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4.1 Cuts and Connectivity
4.1.1 Definition. A separating set or vertex cut of a graph G is a set 
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SVG

Í

such that G-S has more than one component. The connectivity of G written 
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, is the minimum size of the vertex set S such that G-S is disconnected or has only one vertex. A graph is k-connected if its connectivity is at least k.
4.1.2 Example. Connectivity of 
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. Because a clique has no separating set, we need to adopt a convention for its connectivity. 
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 when G is not a complete graph. Consider a bipartition 
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. Every induced graph having at least 1 vertex from X and 1 from Y is connected. Hence every separating set of  
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contains X or Y. So 
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. A graph with more than 2 vertices has connectivity 1 iff it is connected and has a cut-vertex.
4.1.3 The hypercube 
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. For 
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 the neighbours of one vertex in 
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form a separating set, so 
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. To prove that 
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 we show that every vertex cut has size at least k. We use induction on k.

Basis Step: 
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For 
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 is a clique on k+1 vertices and has connectivity k.
Induction Step: 
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. By induction hypothesis 
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. Consider the description of 
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 plus a matching that joins corresponding vertices of Q and 
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. Let S be  a vertex cut in 
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. If Q-S is connected and 
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-S is connected, then 
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-S is also connected unless S contains at least 1 endpoint of every matched pair. This requires 
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Hence we may assume that Q-s is disconnected, which means that S has at least k-1 vertices in Q, by the induction hypothesis. If S contains no vertices of 
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, then 
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-S is connected and all vertices of Q-S have neighbours in 
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-S, so 
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-S is connected. Hence S must also contain a vertex of 
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. This yields 
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4.1.4 Example. Given k<n, place n vertices around a circle, equally spaced. If k is even, form 
[image: image31.wmf],
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by making each vertex adjacent to the nearest k/2 vertices in each direction around the circle. If k is odd and n is even, form 
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 by making each vertex adjacent to the nearest (k-1)/2 vertices in each direction and to the diametrically opposite vertex. In each case, 
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 is k-regular.

When k and n are both odd, index the vertices by the integers modulo n. Construct 
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from 
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 by adding edges (i,i+(n-1)/2) for 0<=i<=(n-1)/2.

4.1.5 Theorem. 
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, and hence the minimum number of edges in a k-connected graph on n vertices is ceiling(kn/2).

Proof: Only consider the case of k=2r. Let 
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 it suffices to prove that 
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 we prove that G-S is connected. Consider 
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. The original circular arrangement has a clockwise and anticlockwise u,v-path along the circle; let A and B be the sets of internal vertices on these 2 paths. Since 
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 the pigeonhole principle implies that in one of {A,B}, S has fewer than k/2 vertices. Since in G each vertex has edges to the next k/2 vertices in a particular direction, deleting fewer than k/2 consecutive vertices cannot block the travel in that direction. Thus we can find a u,v-path in G-S via the set A or B in which S has fewer than k/2 vertices.

4.1.7 Definition. A disconnecting set of edges is a set 
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has more than 1 component. A graph is k-edge connected if every disconnecting set has at least k edges. The edge connectivity  of G, written 
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is the minimum size of a disconnecting set.
Given 
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we write [S,T] for the set of edges having one endpoint in s and the other in T. An edge cut is an edge set of the form 
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, where S is a nonempty proper subset of V(G).

4.1.9 Theorem If G is a simple graph, then 
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Proof: The edges incident to a vertex v of minimum degree form an edge cut; hence 
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. It remains to show that 
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We have observed that 
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. If every vertex of S is adjacent to every vertex of 
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 Otherwise we choose 
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x and y non-adjacent. Let T consist of all neighbours of x in 
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 and all vertices of S-{x}with neighbours in 
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. Every x,y-path passes through T, so T is a separating set. Also, picking the edges from x to 
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and one edge from each vertex of 
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 to 
[image: image58.wmf]S

 yields |T| distinct edges of 
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4.1.16 Definition. A block of a graph G is a maximal connected subgraph of G with no cut-vertex.

4.1.19 Proposition. Two block in a graph share at most one vertex.

Proof. By contradiction.

4.2 k-connected graphs

4.2.1 2 paths from u to v are internal disjoint if they have no common internal vertex.

4.2.2 Theorem. A graph G having at least 3 vertices is 2-connected iff for each pair 
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there exist internally disjoint u,v paths.

Proof: Sufficiency when there are more then one paths removal of a vertex will not make it disconnected.

Necessity: Suppose G is 2-connected. We prove by induction on d(u,v) that G has internally disjoint u,v-paths.

Basis d(u,v)=1, G-uv is connected since 
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A uv-path is internally disjoint in G from the u,v-path formed by the uv edge itself.

