6. CPU Scheduling

Sungyoung Lee

College of Engineering
KyungHee University

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Algorithm Evaluation

J 3 53 3 3 3

Operating System 1

Basic Concepts

N Maximum CPU utilization obtained with multiprogramming

n CPU-I/O Burst Cycle
U Process execution consists of a cycle of CPU execution and 1/0O walit

N CPU burst distribution

Operating System 2

Alternating Sequence of CPU And I/O Bursts

load store
add store

read from file = CPL burst

wail for A0 1O burst

store increment

write to file

wair for I/0 ’r ¥ burst

load store
add store

read from file L CPL burst

wait for 170 } WO burst

Operating System 3

CPU burst vs. I/O burst

N (a) A CPU-bound process
N (b) An I/O-bound process

(@ | / f—— —]
Long CPU burst \

Waiting for |/O
Short CPU burst \
() [{1 {} {1 {1 {1 (| (] { —{—
Time
_— =

Operating System 4

Histogram of CPU-burst Times

16 24 32

burst duration (milliseconds)

Operating System 5

CPU Scheduler

N Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them

N CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from Waltlng to ready

4. Terminates

scheﬁuler dispatch *

I/O or event ccmpieﬁanl | I/O or event wait

N Scheduling under 1 and 4 is nonpreemptive
N All other scheduling is preemptive

Operating System 6

Dispatcher

N Dispatcher module gives control of the CPU to the process selected by the
short-term scheduler; this involves:

O switching context
U switching to user mode
U jumping to the proper location in the user program to restart that program

N Dispatch latency
U time it takes for the dispatcher to stop one process and start another running

Operating System 7

Dispatch Latency

respanss o evant

response interval o

process mada
intarrupd available
processing

——————— dispatch latancy ——m

raal-lume
process

agacution
-

M— conflicts ——wsl—— dispatch ——im

Operating System 8

Preemptive vs. Non-preemptive

N Non-preemptive scheduling
U The scheduler waits for the running job to explicitly (voluntarily) block

U Scheduling takes place only when
§ A process switches from running to waiting state
§ A process terminates

N Preemptive scheduling
U The scheduler can interrupt a job and force a context switch

U What happens
§ If a process is preempted in the midst of updating the shared data?
§ If a process in system call is preempted?

Operating System 9

Scheduling Criteria

n CPU utilization
U keep the CPU as busy as possible

N Throughput
O # of processes that complete their execution per time unit

N Turnaround time
(amount of time to execute a particular process

N Waiting time
(amount of time a process has been waiting in the ready queue

N Response time

0 amount of time it takes from when a request was submitted until the first response
IS produced, not output (for time-sharing environment)

Operating System 10

Optimization Criteria

N Max CPU utilization

N Max throughput

N Min turnaround time

N Min waiting time

N Min response time

Operating System

11

Scheduling Goals

N All systems
U Fairness: giving each process a fair share of the CPU
U Balance: keeping all parts of the system busy

N Batch systems
U Throughput: maximize jobs per hour
U Turnaround time: minimize time between submission and termination
U CPU utilization: keep the CPU busy all the time

Operating System 12

Scheduling Goals (Cont’d)

N Interactive systems
U Response time: minimize average time spent on ready queue
U Waiting time: minimize average time spent on wait queue
U Proportionality: meet users’ expectations

N Real-time systems
U Meeting deadlines: avoid losing data
U Predictability: avoid quality degradation in multimedia systems

Operating System 13

Scheduling Non-goals

N Starvation
O A situation where a process is prevented from making progress because another
process has the resource it requires.
§ Resource could be the CPU or a lock
U A poor scheduling policy can cause starvation

§ If a high-priority process always prevents a low-priority process from running on the
CPU

U Synchronization can also cause starvation
§ One thread always beats another when acquiring a lock
§ Constant supply of readers always blocks out writers

Operating System 14

FCFS/FIFO

N First-Come, First-Served
U Jobs are scheduled in order that they arrive

U “Real-world” scheduling of people in lines
§ e.g. supermarket, bank tellers, McDonalds, etc.

