
9. Memory Management9. Memory Management

Sungyoung Lee

College of Engineering
KyungHee University

Operating System 1

ContentsContents
n Background
n Swapping
n Contiguous Allocation
n Paging
n Segmentation
n Segmentation with Paging

Operating System 2

Memory ManagementMemory Management
n Goals
ü To provide a convenient abstraction for programming

ü To allocate scarce memory resources among competing processes to maximize
performance with minimal overhead

ü To provide isolation between processes

Operating System 3

Memory Management (ContMemory Management (Cont’’d)d)
n Batch programming
ü Programs use physical addresses directly
ü OS loads job, runs it, unloads it

n Multiprogramming
ü Need multiple processes in memory at once

§ Overlap I/O and CPU of multiple jobs
ü Can do it a number of ways

§ Fixed and variable partitioning, paging, segmentation, etc.
ü Requirements

§ Protection: restrict which addresses processes can use
§ Fast translation: memory lookups must be fast, in spite of protection scheme
§ Fast context switching: updating memory hardware (for protection and translation)

should be quick

Operating System 4

Memory Management (ContMemory Management (Cont’’d)d)
n Issues
ü Support for multiple processes

§ Each process should have a logically contiguous space
§ The size of each space is variable

ü Enable a process to be larger than the amount of memory allocated to it
§ Not all the memory spaces are used simultaneously
§ Memory references exhibit spatial and temporal locality

ü Protection
ü Sharing
ü Support for multiple regions per process (segments)
ü Performance

§ Memory reference overhead
§ Context switching overhead

Operating System 5

Memory Management (ContMemory Management (Cont’’d)d)
n Solution: Virtual Memory (VM)
ü VM enables programs to execute without requiring their entire address space to

be resident in physical memory
§ Program can also execute on machines with less RAM than it needs

ü Many programs don’t need all of their code or data at once (or ever)
§ e.g., branches they never take, or data they never R/W
§ No need to allocate memory for it, OS should adjust amount allocated based on its run-

time behavior
ü VM isolates processes from each other

§ One process cannot name addresses visible to others
§ Each process has its own isolated address space

Operating System 6

BackgroundBackground
n Program must be brought into memory and placed within a process for it to

be run

n Input queue
ü Collection of processes on the disk that are waiting to be brought into memory to

run the program

n User programs go through several steps before being run

Operating System 7

n Address binding of instructions and data to memory addresses can
happen at three different stages
ü Compile time

§ If memory location known a priori, absolute code can be generated
§ must recompile code if starting location changes

ü Load time
§ Must generate relocatable code if memory location is not known at compile time

ü Execution time
§ Binding delayed until run time if the process can be moved during its execution from

one memory segment to another
§ Need hardware support for address maps (e.g., base and limit registers)

Binding of Instructions and Data to MemoryBinding of Instructions and Data to Memory

Operating System 8

Multistep Multistep Processing of a User ProgramProcessing of a User Program

Operating System 9

Logical vs. Physical Address SpaceLogical vs. Physical Address Space
n The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management
ü Logical address

§ generated by the CPU
§ also referred to as virtual address

ü Physical address
§ address seen by the memory unit

n Logical and physical addresses are the same in compile-time and load-time
address-binding schemes
ü Logical (virtual) and physical addresses differ in execution-time address-binding

scheme

Operating System 10

Logical (Virtual) Address SpaceLogical (Virtual) Address Space
n Example

ü What happens if two users simultaneously run this application?

#include <stdio.h>

int n = 0;

int main ()
{

printf (“&n = 0x%08x\n”, &n);
}

% ./a.out
&n = 0x08049508
% ./a.out
&n = 0x08049508

#include <stdio.h>

int n = 0;

int main ()
{

printf (“&n = 0x%08x\n”, &n);
}

% ./a.out
&n = 0x08049508
% ./a.out
&n = 0x08049508

Operating System 11

MemoryMemory--Management Unit (MMU)Management Unit (MMU)
n Hardware device that maps logical (virtual) to physical address

n In MMU scheme, the value in the relocation register is added to every
address generated by a user process at the time it is sent to memory

n The user program deals with logical addresses
ü It never sees the real physical addresses

Operating System 12

Dynamic relocation using a relocation registerDynamic relocation using a relocation register

