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Basic ConceptsBasic Concepts
n Maximum CPU utilization obtained with multiprogramming

n CPU–I/O Burst Cycle
ü Process execution consists of a cycle of CPU execution and I/O wait

n CPU burst distribution
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Alternating Sequence of CPU And I/O BurstsAlternating Sequence of CPU And I/O Bursts
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CPU burst vs. I/O burstCPU burst vs. I/O burst
n (a) A CPU-bound process
n (b) An I/O-bound process
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Histogram of CPUHistogram of CPU--burst Timesburst Times
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CPU SchedulerCPU Scheduler
n Selects from among the processes in memory that are ready to execute, and 

allocates the CPU to one of them
n CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

n Scheduling under 1 and 4 is nonpreemptive
n All other scheduling is preemptive
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DispatcherDispatcher
n Dispatcher module gives control of the CPU to the process selected by the 

short-term scheduler; this involves:
ü switching context
ü switching to user mode
ü jumping to the proper location in the user program to restart that program

n Dispatch latency
ü time it takes for the dispatcher to stop one process and start another running
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Dispatch LatencyDispatch Latency
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Preemptive vs. NonPreemptive vs. Non--preemptivepreemptive
n Non-preemptive scheduling
ü The scheduler waits for the running job to explicitly (voluntarily) block
ü Scheduling takes place only when

§ A process switches from running to waiting state
§ A process terminates

n Preemptive scheduling
ü The scheduler can interrupt a job and force a context switch
ü What happens

§ If a process is preempted in the midst of updating the shared data?
§ If a process in system call is preempted?
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Scheduling CriteriaScheduling Criteria
n CPU utilization

ü keep the CPU as busy as possible

n Throughput
ü # of processes that complete their execution per time unit

n Turnaround time
ü amount of time to execute a particular process

n Waiting time
ü amount of time a process has been waiting in the ready queue

n Response time
ü amount of time it takes from when a request was submitted until the first response 

is produced, not output  (for time-sharing environment)
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Optimization CriteriaOptimization Criteria
n Max CPU utilization

n Max throughput

n Min turnaround time 

n Min waiting time 

n Min response time
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Scheduling GoalsScheduling Goals
n All systems
ü Fairness: giving each process a fair share of the CPU
ü Balance: keeping all parts of the system busy

n Batch systems
ü Throughput: maximize jobs per hour
ü Turnaround time: minimize time between submission and termination
ü CPU utilization: keep the CPU busy all the time
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Scheduling Goals (ContScheduling Goals (Cont’’d)d)
n Interactive systems
ü Response time: minimize average time spent on ready queue
ü Waiting time: minimize average time spent on wait queue
ü Proportionality: meet users’ expectations

n Real-time systems
ü Meeting deadlines: avoid losing data
ü Predictability: avoid quality degradation in multimedia systems
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Scheduling NonScheduling Non--goalsgoals
n Starvation
ü A situation where a process is prevented from making progress because another 

process has the resource it requires.
§ Resource could be the CPU or a lock

ü A poor scheduling policy can cause starvation
§ If a high-priority process always prevents a low-priority process from running on the 

CPU
ü Synchronization can also cause starvation

§ One thread always beats another when acquiring a lock
§ Constant supply of readers always blocks out writers 
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FCFS/FIFOFCFS/FIFO
n First-Come, First-Served
ü Jobs are scheduled in order that they arrive
ü “Real-world” scheduling of people in lines

§ e.g. supermarket, bank tellers, McDonalds, etc. 
ü Typically, non-preemptive
ü Jobs are treated equally: no starvation

n Problems
ü Average waiting time can be large if small jobs wait behind long ones

§ Basket vs. cart
ü May lead to poor overlap of I/O and CPU
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Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FirstFirst--Come, FirstCome, First--Served (FCFS) SchedulingServed (FCFS) Scheduling
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FCFS Scheduling (ContFCFS Scheduling (Cont’’d)d)
n Suppose that the processes arrive in the order

P2 , P3 , P1 .

