13. I/O Systems

Sungyoung Lee

College of Engineering
KyungHee University

/O Hardware

Application I/O Interface

Kernel I/O Subsystem

Transforming I/O Requests to Hardware Operations
Streams

Performance

J 3 53 3 3 3

Operating System 1

/O Hardware

N Incredible variety of I/O devices

N Common concepts
0 Port
U Bus (daisy chain or shared direct access)
U Controller (host adapter)

N 1/O instructions control devices

N Devices have addresses, used by
U Direct I/O instructions
0 Memory-mapped I/O

Operating System 2

A Typical PC Bus Structure

SCSI bus

rnonitor processor

graphics controller br'i%i’;?;?grmy SCSI controller

- PCl bus

|
IDE digk controller expansion bus interface |

@ i — expansion bus - |
@ @ parallel serial
port port

Operating System 3

Device Controller

N Device controller (or host adapter)

U 1/O devices have components:
§ Mechanical component
§ Electronic component
U The electronic component is the device controller
§ May be able to handle multiple devices
U Controller’s tasks
§ Convert serial bit stream to block of bytes
§ Perform error correction as necessary
§ Make available to main memory

Operating System 4

Direct |/O

N Use special I/O instructions to an I/O port address

I/O address range (hexadecimal) device

000-00F DMA controller

020-021 interrupt controller

040-043 timer

200-20F game controller

2F8-2FF serial port (secondary)

320-32F hard-disk controller

378-37F parallel port

3D0-3DF graphics controller

3F0-3F7 diskette-drive controller

3F8-3FF serial port (primary)

Operating System 5

Memory-Mapped 1/O

N The device control registers are mapped into the address space of the
processor

U The CPU executes I/O requests using the standard data transfer instructions
N 1/O device drivers can be written entirely in C

N No special protection mechanism is needed to keep user processes from
performing I/O

U Can give a user control over specific devices but not others by simply including
the desired pages in its page table

N Reading a device register and testing its value is done with a single
Instruction

N Memory-mapped regions should be uncacheable

N Memory-mapped device register is vulnerable to accidental modification
through the use of incorrect pointers

U Protected memory helps to reduce this risk

Operating System 6

Polling

N Determines state of device
0 command-ready
0 busy
U Error

N Busy-wait cycle to wait for 1/O from device

Operating System 7

Interrupts

N CPU Interrupt request line triggered by 1/O device

N Interrupt handler receives interrupts

N Maskable to ignore or delay some interrupts

N Interrupt vector to dispatch interrupt to correct handler

(Based on priority
U Some unmaskable

N Interrupt mechanism also used for exceptions

Operating System 38

Interrupt-Driven I/O Cycle

device driver initiates 1/O

CPU executing checks for
interrupts between instructions
1

CPU receiving interrupt,

1/O controller

initiates 1/O

transfers control to
interrupt handler

E

interrupt handler
processes data,
returns from interrupt

le

CPU resumes
processing of
interrupted task

Operating System

input ready, output
complete, or error

generates interrupt signal

Intel Pentium Processor Event-Vector Table

vector number description

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcede

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved. do not use)
floating-point error
alignment check

machine check

{Intel reserved, do not use)
maskable interrupts

—
SO AEWN =0

T QR R T G S Gy
o BN e) R 6 1 I N R e

Operating System 10

Polling vs. Interrupts

N Polled I/O

U CPU asks (“polls”) devices if need attention
§ ready to receive a command
§ command status, etc.
U Advantages
§ Simple
§ Software is in control
§ Efficient if CPU finds a device to be ready soon
U Disadvantages
§ Inefficient in non-trivial system (high CPU utilization)
§ Low priority devices may never be serviced

Operating System 11

Polling vs. Interrupts (Cont’d)

N Interrupt-driven 1/O

U 1/O devices request interrupt when need attention

U Interrupt service routines specific to each device are invoked
U Interrupts can be shared between multiple devices
¥

Advantages
§ CPU only attends to device when necessary
§ More efficient than polling in general
U Disadvantages
§ Excess interrupts slow (or prevent) program execution
§ Overheads (may need 1 interrupt per byte transferred)

Operating System 12

Direct Memory Access

N Used to avoid programmed I/O for large data movement
U Programmed I/O?

