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Chapter 3 Matchings and Factors

3.1.1 Definition: A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M is saturated by M; the others are unsaturated. A perfect matching in a graph is a matching that saturates every vertex.

3.1.2 Example. Perfect matchings in 
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. A perfect matching defines a bijection from X to Y. There will be 
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 matching.

3.1.3 Perfect matchings in complete graphs: 
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 does not have a perfect matching. For 
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be the number of perfect matchings. Then 
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3.1.4 A maximal matching in a graph is  a matching that cannot be enlarged by adding an edge. A maximum matching is a matching of maximum size among all matchings in the graph.

A matching is maximal if every edge not in M is incident to an edge already in M. maximal≠maximum

3.1.6 Definition. Given a matching M, an M-alternating path is the path that alternates between edges in M and not in M. An M- alternating  path whose endpoints are unsaturated by M is an M-augmenting path. Given an M-augmenting path P we can replace the edges of m in P with the other edges to obtain a new matching with 1 more edge.

3.1.7 Definition: If G and H are graphs with vertex set V, then the symmetric difference 
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is the graph with the vertex set V whose edges are all those appearing in exactly one of G and H. If 
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are matchings, then 
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3.1.9 Lemma. Every component of the symmetric difference of two matchings is a path or an even cycle.

Proof:
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contains either a path or a cycle of even length.

3.1.10 Theorem. A matching M in a graph G is maximum iff G has no M-augmenting path.

Proof: Both way of contrapositive.

Hall’s Matching Condition

When we are filling jobs with applicants there may be many more applicants than jobs. To model this we can use an X-Y bigraph X job and Y applicants.

If  a matching saturates X, then for every 
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there must be at least S vertices that have neighbours in S. So necessary condition is that we must have 
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3.1.11. Theorem. An X-Y bigraph G has a matching that saturates X iff 
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Proof: Necessity: The |S| vertices matched to S must lie in N(S).

Sufficiency:  We prove the contrapositive- If M is a  maximum matching of G and M does not saturate X, then we obtain a set 
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 such that |N(S)|<|S|.

3.1.13 Corollary. For k>0, every k-regular bipartite graph ha a perfect matching.

Proof:

3.1.14 definition. A vertex cover of a graph G is a set 
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 that contains at least one endpoint of each edge. The vertices in Q cover E(G).

3.1.16 Theorem. If G is a bipartite graph, then maximum size of  a matching in G equals the minimum size of a vertex cover of G.

Proof: Since distinct vertices must be used to cover the edges of  a matching |Q|>=|M| whenever Q is a vertex cover and M is a  matching in G. Given a smallest vertex cover Q of G, we construct a matching of size |Q| to prove the equality.

Partition Q by letting 
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. Let 
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 be the subgraphs induced by 
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respectively. We use Hall’s theorem to show that H has a matching that saturates R into Y-T and H’ has a matching that saturates T. Since 
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 are disjoint, the two matchings together form a matching of size |Q| in G.

Since 
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is a vertex cover, G has no edge from Y-T to X-R. For each 
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 we consider neighbours of S in H, which is contained in Y-T. If cardinality of this set is smaller than |S| then we can substitute neighbour set of S in H for S in Q to obtain a smaller vertex cover.

The minimality of Q thus yields Hall’s conditions in H, and hence H has a matching that saturates R. applying the same argument to H’ yields the matching that saturates T.
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