U Typically, non-preemptive
U Jobs are treated equally: no starvation

N Problems

U Average waiting time can be large if small jobs wait behind long ones
§ Basket vs. cart

U May lead to poor overlap of I/O and CPU

Operating System 15

First-Come, First-Served (FCFS) Scheduling

N Suppose that the processes arrive in the order: P, , P, , P,

Process

Burst Time

24
3
3

The Gantt Chart for the schedule is:

N Waiting time for P, =0; P, =24; P,=27

P,

P,

Ps

0

24

N Average waiting time: (0 + 24 + 27)/3 =17

Operating System

27

30

16

FCFS Scheduling (Cont’d)

N Suppose that the processes arrive in the order
P,,P;,P,.

N The Gantt chart for the schedule is:

P, Ps P,

N Waiting time for P, =6;P,=0.P;=3

N Average waiting time: (6 +0 + 3)/3 =3
N Much better than previous case
N

Convoy effect
 short process behind long process

Operating System

30

7

N Shortest Job First
U Choose the job with the smallest expected CPU burst

 Can prove that SJF has optimal min. average waiting time
§ Only when all jobs are available simultaneously

U Non-preemptive

N Problems
U Impossible to know size of future CPU burst
U Can you make a reasonable guess?
 Can potentially starve

Operating System 18

Shortest-Job-First (SJR) Scheduling

N Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

N Two schemes:
 Nonpreemptive
§ Once CPU given to the process it cannot be preempted until completes its CPU burst
U Preemptive

§ If a new process arrives with CPU burst length less than remaining time of current
executing process, preempt

§ This scheme is known as the Shortest-Remaining-Time-First (SRTF)

N SJF is optimal
0 gives minimum average waiting time for a given set of processes

Operating System 19

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

N SJF (non-preemptive)

N Average waitingtime=(0+6+3+7)/4=4

Operating System 20

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

N SJF (preemptive) (= SRTF)

P, P, |P, | P, P, P,

I I I .
I I | I I I I I I I |
N Average waitingtime=(9+ 1+ 0 +2)/4 =3

Operating System 21

Determining Length of Next CPU Burst

N Can only estimate the length

N Can be done by using the length of previous CPU bursts, using exponential
averaging

1. t, =actual lenght of n""CPU burst

2.t ., =predicted value for the next CPU burst
3.a,0£a £l

4. Define:

t,,=at +@1-ak,.

Operating System 22

Prediction of the Length of the Next CPU Burst

CPU burst (t)

"guess” (t) 10

Operating System 23

Examples of Exponential Averaging

Nn a=0
ut.,,=t,
U Recent history does not count

Nn a-=1
ut,,=t,
 Only the actual last CPU burst counts

N If we expand the formula, we get:
t,=at+l-a)at,-1+...
+(1-a)Yat,-1+...
+(1 -a)n=1 tn t0

N Since both a and (1 - a) are less than or equal to 1, each successive term
has less weight than its predecessor

Operating System 24

Priority Scheduling

N A priority number (integer) is associated with each process

N The CPU is allocated to the process with the highest priority

(smallest integer © highest priority)
U Preemptive
 Nonpreemptive

N SJF is a priority scheduling where priority is the predicted next CPU burst
time

N Problem © Starvation (or Indefinite blocking)
U low priority processes may never execute

N Solution © Aging
U as time progresses increase the priority of the process

Operating System

25

Priority Scheduling

N Abstractly modeled as multiple “priority queues”
U Put ready job on Q associated with its priority

Operating System

Queue
headers

Runable processes

-

Priority 4

Priority 3

Priority 2

Priority 1

26

Round Robin (RR)

N Each process gets a small unit of CPU time (time gquantum), usually 10-100
milliseconds

O After this time has elapsed, the process is preempted and added to the end of the
ready queue

N If there are n processes in the ready queue and the time quantum is g, then
each process gets 1/n of the CPU time in chunks of at most g time units at
once

(No process waits more than (n-1)q time units

N Performance
0 glarge b FIFO

U gsmall b g must be large with respect to context switch, otherwise overhead is
too high

