
4. 4. ProcessesProcesses

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n Process Concept
n Process Scheduling
n Operations on Processes
n Cooperating Processes
n Interprocess Communication
n Communication in Client-Server Systems

Operating System 2

Process ConceptProcess Concept
n An operating system executes a variety of programs:

ü Batch system: jobs
ü Time-shared systems: user programs or tasks

n Textbook uses the terms job and process almost interchangeably

n Process
ü a program in execution
ü process execution must progress in sequential fashion

n A process includes:
ü program counter
ü stack
ü data section

Operating System 3

Process ConceptProcess Concept
n What is the process?
ü An instance of a program in execution
ü An encapsulation of the flow of control in a program
ü A dynamic and active entity
ü The basic unit of execution and scheduling
ü A process is named using its process ID (PID)

Operating System 4

Process StateProcess State
n As a process executes, it changes state
ü new: The process is being created
ü running: Instructions are being executed
ü waiting: The process is waiting for some event to occur
ü ready: The process is waiting to be assigned to a process
ü terminated: The process has finished execution

Operating System 5

Diagram of Process StateDiagram of Process State

Operating System 6

Process State TransitionProcess State Transition
n Linux example

Runnable
Sleeping
Traced or
Stopped
Uninterruptible
Sleep
Zombie

R:
S:
T:

D:

Z:

No resident pages
High-priority task
Low-priority task
Has pages locked
into memory

W:
<:
N:
L:

Operating System 7

Process Control Block (PCB)Process Control Block (PCB)
n Information associated with each process

ü Process state
ü Program counter
ü CPU registers
ü CPU scheduling information
ü Memory-management information
ü Accounting information
ü I/O status information

n Cf) task_struct in Linux
ü 1456 bytes as of Linux 2.4.18

Operating System 8

Process Control Block (PCB)Process Control Block (PCB)

Operating System 9

Process Control Block (PCB)Process Control Block (PCB)

Operating System 10

PCBs and Hardware StatePCBs and Hardware State
n When a process is running:
ü its hardware state is inside the CPU: PC, SP, registers

n When the OS stops running a process:
ü it saves the registers’ values in the PCB

n When the OS puts the process in the running state:
ü it loads the hardware registers from the values in that process’ PCB

Operating System 11

CPU Switch From Process to ProcessCPU Switch From Process to Process

Operating System 12

Process Scheduling QueuesProcess Scheduling Queues
n Job queue

ü set of all processes in the system

n Ready queue
ü set of all processes residing in main memory, ready and waiting to execute

n Device queues
ü set of processes waiting for an I/O device

n Process migration between the various queues

Operating System 13

Ready Queue And Various I/O Device QueuesReady Queue And Various I/O Device Queues

Operating System 14

PCBs and QueuesPCBs and Queues
n PCBs are data structures
ü dynamically allocated inside OS memory

n When a process is created:
ü OS allocates a PCB for it
ü OS initializes PCB
ü OS puts PCB on the correct queue

n As a process computes:
ü OS moves its PCB from queue to queue

n When a process is terminated:
ü OS deallocates its PCB

Operating System 15

Representation of Process SchedulingRepresentation of Process Scheduling

Operating System 16

SchedulersSchedulers
n Long-term scheduler (or job scheduler)

ü selects which processes should be brought into the ready queue

n Short-term scheduler (or CPU scheduler)
ü selects which process should be executed next and allocates CPU

Operating System 17

Addition of Medium Term SchedulingAddition of Medium Term Scheduling

Operating System 18

Schedulers (ContSchedulers (Cont’’d)d)
n Short-term scheduler is invoked very frequently (milliseconds)

⇒ (must be fast)

n Long-term scheduler is invoked very infrequently (seconds, minutes)
⇒ (may be slow)

n The long-term scheduler controls the degree of multiprogramming

n Processes can be described as either:
ü I/O-bound process

§ spends more time doing I/O than computations, many short CPU bursts
ü CPU-bound process

§ spends more time doing computations; few very long CPU bursts

Operating System 19

LongLong--term Schedulerterm Scheduler
n Job scheduler
ü Selects which processes should be brought into the ready queue
ü Controls the degree of multiprogramming
ü Should select a good mix of I/O-bound and CPU-bound processes
ü Time-sharing systems such as UNIX often has no long-term scheduler

§ Simply put every new process in memory
§ Depends either on a physical limitation or on the self-adjusting nature of human users

Operating System 20

ShortShort--term Schedulerterm Scheduler
n CPU scheduler
ü Selects which process should be executed next and allocates CPU
ü Should be fast !
ü Scheduling criteria:

