
Understanding Linux Kernel

Schedulers

2011년 6월 7일

홍 성 수
sshong@redwood.snu.ac.kr

서울대학교 전기컴퓨터공학부 교수

융합과학기술대학원 지능형융합시스템학과장

차세대융합기술원 그린스마트시스템연구소 소장

2

RTOS Lab.의 인재상

자기완결적 문제 해결 능력

문제 선정, 정보 수집, 구체화, 해결책 제안, 검증에 이르는 전

과정을 자기 주도적으로 자기 책임하에 수행할 수 있는 능력

해커 with theory

들어가기 전에…

3

Agenda

1. OS Evolution

2. Conventional Kernel Scheduling

3. Fair Share Scheduling

4. CFS: The Linux Kernel Scheduler

Understanding Linux Kernel Schedulers

4

OS and Scheduler Evolution

1. OS Evolution and Kernel Schedulers

Batch

Processing

OS

Improved
Throughput

• FIFO and Round

Robin Scheduling

Time

Shared

Interactive

OS

Balance between
Interactivity and

Throughput

• Multilevel Feedback
Queue Scheduling

(Multics, UNIX)

Real-Time

OS

Bounded
Scheduling

Latency

• O(1) Queue
Scheduling

• Preemptive Priority
Dcheduling

 (Linux 2.6)

Multimedia

Cloud

Computing

OS

Proportional
Distribution
of CPU Time

• Fair Share
Scheduling

 (Linux 2.6.23)

5

Why Kernel Scheduler Important?

 Critical to

System performance

• Throughput, interactivity, fairness

Power consumption

Incurred overhead

1. OS Evolution and Kernel Schedulers

6

Agenda

1. OS Evolution

2. Conventional Kernel Scheduling

3. Fair Share Scheduling

4. CFS: The Linux Kernel Scheduler

Understanding Linux Kernel Schedulers

7

Before Fair Share Scheduling

1. Round robin scheduling

2. Multilevel feedback queue scheduling

3. O(1) scheduling

2. Conventional Kernel Scheduling

8

1. Round Robin Scheduling (1)

 Basic concepts

Time slice is assigned to each task

• Usually 10~100㎳

Basically, each task is scheduled in FIFO order

After time slice expires,

current task is preempted and added to the end of run queue

2. Conventional Kernel Scheduling

run queue

Time slice of a task expires

9

1. Round Robin Scheduling (2)

 Running example (time slice = 2㎳)

2. Conventional Kernel Scheduling

Arrival time(㎳) Service time(㎳)

τ1 0 6

τ2 0 8

τ3 4 6

run queue

Currently running:

0㎳ 8㎳ 16㎳ 24㎳

τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ3 τ2 τ3

τ1 τ2

N/A τ1

τ2

τ2

τ1 τ3

τ1

τ3 τ2

τ3

τ2 τ1

τ2

τ1 τ3

τ1

τ3 τ2

τ3

τ2

τ2

τ3

τ3

τ2

τ2

10

1. Round Robin Scheduling (3)

 Terminology

Time slice

• Amount of time each task is allowed to run without being

preempted

Round

• Interval on timeline where all tasks in the run queue complete

their time slices

Round robin interval

• Amount of time taken to complete one round

– n : number of tasks in the run queue

2. Conventional Kernel Scheduling

nslice time interval robin round

11

2. Multilevel Feedback Queue

Scheduling (1)

 Basic concepts

Multiple run queues with different priorities

• Each run queue has its own scheduling algorithm

A task can be moved between different run queues

• If a task uses too much CPU time, it will be moved to a lower

priority run queue (CPU-bound)

• If a task uses too little CPU time, it will be moved to a higher

priority run queue (I/O-bound)

2. Conventional Kernel Scheduling

Queue 2

Queue 1

Queue 0

Round Robin with Time Slice 8㎳

Round Robin with Time Slice 16㎳

First Come First Served

High priority

Low priority

I/O bound

CPU bound

12

2. Multilevel Feedback Queue

Scheduling (2)

