
7. 7. Process SynchronizationProcess Synchronization

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n Background
n The Critical-Section Problem
n Synchronization Hardware
n Semaphores
n Classical Problems of Synchronization
n Critical Regions
n Monitors
n Synchronization in Solaris 2 & Windows 2000

Operating System 2

BackgroundBackground
n Concurrent access to shared data may result in data inconsistency

n Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

n Shared-memory solution to bounded-buffer problem (Chapter 4) allows at
most n – 1 items in buffer at the same time. A solution, where all N buffers
are used is not simple
ü Suppose that we modify the producer-consumer code by adding a variable

counter, initialized to 0 and incremented each time a new item is added to the
buffer

Operating System 3

BoundedBounded--BufferBuffer
n Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Operating System 4

BoundedBounded--Buffer Buffer
n Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Operating System 5

BoundedBounded--Buffer Buffer
n Consumer process

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Operating System 6

Bounded BufferBounded Buffer
n The statements

counter++;
counter--;

must be performed atomically

n Atomic operation means an operation that completes in its entirety without
interruption

Operating System 7

Bounded BufferBounded Buffer
n The statement “count++” may be implemented in machine language as:

register1 = counter
register1 = register1 + 1
counter = register1

n The statement “count—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

Operating System 8

Bounded BufferBounded Buffer
n If both the producer and consumer attempt to update the buffer concurrently,

the assembly language statements may get interleaved

n Interleaving depends upon how the producer and consumer processes are
scheduled

Operating System 9

Bounded BufferBounded Buffer
n Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

n The value of count may be either 4 or 6, where the correct result should be 5

Operating System 10

Race ConditionRace Condition
n Race condition

ü The situation where several processes access – and manipulate shared data
concurrently

ü The final value of the shared data depends upon which process finishes last

n To prevent race conditions, concurrent processes must be synchronized

Operating System 11

SynchronizationSynchronization
n Threads cooperate in multithreaded programs
ü To share resources, access shared data structures
ü Also, to coordinate their execution

n For correctness, we have to control this cooperation
ü Must assume threads interleave executions arbitrarily and at different rates

§ Scheduling is not under application writers’ control
ü We control cooperation using synchronization

§ Enables us to restrict the interleaving of execution
ü (Note) This also applies to processes, not just threads

§ And it also applies across machines in a distributed system

Operating System 12

An ExampleAn Example
n Withdraw money from a bank account
ü Suppose you and your girl(boy) friend share a bank account with a balance of

1,000,000won
ü What happens if both go to separate ATM machines, and simultaneously

withdraw 100,000won from the account?

int withdraw (account, amount)
{

balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

}

int withdraw (account, amount)
{

balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

}

Operating System 13

An Example (ContAn Example (Cont’’d)d)
n Interleaved schedules
ü Represent the situation by creating a separate thread for each person to do the

withdrawals
ü The execution of the two threads can be interleaved, assuming preemptive

scheduling:

balance = get_balance (account);
balance = balance - account;
balance = get_balance (account);
balance = balance - account;

balance = get_balance (account);
balance = balance - account;
put_balance (account, balance);

balance = get_balance (account);
balance = balance - account;
put_balance (account, balance);

put_balance (account, balance);put_balance (account, balance);

Context
switch

Context
switch

Execution
sequence
as seen by

CPU

Operating System 14

Synchronization ProblemSynchronization Problem
n Problem
ü Two concurrent threads (or processes) access a shared resource without any

synchronization
ü Creates a race condition

§ The situation where several processes access and manipulate shared data
concurrently

§ The result is non-deterministic and depends on timing
ü We need mechanisms for controlling access to shared resources in the face of

concurrency
§ So that we can reason about the operation of programs

ü Synchronization is necessary for any shared data structure
§ buffers, queues, lists, etc.

