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ProcessesProcesses
n Heavy-weight
ü A process includes many things:

§ An address space (all the code and data pages)
§ OS resources (e.g., open files) and accounting info.
§ Hardware execution state (PC, SP, registers, etc.)

ü Creating a new process is costly because all of the data structures must be 
allocated and initialized
§ Linux: over 100 fields in task_struct 

(excluding page tables, etc.)
ü Inter-process communication is costly, since it must usually go through the OS

§ Overhead of system calls and copying data



Operating System 3

Thread Concept: Key IdeaThread Concept: Key Idea
n Separate the concept of a process from its execution state
ü Process: address space, resources, other general process attributes (e.g., 

privileges)
ü Execution state: PC, SP, registers, etc.

ü This execution state is usually called 
§ a thread of control, 
§ a thread, or 
§ a lightweight process (LWP)
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Thread Concept: Key Idea (ContThread Concept: Key Idea (Cont’’d)d)
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Single and Multithreaded ProcessesSingle and Multithreaded Processes
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What is a Thread?What is a Thread?
n A thread (or lightweight process) is a basic unit of CPU utilization; it consists 

of:
ü program counter
ü register set
ü stack space

n A thread shares with its peer threads its:
ü code section
ü data section
ü operating-system resources
ü collectively known as a task or process

n A traditional or heavyweight process is equal to a task with one thread
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Process vs. ThreadProcess vs. Thread
n Processes vs. Threads
ü A thread is bound to a single process
ü A process, however, can have multiple threads
ü Sharing data between threads is cheap: all see the same address space
ü Threads become the unit of scheduling
ü Processes are now containers in which threads execute
ü Processes become static, threads are the dynamic entities
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Process Address SpaceProcess Address Space
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Address Space with ThreadsAddress Space with Threads
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n Web server example
ü Using fork() to create new processes to handle requests in parallel is overkill for 

such a simple task.

While (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */
} else {

/* Close socket */
}

}

Concurrent Servers: ProcessesConcurrent Servers: Processes
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n Using threads
ü We can create a new thread for each request

webserver ()
{

While (1) {
int sock = accept();
thread_fork (handle_request, sock);

}
}
handle_request (int sock)
{

/* Process request */
close (sock);

}

Concurrent Servers: ThreadsConcurrent Servers: Threads
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BenefitsBenefits
n Responsiveness

n Resource Sharing

n Economy

n Utilization of MP Architectures
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User ThreadsUser Threads
n Thread management done by user-level threads library

n Examples
ü POSIX Pthreads
ü Mach C-threads
ü Solaris threads
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Kernel ThreadsKernel Threads
n Supported by the Kernel

ü thread creation and management requires system calls

n Examples
ü Windows 95/98/NT/2000
ü Solaris
ü Tru64 UNIX
ü BeOS
ü Linux
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UserUser--level Threads vs. Kernellevel Threads vs. Kernel--level Threadslevel Threads
n User-level threads
ü The user-level threads library implements thread operations
ü They are small and fast
ü User-level threads are invisible to the OS
ü OS may make poor decisions

§ e.g. blocking I/O
ü Thread scheduling

§ Non-preemptive scheduling: yield()
§ Preemptive scheduling: timer through signal

n Kernel-level threads
ü All thread operations are implemented in the kernel
ü The OS schedules all of the threads in a system
ü Kernel threads are cheaper than processes
ü They can still be too expensive
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Multithreading ModelsMultithreading Models
n Many-to-One

n One-to-One

n Many-to-Many
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ManyMany--toto--OneOne
n Many user-level threads 

mapped to single kernel 
thread

n Used on systems that do 
not support kernel threads
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OneOne--toto--OneOne
n Each user-level thread maps to kernel thread

n Examples
ü Windows 95/98/NT/2000
ü OS/2
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ManyMany--toto--Many ModelMany Model
n Allows many user level 

threads to be mapped to 
many kernel threads

n Allows the  operating 
system to create a 
sufficient number of kernel 
threads

n Solaris 2 

n Windows NT/2000 with the 
ThreadFiber package
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Threading IssuesThreading Issues
n Semantics of fork() and exec() system calls