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time:   (6 + 0 + 3)/3 = 3
n Much better than previous case
n Convoy effect
ü short process behind long process

P1P3P2

63 300
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SJFSJF
n Shortest Job First
ü Choose the job with the smallest expected CPU burst
ü Can prove that SJF has optimal min. average waiting time

§ Only when all jobs are available simultaneously
ü Non-preemptive

n Problems
ü Impossible to know size of future CPU burst
ü Can you make a reasonable guess?
ü Can potentially starve
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ShortestShortest--JobJob--First (SJR) SchedulingFirst (SJR) Scheduling
n Associate with each process the length of its next CPU burst.  Use these 

lengths to schedule the process with the shortest time

n Two schemes: 
ü Nonpreemptive

§ Once CPU given to the process it cannot be preempted until completes its CPU burst
ü Preemptive

§ If a new process arrives with CPU burst length less than remaining time of current 
executing process, preempt

§ This scheme is known as the Shortest-Remaining-Time-First (SRTF)

n SJF is optimal
ü gives minimum average waiting time for a given set of processes
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Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of NonExample of Non--Preemptive SJFPreemptive SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJFExample of Preemptive SJF
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (preemptive) (= SRTF)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16
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n Can only estimate the length

n Can be done by using the length of previous CPU bursts, using exponential 
averaging

:Define  4.
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Determining Length of Next CPU BurstDetermining Length of Next CPU Burst
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Prediction of the Length of the Next CPU BurstPrediction of the Length of the Next CPU Burst
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Examples of Exponential AveragingExamples of Exponential Averaging
n α =0

ü τn+1 = τn

ü Recent history does not count

n α =1
ü τn+1 = tn
ü Only the actual last CPU burst counts

n If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α )j α tn -1 + …
+(1 - α )n=1 tn τ0

n Since both α and (1 - α) are less than or equal to 1, each successive term 
has less weight than its predecessor
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Priority SchedulingPriority Scheduling
n A priority number (integer) is associated with each process

n The CPU is allocated to the process with the highest priority 
(smallest integer ≡ highest priority)
ü Preemptive
ü Nonpreemptive

n SJF is a priority scheduling where priority is the predicted next CPU burst 
time

n Problem ≡ Starvation (or Indefinite blocking)
ü low priority processes may never execute

n Solution ≡ Aging
ü as time progresses increase the priority of the process



Operating System 26

Priority SchedulingPriority Scheduling
n Abstractly modeled as multiple “priority queues”

ü Put ready job on Q associated with its priority
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Round Robin (RR)Round Robin (RR)
n Each process gets a small unit of CPU time (time quantum), usually 10-100 

milliseconds
ü After this time has elapsed, the process is preempted and added to the end of the 

ready queue

n If there are n processes in the ready queue and the time quantum is q, then 
each process gets 1/n of the CPU time in chunks of at most q time units at 
once
ü No process waits more than (n-1)q time units

n Performance
ü q large ⇒ FIFO
ü q small ⇒ q must be large with respect to context switch, otherwise overhead is 

too high
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Process Burst Time
P1 53
P2 17
P3 68
P4 24

n The Gantt chart is: 

n Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Example of RR with Time Quantum = 20Example of RR with Time Quantum = 20
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Time Quantum and Context Switch TimeTime Quantum and Context Switch Time
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Turnaround Time Varies With The Time QuantumTurnaround Time Varies With The Time Quantum
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Problems of RRProblems of RR
n What do you set the quantum to be?
ü quantum → ∞ : FIFO

quantum → 0 : processor sharing
ü If small, then context switches are frequent incurring high overhead (CPU 

utilization drops)
ü If large, then response time drops
ü A rule of thumb: 80% of the CPU bursts should be shorter than the time quantum

n Treats all jobs equally
ü Multiple background jobs?
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Combining AlgorithmsCombining Algorithms
n Scheduling algorithms can be combined in practice
ü Have multiple queues
ü Pick a different algorithm for each queue
ü Have a mechanism to schedule among queues
ü And maybe, move processes between queues
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Multilevel QueueMultilevel Queue
n Ready queue is partitioned into separate queues:

ü foreground (interactive)
ü background (batch)

n Each queue has its own scheduling algorithm:
ü foreground – RR
ü background – FCFS

n Scheduling must be done between the queues
ü Fixed priority scheduling

§ (i.e., serve all from foreground then from background)  Possibility of starvation
ü Time slice

§ each queue gets a certain amount of CPU time which it can schedule amongst its 
processes

§ i.e., 80% to foreground in RR & 20% to background in FCFS 
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Multilevel Queue SchedulingMultilevel Queue Scheduling
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Multilevel Feedback QueueMultilevel Feedback Queue
n A process can move between the various queues

ü aging can be implemented this way

n Multilevel-feedback-queue scheduler defined by the following parameters:
ü number of queues
ü scheduling algorithms for each queue
ü method used to determine when to upgrade a process
ü method used to determine when to demote a process
ü method used to determine which queue a process will enter when that process 

needs service



Operating System 36

n Three queues: 
ü Q0 – time quantum 8 milliseconds
ü Q1 – time quantum 16 milliseconds
ü Q2 – FCFS

n Scheduling
ü A new job enters queue Q0 which is served FCFS
ü When it gains CPU, job receives 8 milliseconds
ü If it does not finish in 8 milliseconds, job is moved to queue Q1