Operating System 15

The CriticalThe Critical--Section ProblemSection Problem
n n processes all competing to use some shared data

n Each process has a code segment, called critical section, in which the
shared data is accessed

n Problem
ü ensure that when one process is executing in its critical section, no other process

is allowed to execute in its critical section

Operating System 16

Solution to CriticalSolution to Critical--Section ProblemSection Problem
1. Mutual Exclusion
ü If process Pi is executing in its critical section, then no other processes can be

executing in their critical sections

2. Progress
ü If no process is executing in its critical section and there exist some processes

that wish to enter their critical section, then the selection of the processes that
will enter the critical section next cannot be postponed indefinitely

3. Bounded Waiting
ü A bound must exist on the number of times that other processes are allowed to

enter their critical sections after a process has made a request to enter its critical
section and before that request is granted

ü Assume that each process executes at a nonzero speed
ü No assumption concerning relative speed of the n processes

Operating System 17

Mechanisms for Critical SectionsMechanisms for Critical Sections
n Locks
ü Very primitive, minimal semantics, used to build others

n Semaphores
ü Basic, easy to get the hang of, hard to program with

n Monitors
ü High-level, requires language support, implicit operations
ü Easy to program with: Java “synchronized”

n Messages
ü Simple model of communication and synchronization based on (atomic) transfer

of data across a channel
ü Direct application to distributed systems

Operating System 18

LocksLocks
n A lock is an object (in memory) that provides the following two operations:
ü acquire(): wait until lock is free, then grab it
ü release(): unlock, and wake up any thread waiting in acquire()

n Using locks
ü Lock is initially free
ü Call acquire() before entering a critical section, and release() after leaving it
ü Between acquire() and release(), the thread holds the lock
ü acquire() does not return until the caller holds the lock
ü At most one thread can hold a lock at a time

n Locks can spin (a spinlock) or block (a mutex)

Operating System 19

Using LocksUsing Locks

int withdraw (account, amount)
{

acquire (lock);
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
release (lock);
return balance;

}

int withdraw (account, amount)
{

acquire (lock);
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
release (lock);
return balance;

}

Critical
section

A
S1
S2
S3
R

Thread T1

Thread T2

A S1 S2 S3 R

A S1 S2 S3 R

Operating System 20

n An initial attempt

ü Does this work?

struct lock { int held = 0; }

void acquire (struct lock *l) {
while (l->held);
l->held = 1;

}
void release (struct lock *l) {

l->held = 0;
}

struct lock { int held = 0; }

void acquire (struct lock *l) {
while (l->held);
l->held = 1;

}
void release (struct lock *l) {

l->held = 0;
}

The caller “busy-waits”,
or spins for locks to be

released, hence spinlocks

Implementing LocksImplementing Locks

Operating System 21

n Problem
ü Implementation of locks has a critical section, too!

§ The acquire/release must be atomic
§ A recursion, huh?

ü Atomic operation
§ Executes as though it could not be interrupted
§ Code that executes “all or nothing”

n Solutions
ü Software-only algorithms

§ Algorithm 1, 2, 3 for two processes
§ Bakery algorithm for more than two processes

ü Hardware atomic instructions
§ Test-and-set, compare-and-swap, etc.

ü Disable/re-enable interrupts
§ To prevent context switches

Implementing Locks (ContImplementing Locks (Cont’’d)d)

Operating System 22

Initial Attempts to Solve ProblemInitial Attempts to Solve Problem
n Only 2 processes, P0 and P1

n General structure of process Pi (other process Pj)
do {

entry section
critical section

exit section
remainder section

} while (1);
n Processes may share some common variables to synchronize their actions

n Entry section
ü Acquire a lock

n Exit section
ü Release a lock

Operating System 23

Algorithm 1Algorithm 1
n Shared variables:

ü int turn;
initially turn = 0

ü turn = i ⇒ Pi can enter its critical section

n Process Pi

do {
while (turn != i) ;

critical section
turn = j;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress

Operating System 24

Algorithm 2Algorithm 2
n Shared variables

ü boolean flag[2];
initially flag [0] = flag [1] = false

ü flag [i] = true ⇒ Pi ready to enter its critical section

n Process Pi
do {

flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Satisfies mutual exclusion, but not progress requirement

Operating System 25

Algorithm 3Algorithm 3
n Combined shared variables of algorithms 1 and 2

n Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

n Meets all three requirements; solves the critical-section problem for two
processes

Operating System 26

Bakery AlgorithmBakery Algorithm
n Critical section for n processes

ü Before entering its critical section, process receives a number. Holder of the
smallest number enters the critical section

ü If processes Pi and Pj receive the same number, if i < j, then Pi is served first; else
Pj is served first

ü The numbering scheme always generates numbers in increasing order of
enumeration; i.e., 1,2,3,3,3,3,4,5...

