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Process ConceptProcess Concept
n An operating system executes a variety of programs:

ü Batch system: jobs
ü Time-shared systems: user programs or tasks

n Textbook uses the terms job and process almost interchangeably

n Process
ü a program in execution
ü process execution must progress in sequential fashion

n A process includes:
ü program counter 
ü stack
ü data section
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Process ConceptProcess Concept
n What is the process?
ü An instance of a program in execution
ü An encapsulation of the flow of control in a program
ü A dynamic and active entity
ü The basic unit of execution and scheduling
ü A process is named using its process ID (PID)
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Process StateProcess State
n As a process executes, it changes state
ü new:  The process is being created
ü running:  Instructions are being executed
ü waiting:  The process is waiting for some event to occur
ü ready:  The process is waiting to be assigned to a process
ü terminated:  The process has finished execution
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Diagram of Process StateDiagram of Process State
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Process State TransitionProcess State Transition
n Linux example

Runnable
Sleeping
Traced or 
Stopped
Uninterruptible 
Sleep
Zombie

R:
S:
T: 

D: 

Z:

No resident pages
High-priority task
Low-priority task
Has pages locked
into memory 

W:
<:
N: 
L:



Operating System 7

Process Control Block (PCB)Process Control Block (PCB)
n Information associated with each process

ü Process state
ü Program counter
ü CPU registers
ü CPU scheduling information
ü Memory-management information
ü Accounting information
ü I/O status information

n Cf) task_struct in Linux
ü 1456 bytes as of Linux 2.4.18
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Process Control Block (PCB)Process Control Block (PCB)
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Process Control Block (PCB)Process Control Block (PCB)
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PCBs and Hardware StatePCBs and Hardware State
n When a process is running:
ü its hardware state is inside the CPU: PC, SP, registers

n When the OS stops running a process:
ü it saves the registers’ values in the PCB

n When the OS puts the process in the running state:
ü it loads the hardware registers from the values in that process’ PCB
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CPU Switch From Process to ProcessCPU Switch From Process to Process
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Process Scheduling QueuesProcess Scheduling Queues
n Job queue

ü set of all processes in the system

n Ready queue
ü set of all processes residing in main memory, ready and waiting to execute

n Device queues
ü set of processes waiting for an I/O device

n Process migration between the various queues
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Ready Queue And Various I/O Device QueuesReady Queue And Various I/O Device Queues
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PCBs and QueuesPCBs and Queues
n PCBs are data structures
ü dynamically allocated inside OS memory

n When a process is created:
ü OS allocates a PCB for it
ü OS initializes PCB
ü OS puts PCB on the correct queue

n As a process computes:
ü OS moves its PCB from queue to queue

n When a process is terminated:
ü OS deallocates its PCB
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Representation of Process SchedulingRepresentation of Process Scheduling
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SchedulersSchedulers
n Long-term scheduler (or job scheduler)

ü selects which processes should be brought into the ready queue

n Short-term scheduler (or CPU scheduler)
ü selects which process should be executed next and allocates CPU
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Addition of Medium Term SchedulingAddition of Medium Term Scheduling
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Schedulers (ContSchedulers (Cont’’d)d)
n Short-term scheduler is invoked very frequently (milliseconds)

⇒ (must be fast)

n Long-term scheduler is invoked very infrequently (seconds, minutes) 
⇒ (may be slow)

n The long-term scheduler controls the degree of multiprogramming

n Processes can be described as either:
ü I/O-bound process

§ spends more time doing I/O than computations, many short CPU bursts
ü CPU-bound process

§ spends more time doing computations; few very long CPU bursts
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LongLong--term Schedulerterm Scheduler
n Job scheduler
ü Selects which processes should be brought into the ready queue
ü Controls the degree of multiprogramming
ü Should select a good mix of I/O-bound and CPU-bound processes
ü Time-sharing systems such as UNIX often has no long-term scheduler

§ Simply put every new process in memory
§ Depends either on a physical limitation or on the self-adjusting nature of human users
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ShortShort--term Schedulerterm Scheduler
n CPU scheduler
ü Selects which process should be executed next and allocates CPU
ü Should be fast !
ü Scheduling criteria:

