25102005

Trees in Computer Science

2.3.11 Definition: A rooted tree is a tree with one vertex r chosen as root. For each vertex v, let P(v) be the unique v,r-path. The parent of v is its neighbour on P(v), its children are its other neighbours. Its ancestors are the vertices in P(v)-v. Its descendants are the vertices us such that P(u) contains v. The leaves are vertices with no children. A rooted plane tree or planted tree is a rooted tree with a left-to-right ordering specified for the children of each vertex.

2.3.12 Definition: A binary tree is a rooted plane tree where each vertex has at most 2 children, and each vertex is designated as its left child or right child. A k-nary tree allows each vertex to have up to k children.

In order to reduce total code length frequently occurring symbols are given smaller code length and less frequently ones larger. This is variable length coding. While we can reduce the storage requirement for decoding we need these codewords to be prefix free. That is no code word should be a prefix of another codeword. It is very easy to construct such variable length codewords that minimize some total of length.

2.3.13 Algorithm(Huffman’s Algorithm(1952)

Input: Weights(frequencies or probabilities)
[image: image1.wmf]12

,,...,

n

ppp

Output: Prefix-free code

Idea: Infrequent items should have longer codes: put infrequent items deeper by combining them into parent nodes.

Initial case: When n=2 the optimal length is 1, with 0 or 1 being the codes assigned to the two items

Recursion: When n>2, replace the two least occurring items
[image: image2.wmf],

pp

¢

with a single item q of weight
[image: image3.wmf]pp

¢

+

. Treat the smaller set as a problem with n-1 items.

2.3.14 Example Huffman Coding:

2.3.15: Theorem Given a probability distribution
[image: image4.wmf]{}

i

p

on n items, Huffman’s algorithm produces the prefix-free code with minimum expected length.

Proof: We use induction on n. For n=2 it is optimal.

Induction Step: Suppose that for
[image: image5.wmf]2

n

>

 Huffman Coding generates minimum length code. Suppose for n-1 items the algorithm computes the optimal code by assigning codewords to the leaves and two items with the lowest probabilities are assigned to the leaves of the greatest depth, and they are siblings. Let T be the optimal tree on n items and
[image: image6.wmf]1

,

nn

pp

-

 are located at the greatest depth. Now if we delete these 2 leaves
[image: image7.wmf]and add a node with probability
[image: image8.wmf]11

nnn

qpp

--

=+

. then we have a tree on n-1 nodes and by induction hypothesis Huffman generates the best. Now total length corresponding to tree on n nodes and n-1 nodes differ by
[image: image9.wmf]1

n

q

-

. So it is better to have the 2 lowest probability leaves attached to the node with probability=
[image: image10.wmf]1

n

q

-

.

Since Huffman Coding is a two-pass algorithm in many applications requiring a kind of online transmission, quick transmission it may not be suitable since for application of Huffman coding you must be waiting for all the data to be transmitted to be at your hand, then collect frequencies and then construct tree and send the codes.

One of the solutions to it is use Dynamic Huffman Coding. In this case sender and receiver update the Huffman tree simultaneously using the same algorithm. Nth symbol is coded on the basis of optimal Huffman tree based on the n-1 symbols sent so far. Until all the individual symbols have been sent the Huffman tree will contain a node corresponding to the unsent symbols. If such a symbol comes for coding code of that node is sent together with some padding that will ensure which of the unsent symbols is being sent. After sending the symbol since its frequency increases it may deserve a better position in the tree. So the tree is updated. The algorithm always maintains a tree in which symbols and internal nodes corresponding to higher frequency are placed as far up and left as possible. Or in other words nodes are numbered top to bottom, left to right. Nodes with higher frequency will always appear earlier in the array preserving the value or will have a smaller node number.

After sending another symbol we swap the position of this node with the lowest numbered node having the same frequency, and then increase the frequency of the node corresponding to the symbol just sent. Then we again look for its father node and swap the father node with the lowest possible node number having the same frequency. We continue doing so until we have a distinct frequency(no ties) or we reach the root.

Every time a new symbol is sent the node corresponding to the new symbol is divided into two- the left one corresponding to the symbol and the right one corresponding to yet unsent symbols.

There are other ways of overcoming delays due to 2-pass nature of Huffman codes. We can take blocks of fixed sizes, create Huffman tree and code symbols and send them. For a new block we repeat this.

For further reduction of Huffman code length once can think of Huffman codes together with header for tree information as text consisting of 0’s and 1’s. Now we can think 3 or 4 consecutive bits to correspond to a symbol, count their frequencies and construct Huffman tree again to use it for further coding. This time we need to have yet another overhead of sending the 2nd Huffman tree. In this way these codes can again be treated similarly as a stream of symbols consisting of several consecutive bits, count frequencies and repeat the algorithm. However, unfortunately due to overhead of trees in every pass size of overhead will eventually discourage repetition of this coding. Success of increasing repetition count depends on how compact can we code the Huffman tree itself. One way of compressing the tree is to start from the root and append 1 if it is an internal node and 0 if it is external and continue doing so till every internal and external nodes have been taken care of. Ignoring the last two 0 bits(since the last 2 nodes will be external anyway) we can compress it in 2n-1 bits, and then we must also send the symbols in order of their appearance in the tree.

Exercise: Mod(group +5, 13)= Mod(Ex, 5)

_1189950724.unknown

_1189952514.unknown

_1189952759.unknown

_1190540088.unknown

_1189952853.unknown

_1189952587.unknown

_1189950867.unknown

_1189950549.unknown

_1189950582.unknown

_1189950320.unknown

