Understanding Linux Kernel
Schedulers

20114 6& 7E

= Al
sd=

sshong@redwood. snu.ac.kr
NSen ®II2BH2ES ns
sSgUs|=listd NseEsSAlAEstE

MU E =3 e AQEAAEA AL A F

Seoul National University

B RT‘S Lab

S0 H0...

RTOS Lab.4]

AIN2Z28 2H ol Z s
N A, 38 =&, 2 &t o
BHE W FEHZ XD|

ol 21 with theory

2]
it ru)j-«p

/im {(1} -

=

Seoul National University

RT@S 12 2

Agenda

OS Evolution ()

Conventional Kernel Scheduling
Fair Share Scheduling

CFS: The Linux Kernel Scheduler

Seoul National University
B RT@®S 12 3

1. OS Evolution and Kernel Sched

OS and Scheduler Evolution

Improved
Throughput

e FIFO and Round
Robin Scheduling

Time
Shared

Balance between
Interactivity and
Throughput

* Multilevel Feedback
Queue Scheduling

(Multics, UNIX)

Real-Time
oS

Bounded
Scheduling
Latency

« O(1) Queue

Scheduling

* Preemptive Priority

Dcheduling

(Linux 2.6)

Multimedia
Cloud

Proportional
Distribution
of CPU Time

 Fair Share
Scheduling

(Linux 2.6.23)

Seoul National University

RT@®S 1.ab

Why Kernel Scheduler Important?

Critical to

System performance

« Throughput, interactivity, fairness
Power consumption
Incurred overhead

Seoul National Universit

B RT‘Sy Lab 5

Agenda

OS Evolution

Conventional Kernel Scheduling (g
Fair Share Scheduling

CFS: The Linux Kernel Scheduler

Seoul National University
B RT@®S 1 2b 6

2. Conventional Kernel Sch

Before Fair Share Scheduling

Round robin scheduling
Multilevel feedback queue scheduling
O(1) scheduling

Seoul National University

1. Round Robin Scheduling (1)

Basic concepts

Time slice is assigned to each task
» Usually 10~100ms

Basically, each task is scheduled in FIFO order

After time slice expires,
current task is preempted and added to the end of run queue

Time slice of a task expires

run queue

v
v

Seoul National Universit

B RT‘§

1. Round Robin Scheduling (2)

Running example (time slice = 2ms)

Arrival time(ms) Service time(ms)

run queue
T, 0 8 Ty (%
T3 4 6

Currently running: 7,

EE—— RT@®S 1:h o

1. Round Robin Scheduling (3)

Terminology

Time slice

« Amount of time each task is allowed to run without being
preempted

Round

 Interval on timeline where all tasks in the run queue complete
their time slices

Round robin interval

« Amount of time taken to complete one round
round robin interval =time slice x n

- n: number of tasks in the run queue

Seoul National University

B RT@® b 10

2. Conventional Kernel S

2. Multilevel Feedback Queue
Scheduling (1)

Basic concepts

Multiple run queues with different priorities
« Each run queue has its own scheduling algorithm

High priority Queue 2 Round Robin with Time Slice| 8ms /O bound
Queue 1 Round Robin with Time Slice 16ms
Low priority Queue 0 Firlst Come Eirst Servgd CPU bound

A task can be moved between different run queues

» |f a task uses too much CPU time, it will be moved to a lower
priority run queue (CPU-bound)

 |If a task uses too little CPU time, it will be moved to a higher
priority run queue (I/0O-bound)

Seoul National University

B RT@®

11

2. Conventional Kernel S

2. Multilevel Feedback Queue
Scheduling (2)

Algorithm

Task starts its execution in the highest priority run queue
If task runs out of its time slice, its priority is demoted

If task does not complete its time slice (e.g., goes to the
waiting state), its priority is promoted

Queue N

“J

Queue N-1

>

“J

Queue 0

Seoul National Universit

B RTO®S

12

2. Conventional Kernel Sche

2. Multilevel Feedback Queue
Scheduling (3)

RU nn | ng exam ple Queue 2 (RR with time slice = 8ms)

- 21| | T3

]

Arrival time(ms) Service time(ms)

Queue 1 (RR with time slice = 16ms)

[

> TZ

Queue 0 (FCFS)