ü Two versions of fork()
n Thread cancellation

ü Asynchronous cancellation
ü Deferred cancellation

n Signal handling
ü To the thread to which the signal applies
ü To every thread in the process
ü To certain threads in the process
ü Assign a specific thread to receive all signals for the process

n Thread pools
ü Create a number of threads at process startup

n Thread specific data
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PthreadsPthreads
n A POSIX standard (IEEE 1003.1c) API for thread creation and 

synchronization

n API specifies behavior of the thread library, implementation is up to 
development of the library

n Common in UNIX operating systems
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Threads InterfaceThreads Interface
n POSIX-style threads
ü Pthreads
ü DCE threads (early version of Pthreads)
ü Unix International (UI) threads (Solaris threads)

§ Sun Solaris 2, SCO Unixware 2

n Microsoft-style threads
ü Win32 threads

§ Microsoft Windows 98/NT/2000/XP
ü OS/2 threads

§ IBM OS/2
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n Thread creation/termination

int pthread_create (pthread_t *tid, 
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

int pthread_create (pthread_t *tid, 
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

void pthread_exit   (void *retval); void pthread_exit   (void *retval); 

int pthread_join     (pthread_t tid, 
void **thread_return); 

int pthread_join     (pthread_t tid, 
void **thread_return); 

PthreadsPthreads
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n Mutexes

int pthread_mutex_init
(pthread_mutex_t *mutex, 
const pthread_mutexattr_t *mattr);

int pthread_mutex_init
(pthread_mutex_t *mutex, 
const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy 
(pthread_mutex_t *mutex); 

void pthread_mutex_destroy 
(pthread_mutex_t *mutex); 

void pthread_mutex_lock 
(pthread_mutex_t *mutex); 

void pthread_mutex_lock 
(pthread_mutex_t *mutex); 

void pthread_mutex_unlock
(pthread_mutex_t *mutex); 

void pthread_mutex_unlock
(pthread_mutex_t *mutex); 

PthreadsPthreads (Cont(Cont’’d)d)
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n Condition variables

int pthread_cond_init
(pthread_cond_t *cond, 
const pthread_condattr_t *cattr);

int pthread_cond_init
(pthread_cond_t *cond, 
const pthread_condattr_t *cattr);

void pthread_cond_destroy 
(pthread_cond_t *cond); 

void pthread_cond_destroy 
(pthread_cond_t *cond); 

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex); 

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex); 

void pthread_cond_signal
(pthread_cond_t *cond); 

void pthread_cond_signal
(pthread_cond_t *cond); 

void pthread_cond_broadcast
(pthread_cond_t *cond); 

void pthread_cond_broadcast
(pthread_cond_t *cond); 

PthreadsPthreads (Cont(Cont’’d)d)
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Solaris 2 ThreadsSolaris 2 Threads
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Solaris 2 ThreadsSolaris 2 Threads
n LWP (Lightweight Process)
ü A virtual CPU for executing code or system calls
ü Each process contains at least one LWP
ü Each LWP is connected to exactly one kernel-level thread
ü Each LWP is separately dispatched by the kernel, may

§ perform independent system calls
§ incur independent page faults
§ run in parallel on a multiprocessor, etc.

ü The thread library dynamically adjusts the number of LWPs in the pool to ensure 
the best performance for the application

ü It also “ages” LWPs and deletes them when they are unused for a long time.
ü An LWP is a kernel data structure

n For implementing many-to-many model
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Solaris ProcessSolaris Process
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Windows 2000 ThreadsWindows 2000 Threads
n Implements the one-to-one mapping

n Each thread contains
ü a thread id
ü register set
ü separate user and kernel stacks
ü private data storage area

n Cf) Fibers
ü Fibers are often called “lightweight” threads
ü Fibers are invisible to the kernel
ü Fibers provide a functionality of the many-to-many model
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Linux ThreadsLinux Threads
n Linux refers to them as tasks rather than threads

n Thread creation is done through clone() system call

n Clone() allows a child task to share the address space of the parent task 
(process)

n So, there exist POSIX compatibility problems

n Approaches for POSIX compliance
ü Linux 2.4 introduces a concept of “thread groups”
ü NPTL (Native POSIX Threading Library) – by RedHat

§ 1:1 model
ü NGPT (Next Generation POSIX Threading) – by IBM

§ M:N model
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Java ThreadsJava Threads
n Java threads may be created by:

ü Extending Thread class
ü Implementing the Runnable interface

n Java threads are managed by the JVM

n Java thread states
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Threads Design SpaceThreads Design Space
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