
Operating Systems
Lecture #4

THE CRITICAL SECTION PROBLEM

1. MOTIVATION OF CRITICAL SECTION PROBLEM

In order to explain the motivation of critical section in concurrent processes, let us illustrate

simple example that is representative of operating systems.

THE PRODUCER/CONSUMER PROBLEM

1) Problem description

Producer/consumer processes are common in operating systems A producer process

produces information that is consumed by a consumer process (A compiler produce

assembly code, which is consumed by an assembler).

To allow producer and consumer processes to run concurrently, we must create a pool

of buffers that can be filled by the producer and consumed by the consumer. The

bounded buffer producer/consumer problem assumes that there is a fixed number, n, of

buffers (the consumer wait all the buffers are empty and the producer must wait if all

the buffers are full).

The producer and consumer must be synchronized so that the consumer does not try to

consume items which have not yet been produced.

2) Solution to the bounded buffer problem

The shared variables are:

TYPE item = ... ;

VAR buffer: ARRAY[0..n-1] OF item;

/* Circular array with two logical pointers in, out */

counter: INTEGER; /* Initialize to 0 */

in, out: 0..n-l; /* in points to the next free buffer, our points to the first full

buffer. The pool empty when in=out while full when in+l

MOD n = out. Initialize to the value 0 */

1

PARBEGIN

PRODUCER: BEGIN

REPEAT

....

produce an item in nextp /* nextp is a local variable in which the new item to

be produces is stored */

....

WHILE counter = n DO skip; /* tests the condition repeatively until it

becomes false */

buffer[in] := nextp;

in := (in + 1) MOD n;

counter := counter + 1;

UNTIL false;

END PRODUCER;

CONSUMER BEGIN

REPEAT

WHILE counter = 0 DO skip;

nextc: buffer[out];

/* local variable nextc in which the item to be consumed */

out := (out + 1) MOD n;

counter := counter -1;

....

consume the item in nextc

....

UNTIL false;

END CONSUMER

PAREND;

3) Observation

Although both the producer and consumer routines are correct separately, they may not

function correctly when executed concurrently.

Suppose that the value of counter is currently 5 and that the procedure and consumer

processes execute the statements "counter := counter + 1" and "counter := counter -1"

concurrently. We define that Ti is time instance in CPU where i = 0 to n.

T0: producer EXECUTE registerl := counter {registerl = 5}

T1: producer EXECUTE registerl := registerl + 1 {registerl = 6}

T2: consumer EXECUTE register2 := counter {register2 = 5}

T3: consumer EXECUTE register2 := register2 - 1 {register2 = 4}

T4: producer EXECUTE counter := registerl {counter = 6}

T5: consumer EXECUTE counter := register2 {counter = 4}

2

Notice that we have at the incorrect state "counter = 4" recording that there are four full

buffers when in fact there are five full buffers. If we reverse the order of the statement

at T4 and T5 we would arrive at the incorrect state "counter = 6".

4) Conclusion

We may arrive at this incorrect state because we allowed both processes to manipulate

the variable "counter" concurrently. In order to solve this problem, we need to ensure

that only one process at a time may be manipulating the variable "counter". This

observation leads us to critical section problem.

2. PROBLEM DEFINITION

Consider a system consisting of n cooperating processes {P1, P2 ,..., Pn}.

1) Definition of critical section:

Each process has a segment of code, called a critical section, in which the process may

be reading common variables, updating a table, writing a file, and so on.

2) Definition of mutual exclusion:

When one process is executing in its critical section, no other process is to be allowed

to execute in its critical section. Thus the execution of critical section by the processes

is mutually exclusive in time.

3) Three requirements of the mutual exclusion

a) Mutual Exclusion.

If process Pi is execution in its critical section then no other process can be executing

in its critical section.

b) Progress.

If no process is executing in its critical section and there exist some processes that

wish to enter their critical section, then only those processes that are not executing

in their remainder section can participate in the decision as to who will enter the

critical section next; and this selection cannot be postponed indefinitely.

c) Bounded Waiting.

There must exist a bound on the number of times that other processes are allowed

to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

3. TWO-PROCESS SOFTWARE SOLUTIONS

We trace the initial attempts made in trying to develop algorithms for ensuring mutual

exclusion. General structure of the problem is:

3

BEGIN

common variable declarations;

PARBEGIN

P0;

P1;

PAREND;

END.