§ CPU utilization
§ Throughput
§ Turnaround time
§ Waiting time
§ Response time
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MediumMedium--term Schedulerterm Scheduler
n Swapper
ü Removes processes from memory temporarily
ü Reduces the degree of multiprogramming
ü Can improve the process mix dynamically 
ü Swapping is originally proposed to reduce the memory pressure
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Context SwitchContext Switch
n When CPU switches to another process, the system must save the state of 

the old process and load the saved state for the new process

n Context-switch time is overhead
ü the system does no useful work while switching

n Time dependent on hardware support
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Context SwitchContext Switch
n The act of switching the CPU from one process to another

n Administrative overhead
ü saving and loading registers and memory maps
ü flushing and reloading the memory cache
ü updating various tables and lists, etc.

n Context switch overhead is dependent on hardware support
ü Multiple register sets in UltraSPARC
ü Advanced memory management techniques may require extra data to be 

switched with each context

n 100s or 1000s of switches/s typically
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Context Switch (ContContext Switch (Cont’’d)d)

// user nice system idle

n Linux example
ü Total 237,961,696 ticks = 661 hours = 27.5 days
ü Total 142,817,428 context switches
ü Roughly 60 context switches / sec
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Process CreationProcess Creation
n Parent process create children processes, which, in turn create other 

processes, forming a tree of processes

n Resource sharing
ü Parent and children share all resources
ü Children share subset of parent’s resources
ü Parent and child share no resources

n Execution
ü Parent and children execute concurrently
ü Parent waits until children terminate

n Cf) Windows has no concept of process hierarchy
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Process Creation (ContProcess Creation (Cont’’d)d)
n Address space
ü Child duplicate of parent
ü Child has a program loaded into it

n UNIX examples
ü fork system call creates new process
ü exec system call used after a fork to replace the process’ memory space with a 

new program
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Processes Tree on a UNIX SystemProcesses Tree on a UNIX System
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fork()fork()

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

if ((pid = fork()) == 0)
/* child */
printf (“Child of %d is %d\n”, getppid(), getpid());

else
/* parent */
printf (“I am %d. My child is %d\n”, getpid(), pid);

}
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fork(): Example Outputfork(): Example Output

% ./a.out
I am 31098. My child is 31099.
Child of 31098 is 31099.

% ./a.out
Child of 31100 is 31101.
I am 31100. My child is 31101.
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Why fork()?Why fork()?
n Very useful when the child…
ü is cooperating with the parent
ü relies upon the parent’s data to accomplish its task
ü Example: Web server

While (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */
} else {

/* Close socket */
}

}



Operating System 31

Simplified UNIX ShellSimplified UNIX Shell

int main()
{

while (1) {
char *cmd = read_command();
int pid;
if ((pid = fork()) == 0) {

/* Manipulate stdin/stdout/stderr for 
pipes and redirections, etc. */

exec(cmd);
panic(“exec failed!”);

} else {
wait (pid);

}
}

}
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Process Creation: UNIXProcess Creation: UNIX

n fork()
ü Creates and initializes a new PCB
ü Creates and initializes a new address space
ü Initializes the address space with a copy of the entire contents of the address 

space of the parent
ü Initializes the kernel resources to point to the resources used by parent (e.g., 

open files)
ü Places the PCB on the ready queue
ü Returns the child’s PID to the parent, and zero to the child

int fork()int fork()
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Process Creation: UNIX (ContProcess Creation: UNIX (Cont’’d)d)

n exec()
ü Stops the current process
ü Loads the program “prog” into the process’ address space
ü Initializes hardware context and args for the new program
ü Places the PCB on the ready queue

§ Note: exec() does not create a new process
ü What does it mean for exec() to return?

int exec (char *prog, char *argv[])int exec (char *prog, char *argv[])
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Process Creation: NTProcess Creation: NT

n CreateProcess()
ü Creates and initializes a new PCB
ü Creates and initializes a new address space
ü Loads the program specified by “prog” into the address space
ü Copies “args” into memory allocated in address space
ü Initializes the hardware context to start execution at main
ü Places the PCB on the ready queue

BOOL CreateProcess (char *prog, char *args, …)BOOL CreateProcess (char *prog, char *args, …)
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Process TerminationProcess Termination
n Process executes last statement and asks the operating system to decide it 

(exit)
ü Output data from child to parent (via wait)
ü Process’ resources are deallocated by operating system

n Parent may terminate execution of children processes (abort)
ü Child has exceeded allocated resources
ü Task assigned to child is no longer required
ü Parent is exiting