Operating System 27

Example of RR with Time Quantum = 20

N The Gantt chart is:

N Typically, higher average turnaround than SJF, but better response

Operating System

0

Process Burst Time

P, 17

P, 68

P, 24
P, | P, |Py| P, | P, | Py | P, | P, | Py| Py
20 37 57 77 97 117 121 134 154 162

28

Time Quantum and Context Switch Time

procass time =10 quantum cortext
awitchas

Operating System 29

Turnaround Time Varies With The Time Quantum

Operating System

average turnaround time

process

time quantum

30

Problems of RR

N What do you set the qguantum to be?
U quantum ® ¥ : FIFO
guantum ® O : processor sharing

U If small, then context switches are frequent incurring high overhead (CPU
utilization drops)

U If large, then response time drops

U A rule of thumb: 80% of the CPU bursts should be shorter than the time quantum
N Treats all jobs equally

(Multiple background jobs?

Operating System 31

Combining Algorithms

N Scheduling algorithms can be combined in practice
U Have multiple queues
U Pick a different algorithm for each queue
0 Have a mechanism to schedule among queues
U And maybe, move processes between queues

Operating System 32

Multilevel Queue

N Ready queue is partitioned into separate queues:
U foreground (interactive)
U background (batch)

N Each queue has its own scheduling algorithm:
U foreground — RR
U background — FCFS

N Scheduling must be done between the queues
U Fixed priority scheduling
§ (i.e., serve all from foreground then from background) Possibility of starvation

U Time slice

§ each queue gets a certain amount of CPU time which it can schedule amongst its
processes

§ i.e., 80% to foreground in RR & 20% to background in FCFS

Operating System 33

Multilevel Queue Scheduling

[=N [==

system processes

interactive editing processes

batch processes

student processes

Operating System 34

Multilevel Feedback Queue

N A process can move between the various queues
U aging can be implemented this way

N Multilevel-feedback-queue scheduler defined by the following parameters:
number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter when that process
needs service

G e e e

Operating System 35

Example of Multilevel Feedback Queue

N Three queues:
U Qg —time quantum 8 milliseconds

U Q, —time quantum 16 milliseconds
0 Q,—-FCFS

N Scheduling
U A new job enters queue Q, which is served FCFS
U When it gains CPU, job receives 8 milliseconds
U If it does not finish in 8 milliseconds, job is moved to queue Q,
U At Q, job is again served FCFS and receives 16 additional milliseconds
U If it still does not complete, it is preempted and moved to queue Q,

Operating System

36

Multilevel Feedback Queues

quantum = 8

4>| quantum = 16 ‘7

Operating System 37

UNIX Scheduler

N The canonical UNIX scheduler uses a MLFQ

U 3 — 4 classes spanning ~170 priority levels
§ Timeshare, System, Real-time, Interrupt (Solaris 2)

U Priority scheduling across queues, RR within a queue
§ The process with the highest priority always runs
§ Processes with the same priority are scheduled RR

U Processes dynamically change priority
§ Increases over time if process blocks before end of quantum
§ Decreases over time if process uses entire quantum

Operating System 38

UNIX Scheduler (Cont’d)

N Motivation
U The idea behind the UNIX scheduler is to reward interactive processes over CPU
hogs
U Interactive processes typically run using short CPU bursts
§ They do not finish quantum before waiting for more input
0 Want to minimize response time

§ Time from keystroke (putting process on ready queue) to executing the handler
(process running)

§ Don’t want editor to wait until CPU hog finishes quantum
U This policy delays execution of CPU-bound jobs

Operating System 39

Multiple-Processor Scheduling

N CPU scheduling more complex when multiple CPUs are available

N Homogeneous processors within a multiprocessor
0 UMA (Uniform Memory Access)

N Load sharing

N Asymmetric multiprocessing

U Only one processor accesses the system data structures, alleviating the need for
data sharing

U Not efficient

Operating System 40

Real-Time Scheduling

N Hard real-time systems
U required to complete a critical task within a guaranteed amount of time