Operating System 27

Bakery Algorithm Bakery Algorithm
n Notation <≡ lexicographical order (ticket #, process id #)

ü (a,b) < (c,d) if a < c or if a = c and b < d
ü max (a0,…, an-1) is a number, k, such that k ≥ ai for i = 0, …, n – 1

n Shared data
boolean choosing[n];
int number[n];

ü Data structures are initialized to false and 0 respectively

Operating System 28

Bakery Algorithm Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && ((number[j],j) < (number[I],i))) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Operating System 29

Synchronization HardwareSynchronization Hardware
n Test and modify the content of a word atomically

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}

Operating System 30

Mutual Exclusion with TestMutual Exclusion with Test--andand--SetSet
n Shared data:

boolean lock = false;

n Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
} while (1);

Operating System 31

Synchronization Hardware Synchronization Hardware
n Atomically swap two variables

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

Operating System 32

Mutual Exclusion with SwapMutual Exclusion with Swap
n Shared data (initialized to false):

boolean lock;

n Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

} while (1);

Operating System 33

Problems with Problems with SpinlocksSpinlocks
n Horribly wasteful !
ü If a thread is spinning on a lock, the thread holding the lock cannot make

progress
ü the longer the critical section, the longer the spin
ü Greater the chances for lock holder to be interrupted

n How did the lock holder yield the CPU in the first place?
ü Lock holder calls yield() or sleep()
ü Involuntary context switch

n Only want to use spinlock as primitives to build higher-level synchronization
constructs

Operating System 34

Disabling InterruptsDisabling Interrupts
n Implementing locks by disabling interrupts

ü Disabling interrupts blocks notification of external events that could trigger a
context switch (e.g., timer)

ü There is no state associate with the lock
ü Can two threads disable interrupts simultaneously?

void acquire (struct lock *l) {
cli(); // disable interrupts;

}
void release (struct lock *l) {

sti(); // enable interrupts;
}

void acquire (struct lock *l) {
cli(); // disable interrupts;

}
void release (struct lock *l) {

sti(); // enable interrupts;
}

Operating System 35

Disabling Interrupts (ContDisabling Interrupts (Cont’’d)d)
n What’s wrong?
ü Only available to kernel

§ Why not have the OS support these as system calls?
ü Insufficient on a multiprocessor

§ Back to atomic instructions
ü What if the critical section is long?

§ Can miss or delay important events
(e.g., timer, I/O)

ü Like spinlocks, only use to implement higher-level synchronization primitives

Operating System 36

HigherHigher--level Synchronizationlevel Synchronization
n Motivation
ü Spinlocks and disabling interrupts are useful only for very short and simple critical

sections
§ Wasteful otherwise
§ These primitives are “primitive” – don’t do anything besides mutual exclusion

ü Need higher-level synchronization primitives that
§ Block waiters
§ Leave interrupts enabled within the critical section

ü Two common high-level primitives:
§ Semaphores: binary (mutex) and counting
§ Monitors: mutexes and condition variables

ü We’ll use our “atomic” locks as primitives to implement them

Operating System 37

SemaphoresSemaphores
n Synchronization tool that does not require busy waiting

n Semaphore S = integer variable

n can only be accessed via two indivisible (atomic) operations

wait (S):
while S≤ 0 do no-op;

S--;

signal (S):
S++;

Operating System 38

n Shared data:
semaphore mutex; //initially mutex = 1

n Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

Critical Section of Critical Section of nn ProcessesProcesses

Operating System 39

Semaphore ImplementationSemaphore Implementation
n Define a semaphore as a record

typedef struct {
int value;
struct process *L;

} semaphore;

n Assume two simple operations:
ü block suspends the process that invokes it
ü wakeup(P) resumes the execution of a blocked process P

Operating System 40

ImplementationImplementation
n Semaphore operations now defined as

wait(S):
S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Operating System 41

n Execute B in Pj only after A executed in Pi

n Use semaphore flag initialized to 0

n Code:
Pi Pj

Μ Μ
A wait(flag)

signal(flag) B

Semaphore as a General Synchronization ToolSemaphore as a General Synchronization Tool