N Requires DMA controller

N Bypasses CPU to transfer data directly between I/O device and memory

Operating System

13

Six Step Process to Perform DMA Transfer

1. device driver is told to
transfer disk data to
buffer at address X

5. DMA, controller transfers . device driver tells disk
bytes to buffer X, controller to transfer C
increasing memory bytes from disk to buffer
address and decreasing at address X
CuntilC =0

. when C = 0, DMA DMA/bus/interrupt | — A
interrupts CPU to signal controller _; CPU memﬂm MGHIRLY

transter completion

PCI bus

3. disk controller initiates
DMA transfer

4. disk controller sends
each byte to DMA
controller

IDE disk controller

Operating System 14

DMA

Nn DMA modes
(1) Cycle stealing

§ The DMA controller sneaks in and steals an occasional bus cycle from the CPU once in
a while, delaying it slightly

(2) Burst mode

§ The DMA controller acquires the bus, issues a series of transfers, then releases the
bus

§ More efficient than cycle stealing: acquiring the bus takes time and multiple words can
be transferred for the price of one bus acquisition

§ It can block the CPU and other devices too long

Operating System 15

DMA (Cont’d)

N Addressing in DMA

(1) Physical address

§ OS converts the virtual address of the intended memory buffer into a physical address
and writes it into DMA controller’s address register

(2) Virtual address
§ The DMA controller must use the MMU to have the virtual-to-physical translation done
§ Not common: only when the MMU is part of the memory rather than part of the CPU

U In any case, the target memory region should be pinned (not paged out) during
DMA

Operating System 16

DMA (Cont’d)

N DMA types

(1) Sequential DMA
§ Data temporarily stored in DMA controller
§ Requires an extra bus cycle per word transferred
§ More flexible in that it can also perform device-to-device copies and even memory-to-
memory copies
(2) Simultaneous DMA (or fly-by mode)

§ The DMA controller tells the device controller to transfer the data directly to main
memory

Operating System 17

Application I/O Interface

N 1/O system calls encapsulate device behaviors in generic classes
N Device-driver layer hides differences among 1/O controllers from kernel

N Devices vary in many dimensions
U Character-stream or block

Sequential or random-access

Sharable or dedicated

Speed of operation

3
i
i
U read-write, read only, or write only

Operating System

18

A Kernel |/O Structure

kernel

kernel I/O subsystem

SCSi
device
driver

keyboard
device
driver

mouse PCI bus
device device
driver driver

floppy
device

driver

ATAPI
device
driver

SCSi
device
controller

keyboard
device
controller

mouse PCI bus

device device
controller controller

floppy
device

controller

ATAPI
device
controller

!

!

i i

'

!

hardware

SCSI
devices

keyboard

PCI bus

floppy-disk
drives

ATAPI
devices
(disks,
tapes,
drives)

Operating System

19

Characteristics of I/O Devices

aspect variation example

data-transfer mode character terminal
block disk

access method sequential modem
random CD-ROM

transfer schedule synchronous tape
asynchronous keyboard

sharing dedicated tape
sharable keyboard

device speed latency

seek time

transfer rate

delay between operations

I/O direction read only CD-ROM
write only graphics controller
readPwrite disk

Operating System 20

Block and Character Devices

N Block devices include disk drives
U Commands includeread, wite, seek

U Raw I/O or file-system access
U Memory-mapped file access possible

N Character devices include keyboards, mice, serial ports
(i Commands include get, put

U Libraries layered on top allow line editing

Operating System 21

Network Devices

N Varying enough from block and character to have own interface

N Unix and Windows NT/9i1/2000 include socket interface

U Separates network protocol from network operation
U Includes sel ect functionality

N Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Operating System 22

Clocks and Timers

N Provide current time, elapsed time, timer
N If programmable interval time used for timings, periodic interrupts

N i octl (on UNIX) covers odd aspects of /0O such as clocks and timers

Operating System

23

Blocking and Nonblocking I/O

N Blocking - process suspended until /O completed
U Easy to use and understand
U Insufficient for some needs

