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CHAPTER 2 TREES AND DISTANCE

2.1.1 A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph. A leaf is a vertex of degree 1. A spanning subgraph of G is a subgraph with vertex set V(G). A spanning tree is a spanning subgraph that is a tree.

Properties of trees

2.1.3 Lemma Every tree with at least 2 vertices has at least 2 leaves.

Look at the endpoint of a maximal path.

2.1.4 Theorem: For an n-vertex graph G (with n>=1) the following are equivalent(and characterize trees with n vertices)

a) G is connected and has no cycles

b) G is connected and has n-1 edges

c) G has n-1 edges and no cycles

d) For u,v in V(G), G has exactly one u-v path

Proof: any 2 of {connected, acyclic, n-1} imply the third. A
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  by induction 
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 delete edges to remove cycles keeping connectivity in tact. 
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Let Gi, i=1,..,k be components of G. Since every vertex appears in 1 component 
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 Since G has no cycles each component satisfies A and has e(Gi)=n(Gi)-1. Sum gives us n-k. So k=1

2.1.5 Corollary a) every edge of a tree is a cut-edge, b) adding 1 edge to a tree forms exactly 1 cycle, c) every connected graph contains a spanning tree

2.1.6 Proposition: If T, T’ are spanning trees of a connected graph G and 
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, then there is an edge 
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 such that T-e+e’ is a spanning tree of G.

2.1.7 Proposition: If T, T’ are spanning trees of a connected graph G and 
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, then there is an edge 
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 such that T’+e-e’ is a spanning tree of G.

2.1.8 Proposition If T is a tree on k edges and G is a simple graph with 
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, then T is a subgraph of G.

Proof by induction

The result is sharp Kk does not contain a tree on k edges. The proposition implies that every n vertex simple graph with more than n(k-1) edges has T as a subgraph. Erdos and Sos conjectured the stronger statement that e(G)>n(k-1)/2 forces T as a subgraph. Proved for graphs without 4-cycles.

Distance in trees and graphs

2.1.9 Definition: If G has a u-v path, then the distance from u to v, written d(u,v) or d(u,v), is the least length of a u-v path. If no path then distance is infinity. Diameter is the maximum among u-v path. The eccentricity of a vertex is length of the maximum path from it. Radius is minimum eccentricity.

2.1.10 Theorem: If G is a simple graph, then 
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Proof:

2.1.12 Definition: The centre of a graph G is the subgraph induced by vertices of minimum eccentricity. The centre is full graph iff radius=diameter

2.1.13 Theorem: The centre of a tree is a vertex or an edge. Proof by induction: Form T’ by deleting all leaves and assume n(T)>2 
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Average distance in communication is more important than the maximum. So interest in minimizing 
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called Wiener index of G

2.1.14 Theorem: Among trees on n vertices Wiener index is minimum for starts and maximum for paths.

Proof: 
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2.1.15 Lemma If H is a subgraph of G then 
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Prufer’s code

Exercise: Mod(group +7, 5)= Mod(Ex, 5)

2.2 Spanning Trees and Enumerations

There are 
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simple graphs

Enumeration of trees: Cayley’s formula says that there are 
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Many proofs to it.

2.2.4 Corollary Given positive ints d1,…,dn summing to 2n-2, there are exactly 
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 trees with those degrees.

2.2.7 Definition: In a  graph G, contraction of edge e with endpoints u,v, is the replacement of  and v with a single vertex whose incident edges are the edge other than e that were incident to either u or v. The resulting graph G.e has one less edge.

2.2.8 Proposition: Let 
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denote the number of spanning trees of a graph G. If 
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is not a loop, then 
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2.2.12 Theorem(Matrix Tree Theorem) Given a loopless graph G with vertex set 
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number of edges with endpoints 
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. Let Q e a matrix in which entry (I,j) is –a(I,j) when inot = j and is d(vi) otherwise. If Q* is a matrix obtained by deleting row s and column t of Q, then 
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Decomposition and Graceful Labelings

2.2.13 Conjecture: If T is a fixed tree with m edges, then 
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 decomposes into 2m+1 copies of T.

Ringel’s conjecture    Graceful Tree Conjecture

2.2.14 Definition: A graceful labeling of a graph G with m edges is a function 
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such that distinct vertices receive distinct numbers and 
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A graph is graceful if it has a graceful labeling.

2.2.15 Conjecture: Every tree has a graceful labeling.

2.2.16 Theorem(Rosa) If a tree with m edges has a graceful labeling then 
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has a decomposition into 2m+1 copies of T.

Proof: Arrange 2m+1 vertices circularly join vertices k+I and k+j if I is adjacent to j in T….

Exercise: Mod(group +5, 11)= Mod(Ex, 5)
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