Operating System 42

Deadlock and StarvationDeadlock and Starvation
n Deadlock

ü two or more processes are waiting indefinitely for an event that can be caused by
only one of the waiting processes

n Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

Μ Μ
signal(S); signal(Q);
signal(Q) signal(S);

n Starvation or indefinite blocking
ü A process may never be removed from the semaphore queue in which it is

suspended

Operating System 43

Two Types of SemaphoresTwo Types of Semaphores
n Counting semaphore

ü integer value can range over an unrestricted domain

n Binary semaphore
ü integer value can range only between 0 and 1
ü can be simpler to implement

n Can implement a counting semaphore S as a binary semaphore

Operating System 44

n Data structures:
binary-semaphore S1, S2;
int C;

n Initialization:
S1 = 1 // for mutual exclusion of C
S2 = 0
C = initial value of semaphore S

Implementing Implementing SS as a Binary Semaphoreas a Binary Semaphore

Operating System 45

Implementing Implementing SS
n wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

n signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Operating System 46

n Bounded-Buffer Problem

n Readers and Writers Problem

n Dining-Philosophers Problem

Classical Problems of SynchronizationClassical Problems of Synchronization

Operating System 47

BoundedBounded--Buffer ProblemBuffer Problem
n Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1

Operating System 48

do {
…

produce an item in nextp
…

wait(empty);
wait(mutex);
…

add nextp to buffer
…

signal(mutex);
signal(full);

} while (1);

BoundedBounded--Buffer Problem Producer ProcessBuffer Problem Producer Process

Operating System 49

do {
wait(full)
wait(mutex);
…

remove an item from buffer to nextc
…

signal(mutex);
signal(empty);
…

consume the item in nextc
…

} while (1);

BoundedBounded--Buffer Problem Consumer ProcessBuffer Problem Consumer Process

Operating System 50

Bounded Buffer ProblemBounded Buffer Problem
n No synchronization

int count;int count;

struct item buffer[N];
int in, out;

in

out

void produce(data)
{

while (count==N) ;
buffer[in] = data;
in = (in+1) % N;
count++;

}

void produce(data)
{

while (count==N) ;
buffer[in] = data;
in = (in+1) % N;
count++;

}

Producer

void consume(data)
{

while (counter==0) ;
data = buffer[out];
out = (out+1) % N;
count--;

}

void consume(data)
{

while (counter==0) ;
data = buffer[out];
out = (out+1) % N;
count--;

}

Consumer

Operating System 51

Bounded Buffer Problem (ContBounded Buffer Problem (Cont’’d)d)
n Implementation with semaphores

Semaphore
mutex = 1;
empty = N;
full = 0;

Semaphore
mutex = 1;
empty = N;
full = 0;

struct item buffer[N];
int in, out;

in

out

void produce(data)
{

wait (empty);
wait (mutex);
buffer[in] = data;
in = (in+1) % N;
signal (mutex);
signal (full);

}

void produce(data)
{

wait (empty);
wait (mutex);
buffer[in] = data;
in = (in+1) % N;
signal (mutex);
signal (full);

}

Producer

void consume(data)
{

wait (full);
wait (mutex);
data = buffer[out];
out = (out+1) % N;
signal (mutex);
signal (empty);

}

void consume(data)
{

wait (full);
wait (mutex);
data = buffer[out];
out = (out+1) % N;
signal (mutex);
signal (empty);

}

Consumer

Operating System 52

ReadersReaders--Writers ProblemWriters Problem
n Shared data

semaphore mutex, wrt;

Initially

mutex = 1, wrt = 1, readcount = 0

Operating System 53

wait(wrt);
…

writing is performed
…

signal(wrt);

ReadersReaders--Writers Problem Writer ProcessWriters Problem Writer Process

Operating System 54

wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex):

ReadersReaders--Writers Problem Reader ProcessWriters Problem Reader Process

Operating System 55

ReadersReaders--Writers ProblemWriters Problem
n Readers-Writers problem
ü An object is shared among several threads
ü Some threads only read the object, others only write it
ü We can allow multiple readers at a time
ü We can only allow one writer at a time
ü Two cases

§ No reader should wait for other readers to finish simply because a writer is waiting
§ Once a writer is ready, that writer performs its write ASAP

n Implementation with semaphores
ü readcount - # of threads reading object
ü mutex – control access to readcount
ü wrt – exclusive writing or reading

Operating System 56

ReadersReaders--Writers Problem (ContWriters Problem (Cont’’d)d)