1) Algorithm 1

a) Descriptions

* Common integer variable turn initialize to 0 (or 1).

* If turn = i, then process Pi is allowed to execute in its critical section.

If turn = j, then process Pj is allowed to execute in its critical section.

P0: P1:

REPEAT REPEAT

WHILE turn <> i DO skip; WHILE turn <> j DO skip;

Critical section Critical section

turn := j; turn := i;

remainder section remainder section

UNTIL false; UNTIL false;

b) Discussion

i) Mutual exclusion is guaranteed. Only one process at a time can be its critical

section.

ii) Violate progress requirement:

It requires strict alternation of processes in the execution of the critical section.

Suppose turn = 0 and P0 is in remainder section. At that moment, P1 wants

to enter the critical section but P1 can not do so even though P0 is in its

remainder section.

iii) Violate bounded waiting requirement:

If turn = i and Pi do not want to enter the critical section then Pj

may wait forever.

iv) The problem is that it fails to remember the state of each process, but remembers

only which process is allowed to enter its critical section.

4

2) Algorithm 2

Variable turn with the following array.

VAR flag: ARRAY [0..1] OF boolean; /* initialize to false */

If flag[i] is true, then process Pi is executing in its critical section.

If flag[j] is true, then process Pj is executing in its critical section.

P0: P1:

REPEAT REPEAT

WHILE flag[j] DO skip;¡ WHILE flag[i] DO skip;

flag[i] := true; flag[j] := true;

critical section ¡ critical section

flag[i] := false; flag[j] := false;

remainder section remainder section

UNTIL false; UNTIL false;

a) Discussion

i) Violating the mutual-exclusion requirement.

T0: P0 enters the while statement and find flag[1] = false.

T1: P1 enters the while statement and finds flag[0] = false.

T2: P1 set flag[l] = true and enters the critical section.

T3: P0 sets flag[0] = true and enters the critical section.

3) Algorithm 3

a) Description

The problem with algorithm 2 is that process Pi made a decision concerning the state

of Pj before Pj had the opportunity to change the state of the variable flag[j]. This

time, the setting of flag[i] = true indicates only that Pi wants to enter the critical

section.

REPEAT REPEAT

flag[i] := true; flag[j] := true;

WHILE flag[j] DO skip: ¡ WHILE flag[i] DO skip;

critical section critical section

flag[i] := false; flag[j] := false;

remainder section remainder section

UNTIL false; UNTIL false;

5

b) Discussion

* Guarantee mutual exclusion.

* Violate the progress requirement.

T0: P0 sets flag[0] = true.

T1: P1 sets flag[l] = true.

Now P0 and P1 are looping forever in their respective WHILE statements.

4) Algorithm 4 (Peterson Algorithm)

a) Processes share two variables in common:

VAR flag: ARRAY [0..l] OF boolean;

turn: 0..1;

Initially flag[0] = flag[l] = false and the value of turn is immaterial (either 0 or 1).

P0: P1:

REPEAT REPEAT

flag[i] := true; ¡ flag[j] := true;

turn := j; turn := i;

WHILE (flag[j] AND turn=j) DO skip WHILE (flag[i] AND turn = i) DO skip;

critical section critical section

flag[i] := false; flag[j] := false;

remainder section remainder section

UNTIL false; UNTIL false;

b) Discussion

i) To prove property of mutual exclusion

We note that each Pi enters its critical section only if either section only if

either flag[j] = false or turn = i. Also note that if both processes could be

executing in their critical sections at the same time then flag[0] = flag[l] = true.

These two observations imply that P0 and P1 could not have successfully executed

their WHILE statement at about the same time, since the value of turn can be either

0 or 1, but not both. Hence, one of the processes, say Pj, must have successfully

executed the WHILE statement, while Pi had to at least execute one additional

statement "turn = j". However, since at that point in time flag[j] = true, and turn

= i, and this condition will persist as long as Pj is in its critical section, the result

follows: mutual exclusion is preserved.

ii) To prove properties Progress and Bounded waiting, a process Pi can be prevented

from entering the critical section only if it stuck in the WHILE loop with the

condition flag[j] = true and turn = j; this is the only loop. If Pj is not interested

in entering the critical section, then flag[j] = false and Pi can enter its critical

section. If Pj has set flag[j] = false and is also executing in its WHILE statement,

6

then either turn = i or turn = j. If turn = i, then Pi will enter the critical section

If turn = j, then Pj will enter the critical section. However, once Pj exits its

critical section, it will reset flag[j] to false allowing Pi to enter its critical section.

