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Colouring of Graphs

5.1.1 Definition. A k-colouring of a graph G is a labelin 
[image: image1.wmf]:()

fVGS

®
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. The labels are colours; the vertices of one colour form a colour class. A k-colouring is proper if adjacent vertices have different labels. A graph is k-colourable if it has a proper k-colouring.The chromatic number 
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is the least k such that the graph is k-colourable.

5.1.2. Remark. Ina  proper colouring, each colour class is an independent set, so G is k-colourable iff V(G) is the union of k independent sets. Thus k-colourable and k-partite has the same meaning.

Graphs with loops are uncolourable.

5.1.4. Definition. A graph is k-chromatic if . A proper k-colouring of a k-chromatic graph is an iptimal colouring. If 
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 for every proper subgraph H of G, then G is colour-critical or k-critical.

5.1.6 Definition. The clique number of a graph G written as 
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, is the maximum size of a set of pairwise adjacent vertices(clique) I G.
5.1.7 Proposition. For every graph G,
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5.1.22 Theorem(Brooks) If G is a connected graph other than a complete graph or an odd cycle then 
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Planar Graphs
Drawings in the plane

6.1.2 Proposition. 
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 cannot be drawn without crossing.

Proof: Consider a drawing of 
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 in the plane. Let C be  a spanning cycle. If the drawing does not have crossing edges, then C is drawn as a closed curve. Chords of C must be drawn inside or outside this curve. 2 chords conflict if their end points on C occur in alternating order. When 2 chords conflict, we can draw only one inside  and one outside C.

A 6-cycle in 
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 has 3 pairwise conflicting chords. We can put at most one inside and one outside, so it is not possible to complete the embedding. When C is a 5-cycle in 
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, at most 2 chords can go inside or outside. Since there are 5 chords, again it is not possible to complete the embeddings. Hence neither of these graphs is planar.

6.1.4 Definition. A graph is planar if it has a drawing without crossings. Such a drawing is a planar embedding of G. A plane graph is a particular embedding of a plane graph.

6.1.7 The dual Graph G* of a plane graph G is a plane graph whose vertices correspond o faces of G. The edges of G* correspond to the edges of G as follows: if e is an edge of G with face X on one side and face Y on the other side, then the endpoints of the dual edge e*
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are the vertices x,y of G* that represent the faces X,Y of G. The order of the plane of the edges incident to 
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is the order of the edges bounding the face X of G in a walk around its boundary.
6.1.17 Definition. A graph is outerplanar if it has an embedding in which all vertices appear on the boundary of an unbounded face.

6.1.21 Theorem. If a connected plane graph G has exactly n vertices, e edges and f faces then n-e+f=2

6.1.23 Theorem. If G is a simple planar graph with a t least 3 vertices, then 
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. If also G is triangle free then 
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6.1.26 proposition. For a simple n-vertex plane graph G, the following are equivalent a) G has 3n-6 edges, b) G is a triangulation, c) G is a maximal plane graph.
6.2.1 Proposition. If G has a subgraph that is a subdivision of 
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 then G is nonplanar.
6.2.2 Theorem (Kuratowski 1930) A graph is planar iff it does not contain a subdivision of 
[image: image17.wmf]53,3

 or 

KK

.

6.2.3. A Kuratowski subgraph of G is a subgraph of G that is a subdivision of 
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. A minimal nonplanar graph is a nonplanar graph such that every proper subgraph is planar.

6.2.4. If F is the edge set of a face of a planar embedding of G, then G has an embedding with F being the edge set of the unbounded face.

6.2.4. Ever minimal nonplanar graph is 2-connected.

6.2.6. Let S={x,y} be a separating 2-set of G. If G is nonplanar, then adding the edge xy to some S-lobe of G yields a nonplanar graph.

6.2.7. If G is a graph with the fewest edges among all nonplanar graphs without Kuratowski subgraphs, then G is 3-connected.
6.2.8. A convex embedding of  graph is a planar embedding in which each face boundary is a convex polygon.

Our hypotheses are “3-connected” and “no Kuratowski subgraph” and conclusion is “convex embedding”

6.2.9. Every 3-connected graph with at least 5 vertices has an edge e such that G.e is 3-connected.

6.2.10 If G has no Kuratowski subgraph then G.e also does not have a Kuratowski subgraph.

6.2.11. If G is a 3-connected graph with no subdivision of 
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, then G has a convex embedding in the plane with no 3 vertices on a line.

6.2.12. A graph H is a minor of G if a copy of H can be obtained from G by deleting and/or contracting edges of G.

Planarity Testing

6.2.15 When H is a subgraph of G, an H-fragment of G is either 1) an edge not in H whose endpoints are in H, or 2) a component of G-V(H) together with the edges that connect it to H.

6.2.16. Let C be a cycle in a graph G. Two C-fragments A,B conflict if they have 3 common vertices of attachment to C or if there are 4 vertices 
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 in cyclic order on C such that 
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 are vertices of attachment of A and 
[image: image23.wmf]2

,

v



 EMBED Equation.DSMT4  [image: image24.wmf]4

v

 are vertices of attachment of B. The conflict graph of C is a graph whose vertices are the C-fragments of G, with conflicting C-fragments adjacent.

6.2.17 Algorithm(Planarity Testing)

Input: A 2-connected graph. (Since G is planar iff each block of G is planar and algorithm 4.1.23 computes blocks, we may assume that G is a block with at least 3 vertices)

Idea: Successively add paths from current fragments. Maintain the vertex sets forming face boundaries of the subgraph already embedded.

Initialization: 
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is an arbitrary cycle in G embedded in the plane, with 2 face boundaries consisting of its vertices.

Iteration: Having determined 
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, find 
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 as follows:

1. Determine all 
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-fragments of the input block G

2. For each 
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-fragment B, determine all faces of 
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 that contain all vertices of attachment of B; call this set F(B)

3. If F(B) is empty for some B, return NONPLANAR. If |F(B)|=1 for some B, select such a B. If |F(B)|>1for every B, select any B.

4. Choose a path P between two vertices of attachment of the selected B. Embed P across a face in F(B). Call the resulting graph 
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 and update the list of face boundaries.

5. If 
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, return PLANAR. Otherwise, augment i and return to Step 1.

6.3.1 Theorem (Five colour theorem Heawood 1890) Every planar graph is 5 colourable.

Crossing Number

6.3.9 Definition. The thickness of a graph is the minimum number of planar graphs in a decomposition of G 9nto planar graphs.

6.3.10 Proposition. A simple graph G with n vertices and m edges has thickness at least m/(3n-6). If G has no triangles, then it has thickness at least m/(2n-4).

6.3.11. Definition. The crossing number 
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of a graph is the minimum number of crossings in a drawing of G in the plane.
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6.3.13 Proposition. Let G be an n-vertex graph with m edges. If k is the maximum number of edges in a planar subgraph of G then 
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. Furthermore, 
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Proof: Given a drawing of G in the plane, let H be a maximal subgraph of G whose edges do not cross in this drawing. Every edge not in H crosses at least one edge in H; otherwise, it could be added to H. since H has at most k edges, we have at least m-k crossings between edges of H and edges in G-E(H).
After discarding E(H), we have at least m-k edges remaining. The same argument yields at least (m-k)-k crossings in the drawing of the remaining graph. Iterating the argument yields at least 
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 crossings, where 
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. Now substituting the value of t we get the desired inequality.
6.3.14. Theorem(R Guy)
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6.3.16. Theorem. Let G be a simple graph. If 
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6.3.18 Theorem. There are at most 
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pairs of points at a distance 1 among a set of n points in the same plane.
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