// number of readers
int readcount = 0;
// mutex for readcount
Semaphore mutex = 1;
// mutex for reading/writing
Semaphore wrt = 1;

void Writer ()
{

wait (wrt);
…
Write
…
signal (wrt);

}

// number of readers
int readcount = 0;
// mutex for readcount
Semaphore mutex = 1;
// mutex for reading/writing
Semaphore wrt = 1;

void Writer ()
{

wait (wrt);
…
Write
…
signal (wrt);

}

void Reader ()
{

wait (mutex);
readcount++;
if (readcount == 1)

wait (wrt);
signal (mutex);
…
Read
…
wait (mutex);
readcount--;
if (readcount == 0)

signal (wrt);
signal (mutex);

}

void Reader ()
{

wait (mutex);
readcount++;
if (readcount == 1)

wait (wrt);
signal (mutex);
…
Read
…
wait (mutex);
readcount--;
if (readcount == 0)

signal (wrt);
signal (mutex);

}

Operating System 57

ReadersReaders--Writers Problem (ContWriters Problem (Cont’’d)d)
n If there is a writer
ü The first reader blocks on wrt
ü All other readers will then block on mutex

n Once a writer exits, all readers can fall through
ü Which reader gets to go first?

n The last reader to exit signals waiting writer
ü Can new readers get in while writer is waiting?

n When writers exits, if there is both a reader and writer waiting, which one
goes next is up to scheduler

Operating System 58

DiningDining--Philosophers ProblemPhilosophers Problem

n Shared data
semaphore chopstick[5];
Initially all values are 1

Operating System 59

DiningDining--Philosophers Problem Philosophers Problem
n Philosopher i:

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])
…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
…
think
…

} while (1);

Operating System 60

Dining PhilosopherDining Philosopher
n Dining philosopher problem
ü Dijkstra, 1965
ü Life of a philosopher: Repeat forever

§ Thinking
§ Getting hungry
§ Getting two chopsticks
§ Eating

Operating System 61

Dining Philosopher (ContDining Philosopher (Cont’’d)d)

Semaphore chopstick[N]; // initialized to 1
void philosopher (int i)
{

while (1) {
think ();
wait (chopstick[i]);
wait (chopstick[(i+1) % N];
eat ();
signal (chopstick[i]);
signal (chopstick[(i+1) % N];

}
}

Semaphore chopstick[N]; // initialized to 1
void philosopher (int i)
{

while (1) {
think ();
wait (chopstick[i]);
wait (chopstick[(i+1) % N];
eat ();
signal (chopstick[i]);
signal (chopstick[(i+1) % N];

}
}

⇒ Problem: causes deadlock

n A simple solution

Operating System 62

Dining Philosopher (ContDining Philosopher (Cont’’d)d)

#define N 5
#define L(i) ((i+N-1)%N)
#define R(i) ((i+1)%N)
void philosopher (int i) {

while (1) {
think ();
pickup (i);
eat();
putdown (i);

}
}
void test (int i) {

if (state[i]==HUNGRY &&
state[L(i)]!=EATING &&
state[R(i)]!=EATING) {

state[i] = EATING;
signal (s[i]);

}

#define N 5
#define L(i) ((i+N-1)%N)
#define R(i) ((i+1)%N)
void philosopher (int i) {

while (1) {
think ();
pickup (i);
eat();
putdown (i);

}
}
void test (int i) {

if (state[i]==HUNGRY &&
state[L(i)]!=EATING &&
state[R(i)]!=EATING) {

state[i] = EATING;
signal (s[i]);

}

Semaphore mutex = 1;
Semaphore s[N];
int state[N];

void pickup (int i) {
wait (mutex);
state[i] = HUNGRY;
test (i);
signal (mutex);
wait (s[i]);

}
void putdown (int i) {

wait (mutex);
state[i] = THINKING;
test (L(i));
test (R(i));
signal (mutex);

}

Semaphore mutex = 1;
Semaphore s[N];
int state[N];

void pickup (int i) {
wait (mutex);
state[i] = HUNGRY;
test (i);
signal (mutex);
wait (s[i]);

}
void putdown (int i) {

wait (mutex);
state[i] = THINKING;
test (L(i));
test (R(i));
signal (mutex);

}

n Deadlock-free version: starvation?