If Pi does not change the value of the variable turn while executing the while

statement, Pi will enter the critical section (Progress) after at most one entry by Pj

(bounded-wailing).

5) Dekker's Algorithm

The first known correct software solution processes, P0 and P1, share the following

variables:

VAR flag: ARRAY [0..1] OF boolean; /* Initially false */

turn: 0..l;

The program below is for process Pi (i = 0 or 1) with process Pj (j = 1 or 0) being

the other one.

REPEAT

flag[i] := true;

WHILE flag[j] DO

IF turn = j THEN

BEGIN

flag[i] := false;

WHILE turn= j DO skip;

flag[i] := true;

END;

...

critical section

...

turn := j;

flag[i] := false;

...

remainder section

...

UNTIL false;

4. HARDWARE SOLUTIONS

i) INTRODUCTION

The critical section problem could be simply solved if we could disallow interrupts to

to occur while a shared variable is being modified. Many machines, thus, provide

special hardware instructions that allow one to either test and modify the contents of two

7

words, or to Swap the contents of two words, in one instruction cycle.

Let us abstract the main concepts behind these types of instructions by defining the

Test-and-Set instruction as follows:

FUNCTION Test-and-Set (VAR target : boolean): boolean;

BEGIN

Test-and-set := target;

target := true;

END;

and the Swap instruction as follows:

PROCEDURE Swap (VAR a, b: boolean);

VAR temp : boolean;

BEGIN

temp := a;

a := b;

b := temp;

END;

These instructions are executed atomically (one instruction cycle).

If the machine supports the Test-and-Set instruction, then mutual exclusion can be

implemented by declaring a boolean variable lock, initialize to false.

REPEAT

WHILE Test-and-Set(lock) DO skip;

critical section

lock := false;

remainder section

UNTIL false;

If the machine support the Swap instruction, then mutual exclusion can provided in a

similar manner. A global boolean variable lock is declared which is initialize to false.

In addition, each process also has a local boolean variable key.

REPEAT

key := true;

REPEAT

Swap (lock, key);

UNTIL key = false;

8

critical section

lock := false;

remainder section

UNTIL false;

Test_and_Set

VAR Active:Boolean;

PRODUCER Process_One

VAR One_Cannot_Enter: Boolean

BEGIN

One_Cannot_Enter := True;

WHILE One_Cannot_Enter DO

Test_And_Set(One_Cannot_Enter, Active);

.........

Critical Section;

.........

Active := False;

.........

Remainder Section;

END_WHILE

END

The algorithms presented above do not satisfy the bounded-waiting requirement.

To do so additional variables must be used. Below, we present an algorithm that uses

the Test-and-Set instruction, and which satisfies all the required critical section

requirements.

The common data structures are:

VAR waiting: array[l..n-1] OF boolean

lock: BOOLEAN

These data structures are initialize to false.

The structure of process Pi is:

VAR j: 0..n-1;

key: BOOLEAN;

REPEAT

waiting[i] := true:

key := true;

WHILE waiting[i] AND key DO key := Test-and-Set(lock);

waiting[i] := false;

9

critical section

j := i+l MOD n;

WHILE (j <> i) AND (NOT waiting[j]) DO j := j + 1 MOD n;

IF j = i THEN lock := false

ELSE waiting[j] := false;

remainder section

UNTIL false;

To prove that the mutual-exclusion requirement is met, we note that

process Pi can enter its critical section only if either waiting[i] = false or

key = false. Key can become false only by executing the Test-and-Set. The

first process to execute the Test-and-Set will find key = false; all others¡

must wait. Waiting[i] can become false only if another process leaves its critical

section; only one waiting[i] is set true, maintaining the mutual-exclusion requirement.

To prove the progress requirement, we note that the arguments presented

above for mutual exclusion also apply here, since a process exiting the critical

section either sets lock to false, or waiting[i] = false.

Both allow a trying process to enter its critical section.

To prove bounded-waiting. we note that when a process leaves its critical

section, it scans the array waiting in the cyclic ordering (i+l. i+2,..., n-1, 0,

..., i-1). It designates the first process in this ordering which is in its

entry section (waiting[j] = true) as the next one to enter its critical section.

Any process waiting to enter its critical section will thus do so within n-l turns.

10