= |
A AR
¥ Y t

Oms 3ms 16ms 24ms 3Z2ms 40ms 48ms 56ms 64ms 72ms 80ms

Seoul National Universit

RT./SY lLab 13

3. O(1) Scheduling (1)

Basic concepts

Two run queues (active/expired run queue) for each CPU

« Each run queue consists of linked lists for priority levels
— Total 140 levels, first 100 for real-time tasks, last 40 for normal tasks

TO_Tl_TZ TS_T6
T3 | Ty Ty
o[off oo o]o]o]o offfolofofofo]o[FH o
0o olofo
olofo 0lofo
Active run queue Expired run queue

Only needs to look at the highest priority list to schedule the
next task: task insertion and deletion take O(2)

Normal tasks can have their priorities dynamically adjusted,
based on their characteristics (1/0O or CPU bound)

Seoul National University

B RT@® 14

3. O(1) Scheduling (2)

Algorithm
Scheduler inserts each runnable task into active run queue
Task starts its execution based on its priority

Whenever the task runs out of its time slice,

 Itis preempted, removed from active run queue, and inserted
into expired run queue

If an active run queue becomes empty, the active run gqueue
and expired run gueue swap pointers

» So the empty run queue becomes the expired run queue

Priorities and time slices of normal tasks are dynamically
recalculated when two run queues are swapped

Seoul National University

B RT@® 15

3. O(1) Scheduling (3)

Running example

Exqtinedrumaoeie Exqtiredrumaopeie
Fior Time Arrival Service 0 0000|0|O|0|0|0|0 0 0000|0|0|0|0|0|0
prioriy slice(ms) time(ms) time(ms) 10 (o|o0]oO 10
7, | 100 200 0 480 : :
7, 110 150 0 400 100 olofloflo|o|o|o|O0|O]| 100 0
z, 120 100 300 240 110 olofloflo|o|o|o|o|0O]| 110 0
120 0|0 120 0

Ly T3

| I
| | t | Jl | tl Il |
100ms 200ms 300ms ° 400ms °~ 500ms 600ms 700ms 800ms 900ms 1000ms 1100m

T, L%} T, |T3
|

\ %

Seoul National Universit

B RT‘S Lab 16

Agenda

OS Evolution

Conventional Kernel Scheduling
Fair Share Scheduling ¢

CFS: The Linux Kernel Scheduler

Seoul National University
I RT@®S 1 :b 17

3. Fair Share Scheduling

Terminology

Terminology

Weight of task
* Numerical value which denotes a task’s relative importance

Share (time slice)

« Amount of time for which a task is allowed to occupy CPU in a
given interval

 Proportional to task’s weight

Fair share scheduling
 Guarantees a task to use CPU for its share

Seoul National University

B RT@® b 18

3. Fair Share Scheduling

Spectrum of Fair Share Scheduling

Fair share scheduling is classified with the degree of

preemption
Degree of preemption
Preemptive with Non-preemptive
infinitesimally Preemptive with until a task runs
small quanta scheduling tick out its time slice

GPS WFQ WRR

Fairness Poor >
Interactivity Poor >

Context switching overhead Low >

Tt

Seoul National Universit

I(T'/Sy lLab 19

3. Fair Share Scheduling

1. GPS (Generalized Processor Sharing)

For interval [¢,, ¢}, task z;is given the following
amount of CPU time

, weight
CPU time,_ = —
: Z weight,

GPS follows an idealized fluid-flow sharing model

= All tasks must run simultaneously and be scheduled with
Infinitesimally small quanta

x(t,—t;)

weight

Arrival Service
time(ms) time(ms)
T, 4 0 48

7,
7, 2 0 48 -
| | | 2 | | | | | T’4 | | L S
T3 1 0 36 | | | | | | | | | | | |~
7 1 24 24 Oms 8ms 16ms 24ms 32ms 4Oms ~ ~ 48ms

I RT@S 125 20

3. Fair Share Scheduling

2. WRR (Weighted Round Robin)

Approximation of GPS
Assigns weighted time slice to each task

weight o
Time Sl1ce = Y x round robin interval
Y weigh t,

jep

Schedules tasks in round robin manner

Round robin interval=28ms

Arrival Service Time slice

weight

time(ms) time(ums) (ms)
| 4 0 48 18 T, |T3 Ty T2
7, 2 0 48 3 |
1 0 36
& 35 ms 21ms¢ 32ms x)ms 48ms
| 1 24 24 3:5