Operating System 63

Problems with SemaphoresProblems with Semaphores
n Drawbacks
ü They are essentially shared global variables

§ Can be accessed from anywhere (bad software engineering)
ü There is no connection between the semaphore and the data being controlled by

it
ü Used for both critical sections (mutual exclusion) and for coordination (scheduling)
ü No control over their use, no guarantee of proper usage

n Thus, hard to use and prone to bugs
ü Another approach: use programming language support

§ Critical region
§ Monitor

Operating System 64

Critical RegionsCritical Regions
n High-level synchronization construct

n A shared variable v of type T, is declared as:
v: shared T

n Variable v accessed only inside statement
region v when B do S

where B is a boolean expression

n While statement S is being executed, no other process can access variable v

Operating System 65

Critical RegionsCritical Regions
n Regions referring to the same shared variable exclude each other in time

n When a process tries to execute the region statement, the Boolean
expression B is evaluated
ü If B is true, statement S is executed
ü If it is false, the process is delayed until B becomes true and no other process is

in the region associated with v

Operating System 66

Example Example –– Bounded BufferBounded Buffer
n Shared data:

struct buffer {
int pool[n];
int count, in, out;

}

Operating System 67

Bounded Buffer Producer ProcessBounded Buffer Producer Process
n Producer process inserts nextp into the shared buffer

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Operating System 68

Bounded Buffer Consumer ProcessBounded Buffer Consumer Process
n Consumer process removes an item from the shared buffer and puts it in

nextc

region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

Operating System 69

n Associate with the shared variable x, the following variables:
semaphore mutex, first-delay, second-delay;
int first-count, second-count;

n Mutually exclusive access to the critical section is provided by mutex

n If a process cannot enter the critical section because the Boolean expression
B is false, it initially waits on the first-delay semaphore; moved to the
second-delay semaphore before it is allowed to reevaluate B

Implementation region Implementation region xx when when BB do do SS

Operating System 70

ImplementationImplementation
n Keep track of the number of processes waiting on first-delay and second-

delay, with first-count and second-count respectively

n The algorithm assumes a FIFO ordering in the queuing of processes for a
semaphore

n For an arbitrary queuing discipline, a more complicated implementation is
required

Operating System 71

MonitorsMonitors
n High-level synchronization construct that allows the safe sharing of an

abstract data type among concurrent processes
monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

. . .
}
{

initialization code
}

}

Operating System 72

MonitorsMonitors
n A programming language construct that supports controlled access to shared

data
ü Synchronization code added by compiler, enforced at runtime
ü Allows the safe sharing of an abstract data type among concurrent processes

n A monitor is a software module that encapsulates
ü shared data structures
ü procedures that operate on the shared data
ü synchronization between concurrent processes that invoke those procedures

n Monitor protects the data from unstructured access
ü guarantees only access data through procedures, hence in legitimate ways

Operating System 73

MonitorsMonitors
n To allow a process to wait within the monitor, a condition variable must

be declared, as
condition x, y;

n Condition variable can only be used with the operations wait and signal
ü The operation

x.wait();
means that the process invoking this operation is suspended until another
process invokes

x.signal();
ü The x.signal operation resumes exactly one suspended process
ü If no process is suspended, then the signal operation has no effect

n Condition variable
ü provides a mechanism to wait for events (a “rendezvous point”)

Operating System 74

Schematic View of a MonitorSchematic View of a Monitor

waiting queue of processes
trying to enter the monitor

at most one process
in monitor at a time

Operating System 75

Monitor With Condition VariablesMonitor With Condition Variables

Operating System 76

Dining Philosophers ExampleDining Philosophers Example

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) // following slides
void putdown(int i) // following slides
void test(int i) // following slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Operating System 77

Dining PhilosophersDining Philosophers

void pickup(int i) {
state[i] = hungry;
test(i);
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

Operating System 78

Dining PhilosophersDining Philosophers

void test(int i) {
if ((state[(i + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

Operating System 79

Monitors SemanticsMonitors Semantics
n Hoare monitors
ü signal(c) immediately switches from the caller to a waiting thread, blocking the

caller
§ The condition that the waiter was anticipating is guaranteed to hold when waiter

executes
§ Signaler must restore monitor invariants before signaling

n Mesa monitors
ü signal(c) places a waiter on the ready queue, but signaler continues inside

monitor
§ Condition is not necessarily true when waiter runs again
§ Being woken up is only a hint that something has changed
§ Must recheck conditional case