N Nonblocking - I/O call returns as much as available
U User interface, data copy (buffered 1/0)
U Implemented via multi-threading
U Returns quickly with count of bytes read or written

N Asynchronous - process runs while 1/0 executes
U Difficult to use
U 1/O subsystem signals process when I/O completed

Operating System 24

Kernel I/O Subsystem

N Scheduling
i Some 1I/O request ordering via per-device queue
 Some OSs try fairness

N Buffering - store data in memory while transferring between devices
(To cope with device speed mismatch
U To cope with device transfer size mismatch
U To maintain “copy semantics”

Operating System 25

Sun Enterprise 6000 Device-Transfer Rates

gigaplane
bus

SBUS

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

I

modem

mouse

keyboard

Operating System 26

Kernel I/0O Subsystem

N Caching - fast memory holding copy of data
0 Always just a copy
U Key to performance

N Spooling - hold output for a device
U If device can serve only one request at a time
U i.e., Printing

N Device reservation - provides exclusive access to a device
U System calls for allocation and deallocation
 Watch out for deadlock

Operating System 27

Error Handling

N OS can recover from disk read, device unavailable, transient write failures
N Most return an error number or code when 1/O request fails

N System error logs hold problem reports

Operating System 28

Kernel Data Structures

N Kernel keeps state info for I/O components, including open file tables,
network connections, character device state

N Many, many complex data structures to track buffers, memory allocation,
“dirty” blocks

N Some use object-oriented methods and message passing to implement 1/O

Operating System 29

UNIX I/O Kernel Structure

system-wide open-file table

file descriptor |—>

per-process
open-file table

file-system record

inode pointer

active-inode table

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

L d
L]
Ld

user-process memory

Operating System

networking (socket) record

network-
information table

pointer to network info
pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

kernel memory

30

I/O Requests to Hardware Operations

N Consider reading a file from disk for a process:
U Determine device holding file
U Translate name to device representation
U Physically read data from disk into buffer
U Make data available to requesting process
 Return control to process

Operating System 31

Life Cycle of An I/O Request

Operating System

request /O

system call

can already

user
process

kernel
I/O subsystem

I/O completed,
input data available, or
output completed

return from system call

satisfy request? yes

send request to device
driver, block process if
appropriate

'

process request, issue

commands to controller,
configure controller to
block until interrupted

device controller commands

monitor device,
interrupt when 1/O
completed

kernel
/O subsystem

device
driver

interrupt
handler

device
controller

transfer data

(if appropriate) to process,
return completion

or error code

determine which /O
completed, indicate state
change to I/O subsystem

F 3

receive interrupt, store

data in device-driver buffer
if input, signal to unblock

device driver

F |

interrupt

I/O completed,
generate interrupt

32

STREAMS

N STREAM
U a full-duplex communication channel between a user-level process and a device

N A STREAM consists of:
U STREAM head interfaces with the user process
U driver end interfaces with the device
U zero or more STREAM modules between them

N Each module contains a read queue and a write queue

N Message passing is used to communicate between queues

Operating System 33

The STREAMS Structure

Operating System

stream head

read queue

write queue

|

'

read queue

write queue

I

'

read queue

write queue

|

'

read queue

write queue

driver end

device

34

Performance

N 1/O a major factor in system performance:
U Demands CPU to execute device driver, kernel I/O code
U Context switches due to interrupts
(Data copying
U Network traffic especially stressful

Operating System 35

Intercomputer Communications

— —
e

network \‘

'
character

K typed] system call [Da{:ketd)

completes \ received ,

e

i b

interrupt interrupt network
generated handled adapter

s JE l

interrupt interrupt interrupt
handied generated generated

l T (" nework) Elﬁ

network
adapter

1 T

network
subdaesmon

HE T B

user
process

kermel

karnal

Operating System 36

Improving Performance

N Reduce number of context switches

N Reduce data copying

N Reduce interrupts by using large transfers, smart controllers, polling
n Use DMA

N Balance CPU, memory, bus, and I/O performance for highest throughput

Operating System

37

Device-Functionality Progression

reased time (generations)