§ Operating system does not allow child to continue if its parent terminates
§ Cascading termination
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Cooperating ProcessesCooperating Processes
n Independent process cannot affect or be affected by the execution of another 

process

n Cooperating process can affect or be affected by the execution of another 
process

n Advantages of process cooperation
ü Information sharing 
ü Computation speed-up
ü Modularity
ü Convenience
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ProducerProducer--Consumer ProblemConsumer Problem
n Paradigm for cooperating processes, producer process produces information 

that is consumed by a consumer process
ü unbounded-buffer places no practical limit on the size of the buffer
ü bounded-buffer assumes that there is a fixed buffer size
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n Shared data
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

n Solution is correct, but can only use BUFFER_SIZE-1 elements

BoundedBounded--Buffer: SharedBuffer: Shared--Memory SolutionMemory Solution
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BoundedBounded--Buffer Buffer –– Producer Process Producer Process 

item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}
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BoundedBounded--Buffer Buffer –– Consumer ProcessConsumer Process

item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}
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InterprocessInterprocess Communication (IPC)Communication (IPC)
n Mechanism for processes to communicate and to synchronize their actions
n Message system
ü processes communicate with each other without resorting to shared variables

n IPC facility provides two operations:
ü send(message) – message size fixed or variable 
ü receive(message)

n If P and Q wish to communicate, they need to:
ü establish a communication link between them
ü exchange messages via send/receive

n Implementation of communication link
ü physical (e.g., shared memory, hardware bus)
ü logical (e.g., logical properties)
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Implementation QuestionsImplementation Questions
n How are links established?

n Can a link be associated with more than two processes?

n How many links can there be between every pair of communicating 
processes?

n What is the capacity of a link?

n Is the size of a message that the link can accommodate fixed or variable?

n Is a link unidirectional or bi-directional?
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Direct CommunicationDirect Communication
n Processes must name each other explicitly:

ü send (P, message) – send a message to process P
ü receive(Q, message) – receive a message from process Q

n Properties of communication link
ü Links are established automatically
ü A link is associated with exactly one pair of communicating processes
ü Between each pair there exists exactly one link
ü The link may be unidirectional, but is usually bi-directional
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Indirect CommunicationIndirect Communication
n Messages are directed and received from mailboxes (also referred to as 

ports)
ü Each mailbox has a unique id
ü Processes can communicate only if they share a mailbox

n Properties of communication link
ü Link established only if processes share a common mailbox
ü A link may be associated with many processes
ü Each pair of processes may share several communication links
ü Link may be unidirectional or bi-directional



Operating System 45

Indirect CommunicationIndirect Communication
n Operations

ü create a new mailbox
ü send and receive messages through mailbox
ü destroy a mailbox

n Primitives are defined as:
ü send(A, message) – send a message to mailbox A
ü receive(A, message) – receive a message from mailbox A
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Indirect CommunicationIndirect Communication
n Mailbox sharing

ü P1, P2, and P3 share mailbox A
ü P1, sends; P2 and P3 receive
ü Who gets the message?

n Solutions
ü Allow a link to be associated with at most two processes
ü Allow only one process at a time to execute a receive operation
ü Allow the system to select arbitrarily the receiver.  Sender is notified who the 

receiver was
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SynchronizationSynchronization
n Message passing may be either blocking or non-blocking

n Blocking is considered synchronous

n Non-blocking is considered asynchronous

n send and receive primitives may be either blocking or non-blocking
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BufferingBuffering
n Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits
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ClientClient--Server CommunicationServer Communication
n Sockets

n Remote Procedure Calls

n Remote Method Invocation (Java)
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SocketsSockets
n A socket is defined as an endpoint for communication

n Concatenation of IP address and port

n The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

n Communication consists between a pair of sockets
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Socket CommunicationSocket Communication



Operating System 52

Remote Procedure CallsRemote Procedure Calls
n Remote procedure call (RPC) abstracts procedure calls between processes 

on networked systems

n Stubs
ü client-side proxy for the actual procedure on the server

n The client-side stub locates the server and marshalls the parameters

n The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server
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Execution of RPCExecution of RPC
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Remote Method InvocationRemote Method Invocation
n Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

n RMI allows a Java program on one machine to invoke a method on a remote 
object
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Marshalling ParametersMarshalling Parameters


