 
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, which will be the case if and only if truth setting determined by 
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satisfies clause 
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The construction is completed by means of one large GC component G, involving internal elements 
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. It consists of the following triples:
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Thus each pair 
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 must be matched with a unique 
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To summarize we set
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Notice that 
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as required. Furthermore since M contains only 
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triples the construction is polynomial.

It is easily verifiable that M cannot contain a matching unless C is satisfiable. We now show that the existence of a satisfying truth assignment for C implies that M contains a matching.

Let 
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 be any satisfying truth assignment for C. We construct a matching 
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as follows: For each clause 
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 be  a literal that is set true by t(one must exist). We then set
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is appropriately chosen subcollection of G that includes all 
[image: image75.wmf]12

[],[]

gkgk

 and remaining u variables.

EXACT COVER BY 3-SETS(X3C)

INSTANCE: A finite set X with |X|=3q and a collection of 3-element subsets of X/

QUESTION: Does C contain an exact cover for X, that is, a subcollection 
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such that every element of X occurs in exactly one member of 
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Note that every instance of 3DM can be viewed as an instance of X3C simply by regarding it as an unordered subset of 
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. Thus 3DM is just a restricted version of X3C.
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