
6. 6. CPU SchedulingCPU Scheduling

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n Basic Concepts
n Scheduling Criteria
n Scheduling Algorithms
n Multiple-Processor Scheduling
n Real-Time Scheduling
n Algorithm Evaluation

Operating System 2

Basic ConceptsBasic Concepts
n Maximum CPU utilization obtained with multiprogramming

n CPU–I/O Burst Cycle
ü Process execution consists of a cycle of CPU execution and I/O wait

n CPU burst distribution

Operating System 3

Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts

Operating System 4

CPU burst vs. I/O burstCPU burst vs. I/O burst
n (a) A CPU-bound process
n (b) An I/O-bound process

Operating System 5

Histogram of CPUHistogram of CPU--burst Timesburst Times

Operating System 6

CPU SchedulerCPU Scheduler
n Selects from among the processes in memory that are ready to execute, and

allocates the CPU to one of them
n CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

n Scheduling under 1 and 4 is nonpreemptive
n All other scheduling is preemptive

Operating System 7

DispatcherDispatcher
n Dispatcher module gives control of the CPU to the process selected by the

short-term scheduler; this involves:
ü switching context
ü switching to user mode
ü jumping to the proper location in the user program to restart that program

n Dispatch latency
ü time it takes for the dispatcher to stop one process and start another running

Operating System 8

Dispatch LatencyDispatch Latency

Operating System 9

Preemptive vs. NonPreemptive vs. Non--preemptivepreemptive
n Non-preemptive scheduling
ü The scheduler waits for the running job to explicitly (voluntarily) block
ü Scheduling takes place only when

§ A process switches from running to waiting state
§ A process terminates

n Preemptive scheduling
ü The scheduler can interrupt a job and force a context switch
ü What happens

§ If a process is preempted in the midst of updating the shared data?
§ If a process in system call is preempted?

Operating System 10

Scheduling CriteriaScheduling Criteria
n CPU utilization

ü keep the CPU as busy as possible

n Throughput
ü # of processes that complete their execution per time unit

n Turnaround time
ü amount of time to execute a particular process

n Waiting time
ü amount of time a process has been waiting in the ready queue

n Response time
ü amount of time it takes from when a request was submitted until the first response

is produced, not output (for time-sharing environment)

Operating System 11

Optimization CriteriaOptimization Criteria
n Max CPU utilization

n Max throughput

n Min turnaround time

n Min waiting time

n Min response time

Operating System 12

Scheduling GoalsScheduling Goals
n All systems
ü Fairness: giving each process a fair share of the CPU
ü Balance: keeping all parts of the system busy

n Batch systems
ü Throughput: maximize jobs per hour
ü Turnaround time: minimize time between submission and termination
ü CPU utilization: keep the CPU busy all the time

Operating System 13

Scheduling Goals (ContScheduling Goals (Cont’’d)d)
n Interactive systems
ü Response time: minimize average time spent on ready queue
ü Waiting time: minimize average time spent on wait queue
ü Proportionality: meet users’ expectations

n Real-time systems
ü Meeting deadlines: avoid losing data
ü Predictability: avoid quality degradation in multimedia systems

Operating System 14

Scheduling NonScheduling Non--goalsgoals
n Starvation
ü A situation where a process is prevented from making progress because another

process has the resource it requires.
§ Resource could be the CPU or a lock

ü A poor scheduling policy can cause starvation
§ If a high-priority process always prevents a low-priority process from running on the

CPU
ü Synchronization can also cause starvation

§ One thread always beats another when acquiring a lock
§ Constant supply of readers always blocks out writers

Operating System 15

FCFS/FIFOFCFS/FIFO
n First-Come, First-Served
ü Jobs are scheduled in order that they arrive
ü “Real-world” scheduling of people in lines

§ e.g. supermarket, bank tellers, McDonalds, etc.
ü Typically, non-preemptive
ü Jobs are treated equally: no starvation

n Problems
ü Average waiting time can be large if small jobs wait behind long ones

§ Basket vs. cart
ü May lead to poor overlap of I/O and CPU

Operating System 16

Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FirstFirst--Come, FirstCome, First--Served (FCFS) SchedulingServed (FCFS) Scheduling

Operating System 17

FCFS Scheduling (ContFCFS Scheduling (Cont’’d)d)
n Suppose that the processes arrive in the order

P2 , P3 , P1 .

