1. Introduction

Sungyoung Lee

College of Engineering KyungHee University

Contents

- **n** What is an Operating System?
- n Mainframe Systems
- n Desktop Systems
- n Multiprocessor Systems
- n Distributed Systems
- n Clustered System
- n Real -Time Systems
- n Handheld Systems
- n Computing Environments

What is an Operating System?

- **n** A program that acts as an intermediary between a user of a computer and the computer hardware
- **n** Operating system goals:
 - ü Execute user programs and make solving user problems easier
 - **ü** Make the computer system convenient to use
- n Use the computer hardware in an efficient manner

Computer System Components

- 1. Hardware provides basic computing resources (CPU, memory, I/O devices)
- 2. Operating system controls and coordinates the use of the hardware among the various application programs for the various users
- 3. Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs)
- 4. Users (people, machines, other computers)

Abstract View of System Components

Operating System Definitions

- n Resource allocator manages and allocates resources
- Control program controls the execution of user programs and operations of I/O devices
- **n** Kernel the one program running at all times (all else being application programs)

What is an OS?

n OS is a resource manager

- ü Abstraction
- ü Sharing
 - § Time multiplexing
 - § Space multiplexing
- ü Protection
- ü Fairness
- ü Performance

Resources § CPU § Memory § I/O devices § ...

n OS provides the program execution environment

System Software Layers

Mainframe Systems

- n Reduce setup time by batching similar jobs
- n Automatic job sequencing automatically transfers control from one job to another. First rudimentary operating system

n Resident monitor

- ü initial control in monitor
- ü control transfers to job
- ü when job completes control transfers pack to monitor

Memory Layout for a Simple Batch System

Multiprogrammed Batch Systems

Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.

0	
0	operating system
	job 1
	job 2
	job 3
512K	job 4

OS Features Needed for Multiprogramming

- **n** I/O routine supplied by the system
- n Memory management the system must allocate the memory to several jobs
- n CPU scheduling the system must choose among several jobs ready to run
- n Allocation of devices

Time-Sharing Systems–Interactive Computing

- n The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory)
- **n** A job swapped in and out of memory to the disk
- n On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard
- **n** On-line system must be available for users to access data and code

Terminology

- n Batch, Multiprogramming, Time-sharing(or Multitasking)
 ü von Neumann architecture
- n Job scheduling vs. CPU scheduling
- n Job, Task, Process
- n Concurrent, Simultaneous, Parallel

- **n** Personal computers computer system dedicated to a single user
- n I/O devices keyboards, mice, display screens, small printers
- **n** User convenience and responsiveness
- n Can adopt technology developed for larger operating system' often
- n Individuals have sole use of computer and do not need advanced CPU utilization of protection features
- n May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

- n Multiprocessor systems with more than one CPU in close communication
- **n** *Tightly coupled system* processors share memory and a clock; communication usually takes place through the shared memory

n Advantages of parallel system:

- ü Increased throughput
- ü Economical
- ü Increased reliability
 - § graceful degradation
 - § fail-soft systems (fault-tolerant systems)
- n Cf) Co-processor or controller

Parallel Systems (Cont'd)

n Symmetric multiprocessing (SMP)

- ü Each processor runs and identical copy of the operating system
- ü Many processes can run at once without performance deterioration
- ü Most modern operating systems support SMP

n Asymmetric multiprocessing

- ü Each processor is assigned a specific task; master processor schedules and allocated work to slave processors
- ü More common in extremely large systems

Symmetric Multiprocessing Architecture

Distributed Systems

- **n** Distribute the computation among several physical processors
- n Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines

n Advantages of distributed systems

- ü Resources Sharing
- ü Computation speed up load sharing
- ü Reliability
- ü Communications

Distributed Systems (Cont'd)

- **n** Requires networking infrastructure
- n Local area networks (LAN) or Wide area networks (WAN)
- n May be either client-server or peer-to-peer systems

General Structure of Client-Server

Clustered Systems

- n Clustering allows two or more systems to share storage
- **n** Provides high reliability (or high availability)
- **n** Asymmetric clustering: one server runs the application while other servers standby
- **n** Symmetric clustering: all N hosts are running the application
- **n** Cf) Grid Computing
- n Cf) Distributed Lock Manager (DLM), Storage Area Network (SAN)

Real-Time Systems

- n Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems
- n Well-defined fixed-time constraints
- n Real-Time systems may be either *hard* or *soft* real-time

Real-Time Systems (Cont'd)

n Hard real-time:

- ü Secondary storage limited or absent, data stored in short term memory, or readonly memory (ROM)
- ü Conflicts with time-sharing systems, not supported by general-purpose operating systems

n Soft real-time

- ü Limited utility in industrial control of robotics
- ü Useful in applications (multimedia, virtual reality) requiring advanced operatingsystem features

Handheld Systems

- n Personal Digital Assistants (PDAs)
- n Cellular telephones

n Issues:

- ü Limited memory
- ü Slow processors
- ü Small display screens

Migration of Operating-System Concepts and Features

Computing Environments

- n Traditional computing
- n Web-based computing
- n Embedded computing

1st Generation (1945-55)

- **n** Vacuum Tubes and Plugboards
- n No OS
- **n** No Programming Languages
- **n** No Assembly Languages

2nd Generation (1955-65)

n Transistors and Mainframes

n Batch systems

ü One job at a time	
ü Card readers, tape drives, line printers	operating
	system
ü OS is always resident in memory and merely transfers a c	
ü CPU is underutilized due to the bottleneck in I/O	
	user program
	area

3rd Generation (1965-80)

n Integrated Circuits (ICs)

n Architectural Advances

- ü Using ICs: better price/performance
- ü Disk drives
- ü On-line terminals
- ü The notion of "Computer Architecture"
 - § IBM System/360 family

3rd Generation (1965-80)

n Multiprogrammed Systems

- ü Increase CPU utilization
- ü OS features
 - § Job scheduling
 - § Memory management
 - § CPU scheduling
 - § Protection
- ü Spooling (Simultaneous
- ü Peripheral Operation On-Line)

3rd Generation (1965-80)

n Time-sharing Systems

- ü Improve response time
- ü OS features
 - § Swapping
 - § Virtual memory
 - § File system
 - § Sophisticated CPU scheduling
 - § Synchronization
 - § Interprocess communication
 - § Interactive shell
 - **§** More protection, ...

4th Generation (1980-)

n LSIs & VLSIs

n Architectural Advances

- ü Microprocessors: smaller and faster
- ü Storages: larger and faster
- ü Personal computers
- ü CPU work is offloaded to I/O devices

n Modern OS Features

- ü GUI (Graphical User Interface)
- ü Multimedia
- ü Internet & Web
- ü Networked / Distributed, etc.

OS History

A long time ago, in a galaxy far, far away, ...

- n IBM OS/360: Multiprogramming
- n MIT CTSS (Compatible Time-Sharing System)
- n MIT, Bell Labs, GE, MULTICS

(MULTiplexed Information and Computing Service)

And UNIX was born in 1969

OS History: UNIX (1969-85)

Figure 1.1 The UNIX system family tree, 1969-1985

OS History: UNIX (1985-96)

Figure 1.2 The UNIX system family tree, 1986-1996

OS History: UNIX (Current)

- n Sun Solaris
- n HP HP-UX
- n IBM AIX
- n Caldera (SCO) Unixware
- n Compaq (Digital) Tru64
- n SGI Irix
- n Linux, FreeBSD, NetBSD
- n Apple Mac OS X, etc.

n Cf) POSIX

OS History: Windows & Linux

OS Classification (1)

	MS-DOS	Windows 98	Windows 2000	Linux
Multi-user	Χ	Χ	0	Ο
Multi-task Multi-process	Χ	0	0	Ο
Multi-processor	Χ	Χ	0	0
Multi-thread	Χ	0	0	Ο

OS Classification (2)

n Monolithic Kernel

- ü Function calls
- ü Unixware, Solaris, AIX, HP-UX, Linux, etc.

n Micro kernel

- ü Multiple servers
- ü Message passing
- ü Mach, Chorus, Linux mk, etc.

OS Classification (3)

- **n** Mainframe systems
 - ü CTS, MULTICS, IBM MVS, VM
- **n** Desktop systems
 ü DOS, Windows, MacOS, Unix/Linux
- n Multiprocessor systems
- n Cluster systems
- n Distributed systems
 - ü Amoeba(Vrije Univ.), Locus(UCLA), Grapevine(Xerox), V(Stanford), Eden(U. of Washington), Chorus/Nucleus(Inria)
- n Embedded systems
 - ü Vertex, pSOS, VxWorks, OSE, Windows-CE, Embedded Linux
 - ü Company-proprietary OS (Cisco, Qualcomm, Palm, Cellvic)
- n Real-time systems
 - ü Real-Time Linux, Spring(U. of Massachusetts), HARTS(U. of Michigan), MARUTI(U. of Maryland)