Operating System

increased efficiency

¢

«creased development cost

new algorithm

o

« increased abstraction

application code

kernel code

device-driver code

device-controller code (hardware)

device code (hardware)

3

increased flexibility

38

Goals of I/O Software

N Goals

U Device independence

§ Programs can access any I/O device without specifying device in advance
U Uniform naming

§ Name of a file or device should simply be a string or an integer
0 Error handling

§ Handle as close to the hardware as possible
(Synchronous vs. asynchronous

§ blocked transfers vs. interrupt-driven
U Buffering

§ Data coming off a device cannot be stored in final destination
U Sharable vs. dedicated devices

§ Disks vs. tape drives
§ Unsharable devices introduce problems such as deadlocks

Operating System 39

I/O Software Layers

User-level 1/0 Software |

Device-independent 1/0 Software
[

Device Drivers
[

Interrupt Handlers

Hardware

Network

Operating System 40

Interrupt Handlers

N Handling interrupts

My

- Acknowledge an interrupt to the PIC.

Critical - Reprogram the PIC or the device controller.

actions - Update data structures accessed by both the device
and the processor.

Reenable interrupts

- Update data structures that are accessed only by
the processor.
(e.g., reading the scan code from the keyboard)

Noncritical
actions

Return from interrupts

- Actions may be delayed.

Noncritical : Copy buffer contents into the address space of some
process (e.g., sending the keyboard line buffer to the
terminal handler process).

Bottom half (Linux)

deferred
actions

Operating System 41

Device Drivers

N Device drivers

U Device-specific code to control each I/O device interacting with device-
independent I/O software and interrupt handlers

U Requires to define a well-defined model and a standard interface of how they
interact with the rest of the OS

U Implementing device drivers:
§ Statically linked with the kernel
§ Selectively loaded into the system during boot time

§ Dynamically loaded into the system during execution (especially for hot pluggable
devices)

Operating System 42

Device-Independent I/O Software

N Uniform interfacing for device drivers

U In Unix, devices are modeled as special files

§ They are accessed through the use of system calls such as open(), read(), write(),
close(), ioctl(), etc.

§ A file name is associated with each device
U Major device number locates the appropriate driver

§ Minor device number (stored in i-node) is passed as a parameter to the driver in order
to specify the unit to be read or written

U The usual protection rules for files also apply to 1/0 devices

Operating System 43

Device-Independent I/O Software (Cont’d)

N Buffering
U (a) Unbuffered
U (b) Buffered in user space
U (c) Buffered in the kernel space
U (d) Double buffering in the kernel

User process

Y

User 4

=[] [@
Kernel
space

Modem Modem
(a) (b)

Operating System 44

Device-Independent I/O Software (Cont’d)

N Error reporting

U Many errors are device-specific and must be handled by the appropriate driver,
but the framework for error handling is device independent

U Programming errors vs. actual I/O errors

(Handling errors
§ Returning the system call with an error code
Retrying a certain number of times
Ignoring the error
Killing the calling process

§
§
§
§ Terminating the system

Operating System 45

Device-Independent I/O Software (Cont’d)

N Allocating and releasing dedicated devices
U Some devices cannot be shared

(1) Require processes to perform open()’s on the special files for devices directly
§ The process retries if open() fails

(2) Have special mechanisms for requesting and releasing dedicated devices
§ An attempt to acquire a device that is not available blocks the caller

N Device-independent block size

U Treat several sectors as a single logical block
U The higher layers only deal with abstract devices that all use the same block size

Operating System 46

User-Space |/O Software

N Provided as a library

0 Standard I/O library in C
§ fopen() vs. open()

N Spooling
U A way of dealing with dedicated I/O devices in a multiprogramming system
U Implemented by a daemon and a spooling directory
U Printers, network file transfers, USENET news, mails, etc.

Operating System 47

/O Systems Layers

1/O
Layer / reply |/O functions
Vo) User processes K Make I/O call; format I/O; spooling
request ~ | A

|
* Device-independent

I N ——— + Naming, protection, blocking, buffering, allocation
Y |

Device drivers Set up device registers; check status

_+

Interrupt handlers + Wake up driver when /O completed
|

1

Hardware Perform 1/O operation

Operating System 48