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3
n Much better than previous case
n Convoy effect
ü short process behind long process

P1P3P2

63 300

Operating System 18

SJFSJF
n Shortest Job First
ü Choose the job with the smallest expected CPU burst
ü Can prove that SJF has optimal min. average waiting time

§ Only when all jobs are available simultaneously
ü Non-preemptive

n Problems
ü Impossible to know size of future CPU burst
ü Can you make a reasonable guess?
ü Can potentially starve

Operating System 19

ShortestShortest--JobJob--First (SJR) SchedulingFirst (SJR) Scheduling
n Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time

n Two schemes:
ü Nonpreemptive

§ Once CPU given to the process it cannot be preempted until completes its CPU burst
ü Preemptive

§ If a new process arrives with CPU burst length less than remaining time of current
executing process, preempt

§ This scheme is known as the Shortest-Remaining-Time-First (SRTF)

n SJF is optimal
ü gives minimum average waiting time for a given set of processes

Operating System 20

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of NonExample of Non--Preemptive SJFPreemptive SJF

P1 P3 P2

73 160

P4

8 12

Operating System 21

Example of Preemptive SJFExample of Preemptive SJF
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (preemptive) (= SRTF)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Operating System 22

n Can only estimate the length

n Can be done by using the length of previous CPU bursts, using exponential
averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Determining Length of Next CPU BurstDetermining Length of Next CPU Burst

Operating System 23

Prediction of the Length of the Next CPU BurstPrediction of the Length of the Next CPU Burst

Operating System 24

Examples of Exponential AveragingExamples of Exponential Averaging
n α =0

ü τn+1 = τn

ü Recent history does not count

n α =1
ü τn+1 = tn
ü Only the actual last CPU burst counts

n If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

n Since both α and (1 - α) are less than or equal to 1, each successive term
has less weight than its predecessor

Operating System 25

Priority SchedulingPriority Scheduling
n A priority number (integer) is associated with each process

n The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
ü Preemptive
ü Nonpreemptive

n SJF is a priority scheduling where priority is the predicted next CPU burst
time

n Problem ≡ Starvation (or Indefinite blocking)
ü low priority processes may never execute

n Solution ≡ Aging
ü as time progresses increase the priority of the process

Operating System 26

Priority SchedulingPriority Scheduling
n Abstractly modeled as multiple “priority queues”

ü Put ready job on Q associated with its priority

Operating System 27

Round Robin (RR)Round Robin (RR)
n Each process gets a small unit of CPU time (time quantum), usually 10-100

milliseconds
ü After this time has elapsed, the process is preempted and added to the end of the

ready queue

n If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units at
once
ü No process waits more than (n-1)q time units

n Performance
ü q large ⇒ FIFO
ü q small ⇒ q must be large with respect to context switch, otherwise overhead is

too high

Operating System 28

Process Burst Time
P1 53
P2 17
P3 68
P4 24

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Example of RR with Time Quantum = 20Example of RR with Time Quantum = 20

Operating System 29

Time Quantum and Context Switch TimeTime Quantum and Context Switch Time

Operating System 30

Turnaround Time Varies With The Time QuantumTurnaround Time Varies With The Time Quantum

Operating System 31

Problems of RRProblems of RR
n What do you set the quantum to be?
ü quantum → ∞ : FIFO

quantum → 0 : processor sharing
ü If small, then context switches are frequent incurring high overhead (CPU

utilization drops)
ü If large, then response time drops
ü A rule of thumb: 80% of the CPU bursts should be shorter than the time quantum

n Treats all jobs equally
ü Multiple background jobs?

Operating System 32

Combining AlgorithmsCombining Algorithms
n Scheduling algorithms can be combined in practice
ü Have multiple queues
ü Pick a different algorithm for each queue
ü Have a mechanism to schedule among queues
ü And maybe, move processes between queues

Operating System 33

Multilevel QueueMultilevel Queue
n Ready queue is partitioned into separate queues:

ü foreground (interactive)
ü background (batch)

n Each queue has its own scheduling algorithm:
ü foreground – RR
ü background – FCFS

n Scheduling must be done between the queues
ü Fixed priority scheduling

§ (i.e., serve all from foreground then from background) Possibility of starvation
ü Time slice

§ each queue gets a certain amount of CPU time which it can schedule amongst its
processes

§ i.e., 80% to foreground in RR & 20% to background in FCFS

Operating System 34

Multilevel Queue SchedulingMultilevel Queue Scheduling

Operating System 35

Multilevel Feedback QueueMultilevel Feedback Queue
n A process can move between the various queues

ü aging can be implemented this way

n Multilevel-feedback-queue scheduler defined by the following parameters:
ü number of queues
ü scheduling algorithms for each queue
ü method used to determine when to upgrade a process
ü method used to determine when to demote a process
ü method used to determine which queue a process will enter when that process

needs service

Operating System 36

n Three queues:
ü Q0 – time quantum 8 milliseconds
ü Q1 – time quantum 16 milliseconds
ü Q2 – FCFS

n Scheduling
ü A new job enters queue Q0 which is served FCFS
ü When it gains CPU, job receives 8 milliseconds
ü If it does not finish in 8 milliseconds, job is moved to queue Q1

