
5. 5. ThreadsThreads

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n Overview
n Multithreading Models
n Threading Issues
n Pthreads
n Solaris 2 Threads
n Windows 2000 Threads
n Linux Threads
n Java Threads

Operating System 2

ProcessesProcesses
n Heavy-weight
ü A process includes many things:

§ An address space (all the code and data pages)
§ OS resources (e.g., open files) and accounting info.
§ Hardware execution state (PC, SP, registers, etc.)

ü Creating a new process is costly because all of the data structures must be
allocated and initialized
§ Linux: over 100 fields in task_struct

(excluding page tables, etc.)
ü Inter-process communication is costly, since it must usually go through the OS

§ Overhead of system calls and copying data

Operating System 3

Thread Concept: Key IdeaThread Concept: Key Idea
n Separate the concept of a process from its execution state
ü Process: address space, resources, other general process attributes (e.g.,

privileges)
ü Execution state: PC, SP, registers, etc.

ü This execution state is usually called
§ a thread of control,
§ a thread, or
§ a lightweight process (LWP)

Operating System 4

Thread Concept: Key Idea (ContThread Concept: Key Idea (Cont’’d)d)

Operating System 5

Single and Multithreaded ProcessesSingle and Multithreaded Processes

Operating System 6

What is a Thread?What is a Thread?
n A thread (or lightweight process) is a basic unit of CPU utilization; it consists

of:
ü program counter
ü register set
ü stack space

n A thread shares with its peer threads its:
ü code section
ü data section
ü operating-system resources
ü collectively known as a task or process

n A traditional or heavyweight process is equal to a task with one thread

Operating System 7

Process vs. ThreadProcess vs. Thread
n Processes vs. Threads
ü A thread is bound to a single process
ü A process, however, can have multiple threads
ü Sharing data between threads is cheap: all see the same address space
ü Threads become the unit of scheduling
ü Processes are now containers in which threads execute
ü Processes become static, threads are the dynamic entities

Operating System 8

Process Address SpaceProcess Address Space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

code
(text segment)

static data
(data segment)

static data
(data segment)

heap
(dynamically allocated mem)

heap
(dynamically allocated mem)

stack
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

Operating System 9

Address Space with ThreadsAddress Space with Threads

0x00000000

0xFFFFFFFF

address space

PC (T2)

SP (T2)

code
(text segment)

code
(text segment)

static data
(data segment)

static data
(data segment)

heap
(dynamically allocated mem)

heap
(dynamically allocated mem)

thread 1 stackthread 1 stack

thread 2 stackthread 2 stack

thread 3 stackthread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

SP

PC

Operating System 10

n Web server example
ü Using fork() to create new processes to handle requests in parallel is overkill for

such a simple task.

While (1) {
int sock = accept();
if ((pid = fork()) == 0) {

/* Handle client request */
} else {

/* Close socket */
}

}

Concurrent Servers: ProcessesConcurrent Servers: Processes

Operating System 11

n Using threads
ü We can create a new thread for each request

webserver ()
{

While (1) {
int sock = accept();
thread_fork (handle_request, sock);

}
}
handle_request (int sock)
{

/* Process request */
close (sock);

}

Concurrent Servers: ThreadsConcurrent Servers: Threads

Operating System 12

BenefitsBenefits
n Responsiveness

n Resource Sharing

n Economy

n Utilization of MP Architectures

Operating System 13

User ThreadsUser Threads
n Thread management done by user-level threads library

n Examples
ü POSIX Pthreads
ü Mach C-threads
ü Solaris threads

Operating System 14

Kernel ThreadsKernel Threads
n Supported by the Kernel

ü thread creation and management requires system calls

n Examples
ü Windows 95/98/NT/2000
ü Solaris
ü Tru64 UNIX
ü BeOS
ü Linux

Operating System 15

UserUser--level Threads vs. Kernellevel Threads vs. Kernel--level Threadslevel Threads
n User-level threads
ü The user-level threads library implements thread operations
ü They are small and fast
ü User-level threads are invisible to the OS
ü OS may make poor decisions

§ e.g. blocking I/O
ü Thread scheduling

§ Non-preemptive scheduling: yield()
§ Preemptive scheduling: timer through signal

n Kernel-level threads
ü All thread operations are implemented in the kernel
ü The OS schedules all of the threads in a system
ü Kernel threads are cheaper than processes
ü They can still be too expensive

