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Ramsey Theory

Ramsey theory refers to the study of partitions of large structures. Typical results state that a special substructure must occur in some class of the partition. Motzkin described this by saying that “complete disorder is impossible:. Ramsey’s theorem generalizes the pigeon hole principle, which itself concerns partition of sets.

8.3.1. Proposition. Among six persons it is possible to find 3 mutual acquaintances or 2 mutual non-acquaintances.

8.3.2. Theorem. If T is a spanning tree of the k-dimensional cube 
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, then there is an edge of 
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 outside T whose addition to T creates a cycle of length at least 2k.

8.3.3. Theorem. Every list of more than 
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 distinct numbers has a monotone sublist of length more than n.

8.3.4. Theorem. In every labeling of 
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using distinct integers, there is a trail of length at least n-1 along which labels strictly increase.

Ramsey’s Theorem

8.3.6. Definition. Let 
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 denote the set of r-element subsets (r-sets) o a set S. A set 
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is homogenous under a colouring of 
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 if all r-sets in T receive the same colour; it is i-homogenous if that colour is i.
Let 
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be positive integers. If there is an integer N such that for every k-colouring of 
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yields an i-homogenous set of size 
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 for some I, then the smallest such integer is the Ramsey number 
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We consider small examples like the case r=k=2, which is easy in terms of edge colouring of graphs.
When r=2, a k-partition of 
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 is merely a k-edge-colouring of the complete graph with vertex set S. 

By proposition 8.3.1 
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. This argument  can be extended to prove that 
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8.3.7. Theorem Given positive integers 
[image: image15.wmf]1

 and ,...,

k

rpp

, there exists an integer N such that every k-colouring of 
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 yields an i-homogenous set of size 
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 for some i.

8.3.8. Given an integer m, there exists a least integer N(m) such that every set of at least N(m0 points in the plane with no 3 collinear contains an m-subset forming a convex m-gon.
When r=2 we use a simpler notation 
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8.3.9. R(3,3)=6, R(3,4)=9 Take a 8 wheel to be convinced of this.

8.3.11. Theorem. 
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8.3.12. Theorem. 
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Graph Ramsey Numbers

8.3.14 If T is an m-vertex tree, then 
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8.3.15. Theorem. 
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