ü At Q1 job is again served FCFS and receives 16 additional milliseconds
ü If it still does not complete, it is preempted and moved to queue Q2

Example of Multilevel Feedback QueueExample of Multilevel Feedback Queue

Operating System 37

Multilevel Feedback QueuesMultilevel Feedback Queues

Operating System 38

UNIX SchedulerUNIX Scheduler
n The canonical UNIX scheduler uses a MLFQ
ü 3 – 4 classes spanning ~170 priority levels

§ Timeshare, System, Real-time, Interrupt (Solaris 2)
ü Priority scheduling across queues, RR within a queue

§ The process with the highest priority always runs
§ Processes with the same priority are scheduled RR

ü Processes dynamically change priority
§ Increases over time if process blocks before end of quantum
§ Decreases over time if process uses entire quantum

Operating System 39

UNIX Scheduler (ContUNIX Scheduler (Cont’’d)d)
n Motivation
ü The idea behind the UNIX scheduler is to reward interactive processes over CPU

hogs
ü Interactive processes typically run using short CPU bursts

§ They do not finish quantum before waiting for more input
ü Want to minimize response time

§ Time from keystroke (putting process on ready queue) to executing the handler
(process running)

§ Don’t want editor to wait until CPU hog finishes quantum
ü This policy delays execution of CPU-bound jobs

Operating System 40

MultipleMultiple--Processor SchedulingProcessor Scheduling
n CPU scheduling more complex when multiple CPUs are available

n Homogeneous processors within a multiprocessor
ü UMA (Uniform Memory Access)

n Load sharing

n Asymmetric multiprocessing
ü Only one processor accesses the system data structures, alleviating the need for

data sharing
ü Not efficient

Operating System 41

RealReal--Time SchedulingTime Scheduling
n Hard real-time systems
ü required to complete a critical task within a guaranteed amount of time

n Soft real-time computing
ü requires that critical processes receive priority over less fortunate ones

n Static vs. Dynamic priority scheduling
ü Static: Rate-Monotonic algorithm
ü Dynamic: EDF (Earliest Deadline First) algorithm

Operating System 42

RealReal--Time SchedulingTime Scheduling
n Hard real-time
ü Must complete a critical task within a guaranteed amount of time
ü Resource reservation

§ A process is submitted along with its resource requirements
ü Requires worst-case timing analysis

§ Minimize unavoidable and unforeseeable variation in the amount of time to execute a
particular process

§ Very difficult in a system with secondary storage or virtual memory
ü Typically composed of special-purpose software running on dedicated hardware

with limited functionality

Operating System 43

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Soft real-time
ü Less restrictive

§ Multimedia, high-speed interactive graphics, etc.
ü May cause an unfair allocation of resources and may result in longer delays, or

even starvations, for some processes
ü Requirements

§ The system must have priority scheduling, and real-time processes must have the
highest priority
(The priority of real-time processes must not degrade over time)

§ Dispatch latency must be small

Operating System 44

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Problem
ü Most versions of UNIX are forced to wait either for a system call to complete or

for an I/O block to take place before doing a context switch

n Preempting system calls
ü Insert preemption points

§ Still dispatch latency can be large
ü Make the entire kernel preemptible.

§ All kernel data structures must be protected
§ Solaris 2

Operating System 45

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority inversion problem

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m

Time

blocked runnable active

unblocked lock m

Priority inversion

Thread B
(medium priority Pm)

unblocked

Operating System 46

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority inheritance protocol

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m

Time

blocked runnable active

unblocked lock m

Thread B
(medium priority Pm)

unblocked

raise to Ph unlock m & lower to Pl

unblocked

Operating System 47

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority ceiling protocol

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m & raise to Ph

Time

blocked runnable active

unblocked lock m

Thread B
(medium priority Pm)

unblocked

unlock m & lower to Pl

unblocked

Operating System 48

Algorithm EvaluationAlgorithm Evaluation
n Deterministic modeling

ü Takes a particular predetermined workload and defines the performance of each
algorithm for that workload

n Queueing models
ü Mathematical models used to compute expected system parameters

n Simulation
ü Algorithmic models which simulate a simplified version of a system using

statistical input
ü Trace tape (or trace data)
ü Cf) Emulation

n Implementation
ü Direct implementation of the system under test, with appropriate benchmarks

Operating System 49

Evaluation of CPU Schedulers by SimulationEvaluation of CPU Schedulers by Simulation

Operating System 50

Solaris 2 SchedulingSolaris 2 Scheduling

Operating System 51

Windows 2000 PrioritiesWindows 2000 Priorities