Induction step(D(u,v)>1) Let k=d(u,v). Let w be the vertex before v on the shortest u,v-path; we have d(u,w)=k-1. By the induction hypothesis G has internally disjoint u,w-paths P and Q. If 
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 then we find the desired paths in the cycle 
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. Suppose not. Since G is 2 –connected, G-w is connected and contains a u,v-path R. If R avoids P or Q we are done, but R may share internal vertices with both P and Q. Let z be the last vertex of R(before v) belonging to 
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. B symmetry we may assume z to be in P. we combine u,z-subpath of P with z,v-subpath of R to obtain a u-v-path internally disjoint from 
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4.3 Network Flow Problems

4.3.1 Definition. A network is a digraph with a nonnegative capacity c(e) on each edge and a distinguished source vertex s and sink vertex t. Vertices are also called nodes. A flow f assigns a value f(e) to each edge e. We write 
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 for the total flow on edges leaving v and 
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for the total flow on edges entering v. A flow is feasible if it satisfies the capacity constraints 
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 for each edge and the conservation constraints 
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4.3.2 Definition. The value val(f) of a flow f is the net flow 
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into the sink. A maximum flow is a feasible flow with maximum value.

4.3.4 Definition. When f is a feasible flow in a network N, an f-augmenting path is a source-to-sink path P in the underlying graph G such that for each 
[image: image72.wmf]()
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a) if P follows e in the forward direction, then f(e)<c(e)

b) if P follows e in the backward direction then f(e)>0

Let 
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when e is forward on P, let 
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when e is backward on P. The tolerance of P is 
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4.3.5 If P is an f-augmenting path with tolerance z, then changing flow by +z on edges followed forward by P and by –z on edges followed backward by P produces a feasible flow f’ with val(f’)=val(f)+z

Proof:

4.3.6 Definition. In a network, a source/sink cut [S,T] consists of the edges from a source set S to a sink set T, where S and T partition the set of nodes, with 
[image: image76.wmf]and
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. The capacity of the cut [S,T] written cap(S,T), is the total capacities on the edges of [S,T].

4.3.7 Lemma. If U is a set of nodes in a network, then the net flow out of U is the sum of the net flows out of the nodes in U. In particular, if f is  a feasible flow and [S,T] is a source/sink cut, then the net flow out of S and net flow into T equal val(f).

4.3.9 Algorithm. (Ford-Fulkerson labeling algorithm)

Input: A feasible flow f in a network.

Output: An f-augmenting path or a cut with capacity val(f)

Idea: Find the nodes reachable from s by paths with positive tolerance. Reaching t completes an f-augmenting path. During the search, R is the set of nodes labeled Reached, and S is the subset of R labeled searched.

Initialization: R={s}, S=emptyset

Iteration: Choose 
[image: image77.wmf]vRS
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For each exiting edge vw with f(vw)<c(vw) and 
[image: image78.wmf]wR
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, add w to R.


For each entering edge uv with f(uv)>0 and 
[image: image79.wmf]uR
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, add u to R.

Label each vertex added to R as reached and record v a the vertex reaching it. After exploring all edges at v, add v to S.


F sink t has been reached (put in R) then trace the path reaching t to report an f-augmenting path and terminate. If R=S, then return the cut 
[image: image80.wmf][,]
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 and terminate. Otherwise iterate.

4.3.11 (Max-flow Min-cut Theorem –Ford-Fulkerson) In every network, the maximum value of a feasible flow equals the minimum capacity of a source-sink cut.

4.3.12 Corollary. (Integrality Theorem) I all capacities in a network are integers, then there is a maximum flow assigning integral flow to each edge. Furthermore, some maximum flow can be partitioned into flows of unit value along paths from source to sink.

4.3.16 Application. Baseball Elimination Problem

At some time during the season, we may wonder whether X can still win the championship. In other words, can winners be assigned for the remaining games so that no team ends with more victories than X? if so, then such an assignment exists with X winning all its remaining games, reaching W wins. We want to know whether winners can be chosen for other games so that no team obtains more than W wins. To test this, we create a network where units of flow correspond to the remaining games.
Let 
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 be the other teams. Include nodes 
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for the n teams, nodes 
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 pairs of teams, and a source s and sink t. Put an edge from s to each team node and an edge from each pair node to t. Each pair node 
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 is entered by edges from 
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. The capacities model the constraints. The capacity on edge 
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, the number of remaining games between 
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. Given that 
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 has won 
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games already, the capacity on edge 
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 to keep X in contention. The capacity on edges 
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 is 
[image: image93.wmf]¥

. By integrality theorem there is an integral flow that can be broken into  flow units.. Each unit corresponds to one game; the first edge specifies the winner
Supplies and Demands and the last edge specifies the pair. The network has a flow of value 
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iff all remaining games can be played with no team exceeding W wins; this is the condition for X remaining in contention.
If we have multiple sources and multiple sinks then such digraph can be converted into a single-source single-sink problem simply by having a super source linked to all sources with sufficient capacity and super-sink linked from sinks also with sufficient capacity.
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