Operating System 80

Hoare Hoare Monitor ImplementationMonitor Implementation
monitor ResourceAllocation {

boolean busy;
condition x;

void acquire(int time) {
if (busy) x.wait(time);
busy = true;

}
void release() {

busy = false;
x.signal();

}
void init() {

busy = false;
}

}

Operating System 81

Monitor Implementation Using SemaphoresMonitor Implementation Using Semaphores
n Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

n Each external procedure F will be replaced by
wait(mutex);

…
body of F;
…

if (next-count > 0)
signal(next);

else
signal(mutex);

n Mutual exclusion within a monitor is ensured

Operating System 82

Monitor ImplementationMonitor Implementation
n For each condition variable x, we have:

semaphore x-sem; // (initially = 0)
int x-count = 0;

n The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

Operating System 83

Monitor ImplementationMonitor Implementation
n The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

Operating System 84

Monitor ImplementationMonitor Implementation
n Conditional-wait construct: x.wait(c);

ü c – integer expression evaluated when the wait operation is executed
ü value of c (a priority number) stored with the name of the process that is

suspended
ü when x.signal is executed, process with smallest associated priority number is

resumed next

n Check two conditions to establish correctness of system:
ü User processes must always make their calls on the monitor in a correct

sequence
ü Must ensure that an uncooperative process does not ignore the mutual-exclusion

gateway provided by the monitor, and try to access the shared resource directly,
without using the access protocols

Operating System 85

Comparison: Monitors and SemaphoresComparison: Monitors and Semaphores
n Condition variables do not have any history, but semaphores do
ü On a condition variable signal(), if no one is waiting , the signal is a no-op

(If a thread then does a condition variable wait(), it waits)
ü On a semaphore signal(), if no one is waiting, the value of the semaphore is

increased
(If a thread then does a semaphore wait(), the value is decreased and the thread
continues)

Operating System 86

Synchronization in Synchronization in PthreadsPthreads
pthread_mutex_t mutex;
pthread_cond_t not_full, not_empty;
buffer resources[N];
void producer (resource x) {

pthread_mutex_lock (&mutex);
while (array “resources” is full)

pthread_cond_wait (¬_full, &mutex);
add “x” to array “resources”;
pthread_cond_signal (¬_empty);
pthread_mutex_unlock (&mutex);

}
void consumer (resource *x) {

pthread_mutex_lock (&mutex);
while (array “resources” is empty)

pthread_cond_wait (¬_empty, &mutex);
*x = get resource from array “resources”
pthread_cond_signal (¬_full);
pthread_mutex_unlock (&mutex);

}

pthread_mutex_t mutex;
pthread_cond_t not_full, not_empty;
buffer resources[N];
void producer (resource x) {

pthread_mutex_lock (&mutex);
while (array “resources” is full)

pthread_cond_wait (¬_full, &mutex);
add “x” to array “resources”;
pthread_cond_signal (¬_empty);
pthread_mutex_unlock (&mutex);

}
void consumer (resource *x) {

pthread_mutex_lock (&mutex);
while (array “resources” is empty)

pthread_cond_wait (¬_empty, &mutex);
*x = get resource from array “resources”
pthread_cond_signal (¬_full);
pthread_mutex_unlock (&mutex);

}

Operating System 87

Synchronization MechanismsSynchronization Mechanisms
n Disabling interrupts

n Spinlocks
ü Busy waiting

n Semaphores
ü Binary semaphore = mutex (≅ lock)
ü Counting semaphore

n Monitors
ü Language construct with condition variables

n Mutex + Condition variables
ü Pthreads

Operating System 88

Solaris 2 SynchronizationSolaris 2 Synchronization
n Implements a variety of locks to support multitasking, multithreading

(including real-time threads), and multiprocessing

n Uses adaptive mutexes for efficiency when protecting data from short code
segments

n Uses condition variables and readers-writers locks when longer sections of
code need access to data

n Uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or reader-writer lock

Operating System 89

Windows 2000 SynchronizationWindows 2000 Synchronization
n Uses interrupt masks to protect access to global resources on uniprocessor

systems

n Uses spinlocks on multiprocessor systems

n Also provides dispatcher objects which may act as mutexes and semaphores

n Dispatcher objects may also provide events
ü An event acts much like a condition variable