§ CPU utilization
§ Throughput
§ Turnaround time
§ Waiting time
§ Response time

Operating System 21

MediumMedium--term Schedulerterm Scheduler
n Swapper
ü Removes processes from memory temporarily
ü Reduces the degree of multiprogramming
ü Can improve the process mix dynamically
ü Swapping is originally proposed to reduce the memory pressure

Operating System 22

Context SwitchContext Switch
n When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process

n Context-switch time is overhead
ü the system does no useful work while switching

n Time dependent on hardware support

Operating System 23

Context SwitchContext Switch
n The act of switching the CPU from one process to another

n Administrative overhead
ü saving and loading registers and memory maps
ü flushing and reloading the memory cache
ü updating various tables and lists, etc.

n Context switch overhead is dependent on hardware support
ü Multiple register sets in UltraSPARC
ü Advanced memory management techniques may require extra data to be

switched with each context

n 100s or 1000s of switches/s typically

Operating System 24

Context Switch (ContContext Switch (Cont’’d)d)

// user nice system idle

n Linux example
ü Total 237,961,696 ticks = 661 hours = 27.5 days
ü Total 142,817,428 context switches
ü Roughly 60 context switches / sec

Operating System 25

Process CreationProcess Creation
n Parent process create children processes, which, in turn create other

processes, forming a tree of processes

n Resource sharing
ü Parent and children share all resources
ü Children share subset of parent’s resources
ü Parent and child share no resources

n Execution
ü Parent and children execute concurrently
ü Parent waits until children terminate

n Cf) Windows has no concept of process hierarchy

Operating System 26

Process Creation (ContProcess Creation (Cont’’d)d)
n Address space
ü Child duplicate of parent
ü Child has a program loaded into it

n UNIX examples
ü fork system call creates new process
ü exec system call used after a fork to replace the process’ memory space with a

new program

Operating System 27

Processes Tree on a UNIX SystemProcesses Tree on a UNIX System

Operating System 28

fork()fork()

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

if ((pid = fork()) == 0)
/* child */
printf (“Child of %d is %d\n”, getppid(), getpid());

else
/* parent */
printf (“I am %d. My child is %d\n”, getpid(), pid);

}

Operating System 29

fork(): Example Outputfork(): Example Output

% ./a.out
I am 31098. My child is 31099.
Child of 31098 is 31099.

% ./a.out
Child of 31100 is 31101.
I am 31100. My child is 31101.

Operating System 30

Why fork()?Why fork()?
n Very useful when the child…
ü is cooperating with the parent
ü relies upon the parent’s data to accomplish its task
ü Example: Web server

While (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */
} else {

/* Close socket */
}

}

Operating System 31

Simplified UNIX ShellSimplified UNIX Shell

int main()
{

while (1) {
char *cmd = read_command();
int pid;
if ((pid = fork()) == 0) {

/* Manipulate stdin/stdout/stderr for
pipes and redirections, etc. */

exec(cmd);
panic(“exec failed!”);

} else {
wait (pid);

}
}

}

Operating System 32

Process Creation: UNIXProcess Creation: UNIX

n fork()
ü Creates and initializes a new PCB
ü Creates and initializes a new address space
ü Initializes the address space with a copy of the entire contents of the address

space of the parent
ü Initializes the kernel resources to point to the resources used by parent (e.g.,

open files)
ü Places the PCB on the ready queue
ü Returns the child’s PID to the parent, and zero to the child

int fork()int fork()

Operating System 33

Process Creation: UNIX (ContProcess Creation: UNIX (Cont’’d)d)

n exec()
ü Stops the current process
ü Loads the program “prog” into the process’ address space
ü Initializes hardware context and args for the new program
ü Places the PCB on the ready queue

§ Note: exec() does not create a new process
ü What does it mean for exec() to return?

int exec (char *prog, char *argv[])int exec (char *prog, char *argv[])

Operating System 34

Process Creation: NTProcess Creation: NT

n CreateProcess()
ü Creates and initializes a new PCB
ü Creates and initializes a new address space
ü Loads the program specified by “prog” into the address space
ü Copies “args” into memory allocated in address space
ü Initializes the hardware context to start execution at main
ü Places the PCB on the ready queue

BOOL CreateProcess (char *prog, char *args, …)BOOL CreateProcess (char *prog, char *args, …)

Operating System 35

Process TerminationProcess Termination
n Process executes last statement and asks the operating system to decide it

(exit)
ü Output data from child to parent (via wait)
ü Process’ resources are deallocated by operating system

n Parent may terminate execution of children processes (abort)
ü Child has exceeded allocated resources
ü Task assigned to child is no longer required
ü Parent is exiting