Operating System 13

Dynamic LoadingDynamic Loading
n Routine is not loaded until it is called

n Better memory-space utilization
ü Unused routine is never loaded

n Useful when large amounts of code are needed to handle infrequently
occurring cases

n No special support from the operating system is required
ü Implemented through program design

Operating System 14

Dynamic LinkingDynamic Linking
n Linking postponed until execution time

n Small piece of code, stub, used to locate the appropriate memory-resident
library routine

n Stub replaces itself with the address of the routine, and executes the routine

n Operating system needed to check if routine is in processes’ memory
address

n Dynamic linking is particularly useful for libraries

Operating System 15

OverlaysOverlays
n Keep in memory only those instructions and data that are needed at any

given time

n Needed when process is larger than amount of memory allocated to it

n Implemented by user, no special support needed from operating system,
programming design of overlay structure is complex

Operating System 16

Overlays for a TwoOverlays for a Two--Pass AssemblerPass Assembler

Operating System 17

SwappingSwapping
n A process can be swapped temporarily out of memory to a backing store,

and then brought back into memory for continued execution

n Backing store
ü Fast disk large enough to accommodate copies of all memory images for all users
ü Must provide direct access to these memory images

n Roll out & Roll in
ü Swapping variant used for priority-based scheduling algorithms
ü Lower-priority process is swapped out so higher-priority process can be loaded

and executed

n Major part of swap time is transfer time
ü Total transfer time is directly proportional to the amount of memory swapped

n Modified versions of swapping are found on many systems
ü i.e., UNIX, Linux, and Windows

Operating System 18

Schematic View of SwappingSchematic View of Swapping

Operating System 19

Contiguous AllocationContiguous Allocation
n Main memory usually into two partitions:

ü Resident operating system, usually held in low memory with interrupt vector
ü User processes then held in high memory

n Single-partition allocation
ü Relocation-register scheme used to protect user processes from each other, and

from changing operating-system code and data
ü Relocation register contains value of smallest physical address
ü Limit register contains range of logical addresses
ü Each logical address must be less than the limit register

n Cf) Physically contiguous vs. Logically contiguous allocation

Operating System 20

Hardware Support for Relocation and Limit RegistersHardware Support for Relocation and Limit Registers

Operating System 21

Contiguous Allocation (ContContiguous Allocation (Cont’’d)d)
n Multiple-partition allocation
ü Hole

§ block of available memory
§ holes of various size are scattered throughout memory

ü When a process arrives, it is allocated memory from a hole large enough to
accommodate it

ü Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Operating System 22

Dynamic StorageDynamic Storage--Allocation ProblemAllocation Problem
n How to satisfy a request of size n from a list of free holes
ü First-fit

§ Allocate the first hole that is big enough
ü Best-fit

§ Allocate the smallest hole that is big enough
§ must search entire list, unless ordered by size
§ Produces the smallest leftover hole

ü Worst-fit
§ Allocate the largest hole
§ must also search entire list
§ Produces the largest leftover hole

n First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

Operating System 23

FragmentationFragmentation
n External Fragmentation

ü Total memory space exists to satisfy a request, but it is not contiguous

n Internal Fragmentation
ü Allocated memory may be slightly larger than requested memory
ü This size difference is memory internal to a partition, but not being used

n Reduce external fragmentation by compaction
ü Shuffle memory contents to place all free memory together in one large block
ü Compaction is possible only if relocation is dynamic, and is done at execution

time
ü I/O problem

§ Latch job in memory while it is involved in I/O
§ Do I/O only into OS buffers

Operating System 24

PagingPaging
n Physical address space of a process can be noncontiguous

ü Process is allocated physical memory whenever the latter is available

n Divide physical memory into fixed-sized blocks called frames
n Divide logical memory into blocks of same size called pages
ü Frame (or Page) size is power of 2 (typically, 512 bytes ~ 8192 bytes)

n Keep track of all free frames

n To run a program of size n pages, need to find n free frames and load
program

n Set up a page table to translate logical to physical addresses

n Internal fragmentation

Operating System 25

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Paging (ContPaging (Cont’’d)d)

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5Process
A

Process
B

Logical memory

Physical memory

Page 3Page 3

Page 2Page 2

Page 1Page 1

Page 0Page 0

Page
mapping

Operating System 26

Paging (ContPaging (Cont’’d)d)
n User’s perspective
ü Users (and processes) view memory as one contiguous address space from 0

through N
§ Logical (or virtual) address space

ü In reality, pages are scattered throughout the physical memory
§ Logical-to-physical mapping
§ This mapping is invisible to the program

ü Protection is provided because a program cannot reference memory outside of its
logical address space
§ The logical address 0xdeadcafe maps to different physical addresses for different

processes.