Operating System 16

Multithreading ModelsMultithreading Models
n Many-to-One

n One-to-One

n Many-to-Many

Operating System 17

ManyMany--toto--OneOne
n Many user-level threads

mapped to single kernel
thread

n Used on systems that do
not support kernel threads

Operating System 18

OneOne--toto--OneOne
n Each user-level thread maps to kernel thread

n Examples
ü Windows 95/98/NT/2000
ü OS/2

Operating System 19

ManyMany--toto--Many ModelMany Model
n Allows many user level

threads to be mapped to
many kernel threads

n Allows the operating
system to create a
sufficient number of kernel
threads

n Solaris 2

n Windows NT/2000 with the
ThreadFiber package

Operating System 20

Threading IssuesThreading Issues
n Semantics of fork() and exec() system calls

ü Two versions of fork()
n Thread cancellation

ü Asynchronous cancellation
ü Deferred cancellation

n Signal handling
ü To the thread to which the signal applies
ü To every thread in the process
ü To certain threads in the process
ü Assign a specific thread to receive all signals for the process

n Thread pools
ü Create a number of threads at process startup

n Thread specific data

Operating System 21

PthreadsPthreads
n A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

n API specifies behavior of the thread library, implementation is up to
development of the library

n Common in UNIX operating systems

Operating System 22

Threads InterfaceThreads Interface
n POSIX-style threads
ü Pthreads
ü DCE threads (early version of Pthreads)
ü Unix International (UI) threads (Solaris threads)

§ Sun Solaris 2, SCO Unixware 2

n Microsoft-style threads
ü Win32 threads

§ Microsoft Windows 98/NT/2000/XP
ü OS/2 threads

§ IBM OS/2

Operating System 23

n Thread creation/termination

int pthread_create (pthread_t *tid,
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

int pthread_create (pthread_t *tid,
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval); void pthread_exit (void *retval);

int pthread_join (pthread_t tid,
void **thread_return);

int pthread_join (pthread_t tid,
void **thread_return);

PthreadsPthreads

Operating System 24

n Mutexes

int pthread_mutex_init
(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mattr);

int pthread_mutex_init
(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy
(pthread_mutex_t *mutex);

void pthread_mutex_destroy
(pthread_mutex_t *mutex);

void pthread_mutex_lock
(pthread_mutex_t *mutex);

void pthread_mutex_lock
(pthread_mutex_t *mutex);

void pthread_mutex_unlock
(pthread_mutex_t *mutex);

void pthread_mutex_unlock
(pthread_mutex_t *mutex);

PthreadsPthreads (Cont(Cont’’d)d)

Operating System 25

n Condition variables

int pthread_cond_init
(pthread_cond_t *cond,
const pthread_condattr_t *cattr);

int pthread_cond_init
(pthread_cond_t *cond,
const pthread_condattr_t *cattr);

void pthread_cond_destroy
(pthread_cond_t *cond);

void pthread_cond_destroy
(pthread_cond_t *cond);

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex);

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex);

void pthread_cond_signal
(pthread_cond_t *cond);

void pthread_cond_signal
(pthread_cond_t *cond);

void pthread_cond_broadcast
(pthread_cond_t *cond);

void pthread_cond_broadcast
(pthread_cond_t *cond);

PthreadsPthreads (Cont(Cont’’d)d)

Operating System 26

Solaris 2 ThreadsSolaris 2 Threads

Operating System 27

Solaris 2 ThreadsSolaris 2 Threads
n LWP (Lightweight Process)
ü A virtual CPU for executing code or system calls
ü Each process contains at least one LWP
ü Each LWP is connected to exactly one kernel-level thread
ü Each LWP is separately dispatched by the kernel, may

§ perform independent system calls
§ incur independent page faults
§ run in parallel on a multiprocessor, etc.

ü The thread library dynamically adjusts the number of LWPs in the pool to ensure
the best performance for the application

ü It also “ages” LWPs and deletes them when they are unused for a long time.
ü An LWP is a kernel data structure

n For implementing many-to-many model

Operating System 28

Solaris ProcessSolaris Process

Operating System 29

Windows 2000 ThreadsWindows 2000 Threads
n Implements the one-to-one mapping

n Each thread contains
ü a thread id
ü register set
ü separate user and kernel stacks
ü private data storage area

n Cf) Fibers
ü Fibers are often called “lightweight” threads
ü Fibers are invisible to the kernel
ü Fibers provide a functionality of the many-to-many model

Operating System 30

Linux ThreadsLinux Threads
n Linux refers to them as tasks rather than threads

n Thread creation is done through clone() system call

n Clone() allows a child task to share the address space of the parent task
(process)

n So, there exist POSIX compatibility problems

n Approaches for POSIX compliance
ü Linux 2.4 introduces a concept of “thread groups”
ü NPTL (Native POSIX Threading Library) – by RedHat

§ 1:1 model
ü NGPT (Next Generation POSIX Threading) – by IBM

§ M:N model

Operating System 31

Java ThreadsJava Threads
n Java threads may be created by:

ü Extending Thread class
ü Implementing the Runnable interface

n Java threads are managed by the JVM

n Java thread states

Operating System 32

Threads Design SpaceThreads Design Space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