Seoul National Uni

B RT@S 125 21

3. Fair Share Scheduling

3. WFQ (Weighted Fair Queuing)

Computes virtual finish time on every scheduling tick

tick period

virtual finishtime(r,,t) = virtual finish time('t,,t - 1) + ,
wejght,

Schedules tasks in increasing order of virtual finish
time

Scheduling tick=4ms

. Arrival Service Virtual
weight

time(ms) time(ms) finish time
4 0 48 .
o ‘ T,| T3 T, 7 T3| T, T
.| 2 0 48 5
s 1 0 36 Ols 8£s 16ms 24ms 32ms 40ms 48ms

7, 1 24 24

Seoul National Universit

B RT@®S 1:h 22

Agenda

OS Evolution

Conventional Kernel Scheduling

Fair Share Scheduling

CFS: The Linux Kernel Scheduler ()

Seoul National University
I RT@®S 1:2b 23

Terminology (1)

Nice value of task

Integer value that denotes relative weight of the task in CFS

* Ranges over [-20, 19] where lower nice value corresponds to
higher weight

Used to denote task priority in conventional Linux
« Lower nice value represents higher priority

Seoul National University

B RTO® b 24

4. CFS: The Linux Kerne

Terminology (2)

Weight of task
Specified by nice value in CFS

Weight

Weight

Weight

88761

9548

1024

Weight

110

Seoul National University

RT@®S

25

Terminology (3)

Time slice

Time interval for which the task is allowed to run without
being preempted

* The length of task t,'s time slice is proportional to its weight

 weight,
time slice . = —— x P (1)
’ Zwe1gbtr
jep /
» @ the set of runnable tasks, P: the constant for given
workload
P sched latency if n > nr latency (2)
min_granularity x n otherwise

e n:the number of tasks

* In current Linux implementation,
- sched_latency : 6, nr_latency : 8, min_granularity :0.75

oul National Universit

B RT.§

26

Terminology (4)

Virtual runtime

The task’s cumulative execution time inversely scaled by its
weight

weight

virtual runtime(t;,t) = x physical runtime(t;,t) (3)

weight
o weight,: the weight of nice value 0

Used to approximate GPS (perfect fair share scheduling)

« CFS assigns each task virtual runtime to account for how long
a task has run and thus how much longer it ought to run

Seoul National University

B RT@®

27

4. CFS: The Linux Kerne

Run Queue

RT TASK—

NORMAL
TASK

Maintained independently in each core

Implemented with a red-black tree

Tasks are sorted in increasing order of virtual runtime

Task insertion and deletion take O(/og n)
 Red-black tree is a self-balanced tree

e n:the number of tasks in the tree

run gqueue

Priority

-->| Task 1 |—>| Task 2 |—>| Task 3

ot |

run queue

Priority

99

100

-’| Task 8 H Task 9

CPU,

RT TASKA

NORMAL

TASK

* yr = virtual runtime

run queue

Priority

o
T

—| Task 17 [Task 18
1 T

CPU,

RI‘OS 28

Algorithm

On each scheduling tick, CFS

Subtracts the currently running task’s time slice by tick
period

* When the time slice reaches 0, NEED RESCHED flag is set
Updates the virtual runtime of the currently running task
 Virtual runtime is computed using Equation (3)
Checks NEED RESCHED flag

* |If set, schedules the task with the smallest virtual runtime in the
run queue (the left-most node in the red-black tree)

Seoul National University

B RT@®

29

4. CFS: The Linux Kernel St

Running Example

p={t, T, T3 T, T} P = 6,Scheduling tick = 1ms

time slice
05 -10 9548 0.6753 4.0518
7, -5 3121 0.2208 1.3248
Ty 0 1024 0.0724 0.4344
T, 5 335 0.0237 0.1422
T 10 110 0.0078 0.0468
total 14138 1.000 6
Currently running:
5ms 7ms8mOmd0ms 15ms 17m&8ms 23ms 25ms 30ms 32nM8ms
IR IR Vo v v
7, Ty, |T3| Ty Ts (¥ T, |13 7, 7, 7, T, |T3

Seoul National Universit

B RT@®S 125 30

Understanding Kernel Sched

Questions or Comments?

Seoul National University
B RT@S 1.ab 31