§ Operating system does not allow child to continue if its parent terminates
§ Cascading termination

Operating System 36

Cooperating ProcessesCooperating Processes
n Independent process cannot affect or be affected by the execution of another

process

n Cooperating process can affect or be affected by the execution of another
process

n Advantages of process cooperation
ü Information sharing
ü Computation speed-up
ü Modularity
ü Convenience

Operating System 37

ProducerProducer--Consumer ProblemConsumer Problem
n Paradigm for cooperating processes, producer process produces information

that is consumed by a consumer process
ü unbounded-buffer places no practical limit on the size of the buffer
ü bounded-buffer assumes that there is a fixed buffer size

Operating System 38

n Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

n Solution is correct, but can only use BUFFER_SIZE-1 elements

BoundedBounded--Buffer: SharedBuffer: Shared--Memory SolutionMemory Solution

Operating System 39

BoundedBounded--Buffer Buffer –– Producer Process Producer Process

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

Operating System 40

BoundedBounded--Buffer Buffer –– Consumer ProcessConsumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}

Operating System 41

InterprocessInterprocess Communication (IPC)Communication (IPC)
n Mechanism for processes to communicate and to synchronize their actions
n Message system
ü processes communicate with each other without resorting to shared variables

n IPC facility provides two operations:
ü send(message) – message size fixed or variable
ü receive(message)

n If P and Q wish to communicate, they need to:
ü establish a communication link between them
ü exchange messages via send/receive

n Implementation of communication link
ü physical (e.g., shared memory, hardware bus)
ü logical (e.g., logical properties)

Operating System 42

Implementation QuestionsImplementation Questions
n How are links established?

n Can a link be associated with more than two processes?

n How many links can there be between every pair of communicating
processes?

n What is the capacity of a link?

n Is the size of a message that the link can accommodate fixed or variable?

n Is a link unidirectional or bi-directional?

Operating System 43

Direct CommunicationDirect Communication
n Processes must name each other explicitly:

ü send (P, message) – send a message to process P
ü receive(Q, message) – receive a message from process Q

n Properties of communication link
ü Links are established automatically
ü A link is associated with exactly one pair of communicating processes
ü Between each pair there exists exactly one link
ü The link may be unidirectional, but is usually bi-directional

Operating System 44

Indirect CommunicationIndirect Communication
n Messages are directed and received from mailboxes (also referred to as

ports)
ü Each mailbox has a unique id
ü Processes can communicate only if they share a mailbox

n Properties of communication link
ü Link established only if processes share a common mailbox
ü A link may be associated with many processes
ü Each pair of processes may share several communication links
ü Link may be unidirectional or bi-directional

Operating System 45

Indirect CommunicationIndirect Communication
n Operations

ü create a new mailbox
ü send and receive messages through mailbox
ü destroy a mailbox

n Primitives are defined as:
ü send(A, message) – send a message to mailbox A
ü receive(A, message) – receive a message from mailbox A

Operating System 46

Indirect CommunicationIndirect Communication
n Mailbox sharing

ü P1, P2, and P3 share mailbox A
ü P1, sends; P2 and P3 receive
ü Who gets the message?

n Solutions
ü Allow a link to be associated with at most two processes
ü Allow only one process at a time to execute a receive operation
ü Allow the system to select arbitrarily the receiver. Sender is notified who the

receiver was

Operating System 47

SynchronizationSynchronization
n Message passing may be either blocking or non-blocking

n Blocking is considered synchronous

n Non-blocking is considered asynchronous

n send and receive primitives may be either blocking or non-blocking

Operating System 48

BufferingBuffering
n Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

Operating System 49

ClientClient--Server CommunicationServer Communication
n Sockets

n Remote Procedure Calls

n Remote Method Invocation (Java)

Operating System 50

SocketsSockets
n A socket is defined as an endpoint for communication

n Concatenation of IP address and port

n The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

n Communication consists between a pair of sockets

Operating System 51

Socket CommunicationSocket Communication

Operating System 52

Remote Procedure CallsRemote Procedure Calls
n Remote procedure call (RPC) abstracts procedure calls between processes

on networked systems

n Stubs
ü client-side proxy for the actual procedure on the server

n The client-side stub locates the server and marshalls the parameters

n The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

Operating System 53

Execution of RPCExecution of RPC

Operating System 54

Remote Method InvocationRemote Method Invocation
n Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

n RMI allows a Java program on one machine to invoke a method on a remote
object

Operating System 55

Marshalling ParametersMarshalling Parameters