ü At Q1 job is again served FCFS and receives 16 additional milliseconds
ü If it still does not complete, it is preempted and moved to queue Q2

Example of Multilevel Feedback QueueExample of Multilevel Feedback Queue
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Multilevel Feedback QueuesMultilevel Feedback Queues
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UNIX SchedulerUNIX Scheduler
n The canonical UNIX scheduler uses a MLFQ
ü 3 – 4 classes spanning ~170 priority levels

§ Timeshare, System, Real-time, Interrupt (Solaris 2)
ü Priority scheduling across queues, RR within a queue

§ The process with the highest priority always runs
§ Processes with the same priority are scheduled RR

ü Processes dynamically change priority
§ Increases over time if process blocks before end of quantum
§ Decreases over time if process uses entire quantum
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UNIX Scheduler (ContUNIX Scheduler (Cont’’d)d)
n Motivation
ü The idea behind the UNIX scheduler is to reward interactive processes over CPU 

hogs
ü Interactive processes typically run using short CPU bursts

§ They do not finish quantum before waiting for more input
ü Want to minimize response time

§ Time from keystroke (putting process on ready queue) to executing the handler 
(process running)

§ Don’t want editor to wait until CPU hog finishes quantum
ü This policy delays execution of CPU-bound jobs
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MultipleMultiple--Processor SchedulingProcessor Scheduling
n CPU scheduling more complex when multiple CPUs are available

n Homogeneous processors within a multiprocessor
ü UMA (Uniform Memory Access)

n Load sharing

n Asymmetric multiprocessing
ü Only one processor accesses the system data structures, alleviating the need for 

data sharing
ü Not efficient
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RealReal--Time SchedulingTime Scheduling
n Hard real-time systems 
ü required to complete a critical task within a guaranteed amount of time

n Soft real-time computing 
ü requires that critical processes receive priority over less fortunate ones

n Static vs. Dynamic priority scheduling
ü Static: Rate-Monotonic algorithm
ü Dynamic: EDF (Earliest Deadline First) algorithm
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RealReal--Time SchedulingTime Scheduling
n Hard real-time
ü Must complete a critical task within a guaranteed amount of time
ü Resource reservation

§ A process is submitted along with its resource requirements
ü Requires worst-case timing analysis

§ Minimize unavoidable and unforeseeable variation in the amount of time to execute a 
particular process

§ Very difficult in a system with secondary storage or virtual memory
ü Typically composed of special-purpose software running on dedicated hardware 

with limited functionality
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RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Soft real-time
ü Less restrictive

§ Multimedia, high-speed interactive graphics, etc.
ü May cause an unfair allocation of resources and may result in longer delays, or 

even starvations, for some processes
ü Requirements

§ The system must have priority scheduling, and real-time processes must have the 
highest priority
(The priority of real-time processes must not degrade over time)

§ Dispatch latency must be small
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RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Problem
ü Most versions of UNIX are forced to wait either for a system call to complete or 

for an I/O block to take place before doing a context switch

n Preempting system calls
ü Insert preemption points

§ Still dispatch latency can be large
ü Make the entire kernel preemptible.

§ All kernel data structures must be protected
§ Solaris 2
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RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority inversion problem

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m

Time

blocked runnable active

unblocked lock m

Priority inversion

Thread B
(medium priority Pm)

unblocked



Operating System 46

RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority inheritance protocol

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m

Time

blocked runnable active

unblocked lock m

Thread B
(medium priority Pm)

unblocked

raise to Ph unlock m & lower to Pl

unblocked
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RealReal--Time Scheduling (ContTime Scheduling (Cont’’d)d)
n Priority ceiling protocol

Thread A
(high priority Ph)

Thread C
(low priority Pl)

lock m & raise to Ph

Time

blocked runnable active

unblocked lock m

Thread B
(medium priority Pm)

unblocked

unlock m & lower to Pl

unblocked
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Algorithm EvaluationAlgorithm Evaluation
n Deterministic modeling 

ü Takes a particular predetermined workload and defines the performance of each 
algorithm  for that workload

n Queueing models
ü Mathematical models used to compute expected system parameters

n Simulation
ü Algorithmic models which simulate a simplified version of a system using 

statistical input
ü Trace tape (or trace data)
ü Cf) Emulation

n Implementation
ü Direct implementation of the system under test, with appropriate benchmarks
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Evaluation of CPU Schedulers by SimulationEvaluation of CPU Schedulers by Simulation
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Solaris 2 SchedulingSolaris 2 Scheduling
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Windows 2000 PrioritiesWindows 2000 Priorities