N Soft real-time computing
U requires that critical processes receive priority over less fortunate ones

N Static vs. Dynamic priority scheduling
0 Static: Rate-Monotonic algorithm
U Dynamic: EDF (Earliest Deadline First) algorithm

Operating System 41

Real-Time Scheduling

N Hard real-time
0 Must complete a critical task within a guaranteed amount of time
U Resource reservation
§ A process is submitted along with its resource requirements

U Requires worst-case timing analysis

§ Minimize unavoidable and unforeseeable variation in the amount of time to execute a
particular process

§ Very difficult in a system with secondary storage or virtual memory

U Typically composed of special-purpose software running on dedicated hardware
with limited functionality

Operating System 42

Real-Time Scheduling (Cont’d)

N Soft real-time

U Less restrictive
§ Multimedia, high-speed interactive graphics, etc.
U May cause an unfair allocation of resources and may result in longer delays, or
even starvations, for some processes
U Requirements

§ The system must have priority scheduling, and real-time processes must have the
highest priority
(The priority of real-time processes must not degrade over time)

§ Dispatch latency must be small

Operating System 43

Real-Time Scheduling (Cont’d)

N Problem

U Most versions of UNIX are forced to wait either for a system call to complete or
for an 1/0O block to take place before doing a context switch

N Preempting system calls
U Insert preemption points
§ Sitill dispatch latency can be large

U Make the entire kernel preemptible.
§ All kernel data structures must be protected
§ Solaris 2

Operating System 44

Real-Time Scheduling (Cont’d)

N Priority inversion problem

unblocked lock m
Thread A El-umu.l—_—\ =
(high priority Ph) ,
unblocked Priority inversion
Thread B Eim . SO SS S 00NN 0e
(medium priority Pm)
lock m
Thread Ci......—
(low priority Pl) N
Time

=== Dplocked ™= rynnable """"* active

Operating System 45

Real-Time Scheduling (Cont’d)

N Priority inheritance protocol

unblocked lock m unblocked
Thread A El-.um..l=m—l
(high priority Ph)
unblocked
Thread B Eim |
(medium priority Pm)
lock m raise to Ph unlock m & lower to Pl

Thread C —-i———_¢4_

(low priority PI)

>
Time

== Dplocked ™= rynnable """"* active

Operating System 46

Real-Time Scheduling (Cont’d)

N Priority ceiling protocol

unblocked lock m unblocked
Thread A El-.um..l=m—l
(high priority Ph)
unblocked
Thread B i;
(medium priority Pm) _
lock m & raise to Ph unlock m & lower to PI

Thread C l—4_

(low priority PI)

>
Time

== Dplocked ™= rynnable """"* active

Operating System 47

Algorithm Evaluation

N Deterministic modeling

U Takes a particular predetermined workload and defines the performance of each
algorithm for that workload

N Queueing models
U Mathematical models used to compute expected system parameters

N Simulation

U Algorithmic models which simulate a simplified version of a system using
statistical input

U Trace tape (or trace data)
0 Cf) Emulation

N Implementation
U Direct implementation of the system under test, with appropriate benchmarks

Operating System 48

Evaluation of CPU Schedulers by Simulation

simulation

| FCFS |

acthual
process
axpcution

Operating System

CRU 10
W 213
CPU 12
o 112
] S)
1 147
CPLU 173

simulation

SJF

frace lape

simulation

[BRO=14)]

-

.

.

pefarmance
statistics
for FOFS

pefarmance
statistics
for SJF

parformancea
statistics
for AR(Q = 14)

49

Solaris 2 Scheduling

scheduling specific scheduler run
order priorities classes queue

highest first real time kernel
A A @ threads of real-
time LWPs

kernel
service
threads

system

kernel
threads of
interactive and
time-sharing
LWPs

interactive and
time sharing

Q??OQQ

Operating System 50

Windows 2000 Priorities

above below idle
normal normal priority

time-critical 15

highest 12

above normal

normal

below normal

lowest

idle

Operating System ol