Operating System 27

Address Translation SchemeAddress Translation Scheme
n Address generated by CPU is divided into:

ü Page number (p) – used as an index into a page table which contains base
address of each page in physical memory

ü Page offset (d) – combined with base address to define the physical memory
address that is sent to the memory unit

Operating System 28

Address Translation Architecture Address Translation Architecture

Operating System 29

Address TranslationAddress Translation
n Translating addresses
ü A logical address has two parts:

<page number::offset>
ü Page number is an index into a page table
ü Page table determines frame number
ü Physical address is <frame number::offset>

n Page tables
ü Managed by OS
ü Map page number to frame number

§ Page number is the index into the page table that determines frame number
ü One page table entry per page in virtual address space

n Cf) Frame table

Operating System 30

Paging ExamplePaging Example
n Logical address: 32 bits
n Physical address: 20 bits
n Page size: 4KB

n Offset: 12 bits
n Page Number: 20 bits
n Page table entries: 220

00

Logical address (32bits)

00 00 00 44 AA FF EE

22 77

DD 00

33 11

FF EE

44 66

AA 44

…
44 66 AA FF EE

Physical address (20bits)

Page
tables

PN Offset

FN

Operating System 31

Paging Example Paging Example

Operating System 32

Paging Example (ContPaging Example (Cont’’d)d)
n 32-byte memory with 4-byte pages

Operating System 33

Free FramesFree Frames

Before allocation After allocation

Operating System 34

Implementation of Page TableImplementation of Page Table
n Page table is kept in main memory

n Page-table base register (PTBR) points to the page table

n Page-table length register (PRLR) indicates size of the page table

n In this scheme every data/instruction access requires two memory accesses
ü One for the page table and one for the data/instruction

n The two memory access problem can be solved by the use of a special fast-
lookup hardware cache called associative memory or translation look-aside
buffers (TLBs)

Operating System 35

Associative MemoryAssociative Memory
n Associative memory – parallel search

n Address translation (A´, A´´)
ü If A´ is in associative register, get frame # out
ü Otherwise get frame # from page table in memory

n Cf) CAM (Content Addressable Memory)

Page # Frame #

Operating System 36

Paging Hardware With TLBPaging Hardware With TLB

Operating System 37

TLBTLB
n Making address translation efficient
ü Original page table scheme doubled the cost of memory lookups

§ One lookup into the page table, another to fetch the data
ü Two-level page tables triple the cost!

§ Two lookups into the page tables, a third to fetch the data
§ And this assumes the page table is in memory

ü How can we make this more efficient?
§ Goal: make fetching from a virtual address about as efficient as fetching from a

physical address
§ Solutions:

- Cache the virtual-to-physical translation in hardware
- Translation Look-aside Buffer (TLB)
- TLB managed by the Memory Management Unit (MMU)

Operating System 38

TLB (ContTLB (Cont’’d)d)
n Translation Look-aside Buffers
ü Translate logical(virtual) page #s into page table entries (PTEs)

(not physical address)
ü Can be done in a single machine cycle

Operating System 39

TLB (ContTLB (Cont’’d)d)
n TLB is implemented in hardware
ü Fully associative cache (all entries looked up in parallel)
ü Cache tags are logical(virtual) page numbers
ü Cache values are PTEs (entries from page tables)
ü With PTE+offset, MMU can directly calculate the physical address

n TLBs exploit locality
ü Processes only use a handful of pages at a time

§ 16~48 entries in TLB is typical (64~192KB)
§ Can hold the “hot set” or “working set” of process

ü Hit rates are therefore really important

n Locality
ü Temporal locality vs. Spatial locality

Operating System 40

TLB (ContTLB (Cont’’d)d)
n Handling TLB misses
ü Address translations are mostly handled by the TLB

§ > 99% of translations, but there are TLB misses occasionally
§ In case of a miss, who places translations into the TLB?

