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3.3.1 Definition. A factor of a graph G is a spanning subgraph of G. A k-factor is a spanning k-regular subgraph. An odd component of a graph is a component of odd order; the number of odd components of H is o(H).

Remark. A 1-factor and a perfect matching are almost the same thing. The precise distinction is that “1-factor” is a spanning 1-regular subgraph of G while “perfect matching” is the set of edges in such a subgraph.
TUTTE’s 1-factor theorem: A graph G ha a 1-factor iff 
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Necessity: The odd components of G-S must have vertices matched to distinct vertices of S.

Sufficiency: When an edge is added between 2 components # of odd components does not increase since even and odd makes odd and 2 components of the same parity results in an even component. Hence Tutte’s condition is preserved by addition of edges:
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. Also if 
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 has no 1 factor, then G has no 1-factor.

Therefore the theorem holds unless there exists a graph G such that G satisfies Tutte’s condition, G has no 1-factor, and adding missing edge to G yields a graph with 1-factor. Let G be such a graph. We obtain a contradiction by showing that G actually does contain a 1-factor.

Let U be the set of vertices in G that have degree n(G)-1.

Case 1: G-U consists of disjoint complete graphs. In this case the vertices in each component of G-U can be paired in any way, with one extra in the odd component. Since 
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 and each vertex of U is adjacent to all of G-U, we can match the left over vertices to vertices of U.

The remaining vertices are in U, which is a clique. To complete the 1-factor, we need only show that an even number of vertices remain in U. we have matched an even number, so it suffices to show that n(G) is even. This follows by invoking Tutte’s condition for 
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, since a graph of odd order would have  component of odd order.

Case 2: G-U is not a disjoint union of cliques. In this case, G-U has 2 vertices at distance 2; these are non-adjacent vertices x,z with a common neighbour 
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. Furthermore, G-U has another vertex w not adjacent to y, since 
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. By the choice of G, adding an edge G creates a 1-factor; let M1 and M2 be 1-factors in G+xz and G+yw, respectively. It suffices to show that 
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 contains a 1-factor avoiding xz and yw, because this will be a 1-factor of G. Let 
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, both xz and yz are in F. Since every vertex of G has degree 1 in each of M1 and M2 every vertex of G has degree 0 or 2 in F. Hence the componenets of F are even cycles and isolated vertices. Let C be the cycle of F containing xz. If C does not also contain yw, then the desired 1-factor consists of the edges of M2 from C and all of M1 not in C.

If C contains both yw and xz then to avoid then we use yx or yz. In the portion of C starting from y along yw, we use edges of M1 to avoid using yw. When we reach {x,z} we use zy if we arrive at z otherwise we use xy. In the remainder of C we use the edges of M2. We have produced a 1-factor of C that does not use xz or yz. Combined with M1 or M2 outside C, we have a 1-factor of G.

3.3.8 Corollary. Every 3-regular graph with no cut-edges has a 1-factor.

Proof: Let G be a 3-regular graph with no cut-edge. We prove that G satisfies Tutte’s condition. Given 
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, we count the number of edges between S and the odd components of G-S. Since G is 3-regular, each vertex of S is incident to at most 3 such edges. If each odd component H of G-S is incident to at least 3 such edges, then 
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, as desired. Let m be the number of edges from S to H. The sum of the vertex degrees in H is 
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. Since H is a graph, the sum of its vertex degrees must be even. Since n(H) is odd m must also be odd. Since G has no cut-edge, m cannot equal 1. We conclude that there are at least 3 edges from S to H, as desired.

3.3.9. Theorem. Every regular graph of even degree has a 2-factor.

EDMOND’S BLOSSOM ALGORITHM

While in bipartite graphs we can search for augmented paths very fast the same is not true for non-bipartite graphs because of the presence of odd cycles.

3.3.15 Definition. Let M be a matching in a graph G, and let u be an M-unsaturated vertex. A flower is the union of 2 M-alternating paths from u that reach a vertex x on steps of opposite parity. The stem of the flower is the maximal common initial path. The blossom of the flower is the odd cycle obtained by deleting the stem.

3.3.17 Algorithm(Edmond’s blossom algorithm)

Input: Graph G, a matching M in G, an unsaturated vertex u.

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and contracting blossoms when found. Maintain sets S and T analogous to those in Algorithm 3.2.1,with S consisting of u and the vertices reached along the saturated edges. Reaching an unsaturated vertex yields an augmentation.

Initialize: S={u} and T=emptyset

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u. Otherwise, select an unmarked 
[image: image15.wmf]vS
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. To explore from v, successively consider each y in N(v) such that y is not in T.

If y is unsaturated by M, then trace back from y (expanding blossoms if needed) to report an M augmenting u-y path.

If y in S then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing it vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

Otherwise y is matched to some w by M. Include y in T(reached from v) and include w in S.

After exploring all such neighbours of v, mark v and iterate.
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