ü Hardware (MMU): Intel x86
§ Knows where page tables are in memory
§ OS maintains tables, HW access them directly
§ Page tables have to be in hardware-defined format

ü Software loaded TLB (OS)
§ TLB miss faults to OS, OS finds right PTE and loads TLB
§ Must be fast (but, 20-200 cycles typically)
§ CPU ISA has instructions for TLB manipulation
§ Page tables can be in any format convenient for OS (flexible)

Operating System 41

TLB (ContTLB (Cont’’d)d)
n Managing TLBs
ü OS ensures that TLB and page tables are consistent

§ When OS changes the protection bits of a PTE, it needs to invalidate the PTE if it is in
the TLB

ü Reload TLB on a process context switch
§ Remember, each process typically has its own page tables
§ Need to invalidate all the entries in TLB (flush TLB)
§ In IA32, TLB is flushed automatically when the contents of CR3 (page directory base

register) is changed
§ Cf) Alternatively, we can store the PID as part of the TLB entry, but this is expensive

ü When the TLB misses, and a new PTE is loaded, a cached PTE must be evicted
§ Choosing a victim PTE called the “TLB replacement policy”
§ Implemented in hardware, usually simple (e.g., LRU)

Operating System 42

Effective Access TimeEffective Access Time
n Associative Lookup = ε time unit

n Assume memory cycle time is 1 microsecond

n Hit ratio
ü Percentage of times that a page number is found in the associative registers
ü Ratio related to number of associative registers

n Hit ratio = α

n Effective Access Time (EAT)
EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α

Operating System 43

Memory ProtectionMemory Protection
n Memory protection implemented by associating protection bit with each

frame

n Valid-invalid bit attached to each entry in the page table:
ü “valid” indicates that the associated page is in the process’ logical address space,

and is thus a legal page
ü “invalid” indicates that the page is not in the process’ logical address space

n Finer level of protection is possible for valid pages
ü Provide read-only, read-write, or execute-only protection

Operating System 44

Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table

Operating System 45

Page Table Entries (Page Table Entries (PTEsPTEs))

n Valid bit (V) says whether or not the PTE can be used
ü It is checked each time a virtual address is used

n Reference bit (R) says whether the page has been accessed
ü It is set when a read or write to the page occurs

n Modify bit (M) says whether or not the page is dirty
ü It is set when a write to the page occurs

n Protection bits (Prot) control which operations are allowed on the page
ü Read, Write, Execute, etc.

n Frame number (FN) determines physical page

VV RR MM ProtProt Frame Number (FN)Frame Number (FN)
1 1 1 2 20

Operating System 46

Page Table StructurePage Table Structure
n Hierarchical Paging

n Hashed Page Tables

n Inverted Page Tables

Operating System 47

Page Table StructurePage Table Structure
n Managing page tables
ü Space overhead of page tables

§ The size of the page table for a 32-bit address space with 4KB pages = 4MB (per
process)

ü How can we reduce this overhead?
§ Observation: Only need to map the portion of the address space actually being used

(tiny fraction of entire address space)
ü How do we only map what is being used?

§ Make the page table structure dynamically extensible
§ Use another level of indirection:

- Two-level, hierarchical, hashed, etc.

Operating System 48

Hierarchical Page TablesHierarchical Page Tables
n Break up the logical address space into multiple page tables

n A simple technique is a two-level page table

Operating System 49

TwoTwo--Level Paging ExampleLevel Paging Example

page number page offset

p1 p2 d

10 10 12

n A logical address (on 32-bit machine with 4K page size) is divided into:
ü a page number consisting of 20 bits
ü a page offset consisting of 12 bits

n Since the page table is paged, the page number is further divided into:
ü a 10-bit page number
ü a 10-bit page offset

n Thus, a logical address is as follows:

ü where p1 is an index into the outer page table, and p2 is the displacement within
the page of the outer page table

Operating System 50

TwoTwo--Level PageLevel Page--Table SchemeTable Scheme

Operating System 51

AddressAddress--Translation SchemeTranslation Scheme
n Address-translation scheme for a two-level 32-bit paging architecture

Operating System 52

MultiMulti--level Page Tableslevel Page Tables
n Address translation in Alpha AXP Architecture
ü Three-level page tables
ü 64-bit address divided

into 3 segments
(coded in bits63/62)
§ seg0 (0x): user code
§ seg1 (11): user stack
§ kseg (10): kernel

ü Alpha 21064
§ Page size: 8KB
§ Virtual address: 43bits
§ Each page table is

one page long

Operating System 53

Hashed Page TablesHashed Page Tables
n Common in address spaces > 32 bits

n The virtual page number is hashed into a page table
ü This page table contains a chain of elements hashing to the same location

n Virtual page numbers are compared in this chain searching for a match
ü If a match is found, the corresponding physical frame is extracted

Operating System 54

Hashed Page TableHashed Page Table

Operating System 55

Hashed Page TablesHashed Page Tables
n Clustered page tables
ü A variant of hash page tables with the difference that each entry stores mapping

information for a block of consecutive page tables

Virtual Page Block NumberVirtual Page Block Number Block offsetBlock offset OffsetOffset

hashhash

VPBNVPBN

nextnext

PPN0PPN0

PPN1PPN1

PPN2PPN2

PPN3PPN3

VPBNVPBN

nextnext

PPN0PPN0

PPN1PPN1

PPN2PPN2

PPN3PPN3Hash table

Virtual address

Operating System 56

Inverted Page TableInverted Page Table
n One entry for each real page of memory

n Entry consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page

n Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

n Use hash table to limit the search to one, or at most a few, page-table entries

Operating System 57

Inverted Page Table ArchitectureInverted Page Table Architecture

Operating System 58

Shared PagesShared Pages
n Shared code

ü One copy of read-only (reentrant) code shared among processes (i.e., text editors,
compilers, window systems)

ü Shared code must appear in same location in the logical address space of all
processes

n Private code and data
ü Each process keeps a separate copy of the code and data
ü The pages for the private code and data can appear anywhere in the logical

address space

Operating System 59

Shared Pages ExampleShared Pages Example

Operating System 60

Advantages of PagingAdvantages of Paging
n Easy to allocate physical memory
ü Physical memory is allocated from free list of frames
ü To allocate a frame, just remove it from its free list

n No external fragmentation
n Easy to “page out” chunks of a program
ü All chunks are the same size (page size)
ü Use valid bit to detect reference to “paged-out” pages
ü Pages sizes are usually chosen to be convenient multiple of disk block sizes

n Easy to protect pages from illegal accesses
n Easy to share pages

Operating System 61

Disadvantages of PagingDisadvantages of Paging
n Can still have internal fragmentation
ü Process may not use memory in exact multiple of pages

n Memory reference overhead
ü 2 references per address lookup (page table, then memory)
ü Solution

§ get a hardware support (TLB)

n Memory required to hold page tables can be large
ü Need one page table entry(PTE) per page in virtual address space
ü 32-bit address space with 4KB pages = 220 PTEs
ü 4 bytes/PTE = 4MB per page table
ü OS’s typically have separate page tables per process

(25 processes = 100MB of page tables)
ü Solution

§ page the page tables, multi-level page tables, hashed page tables, inverted page
tables, etc.

Operating System 62

SegmentationSegmentation
n Memory-management scheme that supports user view of memory

n A program is a collection of segments

n A segment is a logical unit such as:
ü Main program
ü Procedure
ü Function
ü Method
ü Object
ü Local variables, Global variables
ü Common block
ü Stack
ü Symbol table
ü Arrays

Operating System 63

UserUser’’s View of a Programs View of a Program

Operating System 64

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Operating System 65

Segmentation Architecture Segmentation Architecture
n Logical address consists of a two tuple:

<segment-number, offset>

n Segment table – maps two-dimensional physical addresses
n Each table entry has:
ü base – contains the starting physical address where the segments reside in

memory
ü limit – specifies the length of the segment

n Segment-table base register (STBR) points to the segment table’s location in
memory

n Segment-table length register (STLR) indicates number of segments used by
a program
ü Segment number s is legal if s < STLR

Operating System 66

Segmentation Architecture (ContSegmentation Architecture (Cont’’d)d)
n Relocation
ü dynamic
ü by segment table

n Sharing
ü shared segments
ü same segment number

n Allocation
ü first fit/best fit
ü external fragmentation

Operating System 67

Segmentation Architecture (ContSegmentation Architecture (Cont’’d)d)
n Protection
ü With each entry in segment table associate:

§ validation bit = 0 ⇒ illegal segment
§ read/write/execute privileges

n Protection bits associated with segments
ü Code sharing occurs at segment level

n Since segments vary in length, memory allocation is a dynamic storage-
allocation problem

Operating System 68

Segmentation HardwareSegmentation Hardware

Operating System 69

Example of SegmentationExample of Segmentation

Operating System 70

Sharing of SegmentsSharing of Segments

Operating System 71

Advantages of SegmentationAdvantages of Segmentation
n Simplifies the handling of data structures that are growing or shrinking

n Easy to protect segments
ü With each entry in segment table, associate a valid bit
ü Protection bits (read/write/execute) are also associated with each segment table

entry

n Easy to share segments
ü Put same translation into base/limit pair
ü Code/data sharing occurs at segment level
ü e.g. shared libraries

n No internal fragmentation

Operating System 72

Disadvantages of SegmentationDisadvantages of Segmentation
n Cross-segment addresses
ü Segments need to have same segment # for pointers to them to be shared

among processes
ü Otherwise, use indirect addressing only

n Large segment tables
ü Keep in main memory, use hardware cache for speed

n External fragmentation
ü Since segments vary in length, memory allocation is a dynamic storage-allocation

problem

Operating System 73

Paging vs. SegmentationPaging vs. Segmentation

PagingPaging SegmentationSegmentation

Block sizeBlock size Fixed (4KB to 64KB)Fixed (4KB to 64KB) VariableVariable

Memory addressingMemory addressing One word
(page number + offset)

One word
(page number + offset)

Two words
(segment & offset)

Two words
(segment & offset)

ReplacementReplacement Easy
(all same size)

Easy
(all same size)

Difficult
(find where segment fits)

Difficult
(find where segment fits)

FragmentationFragmentation InternalInternal ExternalExternal

Disk trafficDisk traffic Efficient
(optimized for page size)

Efficient
(optimized for page size)

Inefficient
(may have small or

large transfers)

Inefficient
(may have small or

large transfers)

Linear address spaceLinear address space 11 ManyMany

Transparent to the
programmers?

Transparent to the
programmers? YesYes NoNo

Operating System 74

Paging vs. Segmentation (ContPaging vs. Segmentation (Cont’’d)d)

PagingPaging SegmentationSegmentation

Can the total address space
exceed the size of physical

memory?

Can the total address space
exceed the size of physical

memory?
YesYes YesYes

Can codes and data be
distinguished and separately

protected?

Can codes and data be
distinguished and separately

protected?
NoNo YesYes

Can tables whose size
fluctuates be accommodated

easily?

Can tables whose size
fluctuates be accommodated

easily?
NoNo YesYes

Is sharing of codes between
users facilitated?

Is sharing of codes between
users facilitated? NoNo YesYes

Why was this technique
invented?

Why was this technique
invented?

To get a large linear address
space without having to buy

more physical memory

To get a large linear address
space without having to buy

more physical memory

To allow programs and data
to be broken up into logically
independent address spaces

and to aid sharing and
protection

To allow programs and data
to be broken up into logically
independent address spaces

and to aid sharing and
protection

Operating System 75

Paging vs. Segmentation (ContPaging vs. Segmentation (Cont’’d)d)
n Hybrid approaches
ü Paged segments

§ Segmentation with Paging
§ Segments are a multiple of a page size

ü Multiple page sizes
§ 4KB, 2MB, and 4MB page sizes are supported in IA32
§ 8KB, 16KB, 32KB or 64KB in Alpha AXP Architecture

(43, 47, 51, or 55 bits virtual address)

Operating System 76

n Combine segmentation and paging
ü Use segments to manage logically related units

§ Code, data, heap, etc.
§ Segments vary in size, but usually large (multiple pages)

ü Use pages to partition segments into fixed size chunks
§ Makes segments easier to manage with in physical memory
§ Segments become “pageable” – rather than moving segments into and out of memory,

just move page portions of segments
§ Need to allocate page table entries only for those pieces of the segments that have

themselves been allocated
§ No external fragmentation

ü The IA32 supports segments and paging

Segmentation with PagingSegmentation with Paging

Operating System 77

Segmentation with Paging Segmentation with Paging –– MULTICSMULTICS
n The MULTICS system solved problems of external fragmentation and lengthy

search times by paging the segments

n Solution differs from pure segmentation in that the segment-table entry
contains not the base address of the segment, but rather the base address of
a page table for this segment

Operating System 78

MULTICS Address Translation SchemeMULTICS Address Translation Scheme

Operating System 79

Segmentation with Paging Segmentation with Paging –– Intel 386Intel 386
n The Intel 386 uses

segmentation with
paging for memory
management with a
two-level paging
scheme