 Algorithm

Task starts its execution in the highest priority run queue

If task runs out of its time slice, its priority is demoted

If task does not complete its time slice (e.g., goes to the

waiting state), its priority is promoted

2. Conventional Kernel Scheduling

Queue N-1

Queue 0

Queue N

…

13

2. Multilevel Feedback Queue

Scheduling (3)

 Running example

2. Conventional Kernel Scheduling

Arrival time(㎳) Service time(㎳)

τ1 0 48

τ2 0 16

τ3 32 6

Queue 2 (RR with time slice = 8ms)

Queue 1 (RR with time slice = 16ms)

Queue 0 (FCFS)

0㎳ 16㎳ 32㎳ 48㎳ 64㎳ 80㎳ 8㎳ 24㎳ 40㎳ 56㎳ 72㎳

τ1 τ2

τ1 τ2 τ1 τ3 τ2 τ1

Currently running: N/A τ1

τ1

τ2

τ2 τ1

τ2

τ3

τ3
τ1

τ2

τ2
τ1

τ1

14

3. O(1) Scheduling (1)

 Basic concepts

Two run queues (active/expired run queue) for each CPU

• Each run queue consists of linked lists for priority levels

– Total 140 levels, first 100 for real-time tasks, last 40 for normal tasks

Only needs to look at the highest priority list to schedule the

next task: task insertion and deletion take O(1)

Normal tasks can have their priorities dynamically adjusted,

based on their characteristics (I/O or CPU bound)

2. Conventional Kernel Scheduling

0 0 1 0 0 0 0

0 0 0

1 0 0

0 0 0
…

0 1 0 0 0 0 1

0 0 0

0 0 0

0 0 0
…

τ0 τ1 τ2

τ3 τ4

τ5 τ6

τ7

Active run queue Expired run queue

15

3. O(1) Scheduling (2)

 Algorithm

Scheduler inserts each runnable task into active run queue

Task starts its execution based on its priority

Whenever the task runs out of its time slice,

• It is preempted, removed from active run queue, and inserted

into expired run queue

If an active run queue becomes empty, the active run queue

and expired run queue swap pointers

• So the empty run queue becomes the expired run queue

Priorities and time slices of normal tasks are dynamically

recalculated when two run queues are swapped

2. Conventional Kernel Scheduling

16

3. O(1) Scheduling (3)

 Running example

2. Conventional Kernel Scheduling

priority
Time

slice(㎳)
Arrival

time(㎳)
Service

time(㎳)

τ1 100 200 0 480

τ2 110 150 0 400

τ3 120 100 300 240

0 0 0 0 0 0 0 0 0 0

0 0 0
…

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 …

100

110

120

0

10

…

…

0 0 0 0 0 0 0 0 0 0

0 0 0
…

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 …

100

110

120

0

10

…

…

0㎳ 200㎳ 400㎳ 600㎳ 800㎳ 1000㎳ 100㎳ 300㎳ 500㎳ 700㎳ 900㎳

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

1100㎳

1

1

1

1 1

1

1

1

1

1

Active run queue Expired run queue Active run queue Expired run queue Active run queue Expired run queue Active run queue Expired run queue Expired run queue Active run queue

1

1

1

1

1

1

1

1

1

1

1

1

Active run queue Expired run queue Expired run queue Active run queue Expired run queue Active run queue Expired run queue Active run queue

1

1

1

1

1

Active run queue Expired run queue

1

Active run queue Expired run queue Active run queue Expired run queue

17

Agenda

1. OS Evolution

2. Conventional Kernel Scheduling

3. Fair Share Scheduling

4. CFS: The Linux Kernel Scheduler

Understanding Linux Kernel Schedulers

18

Terminology

 Terminology

Weight of task

• Numerical value which denotes a task’s relative importance

Share (time slice)

• Amount of time for which a task is allowed to occupy CPU in a

given interval

• Proportional to task’s weight

Fair share scheduling

• Guarantees a task to use CPU for its share

3. Fair Share Scheduling

19

Spectrum of Fair Share Scheduling

 Fair share scheduling is classified with the degree of

preemption

3. Fair Share Scheduling

GPS WRR

Degree of preemption

Preemptive with

infinitesimally

small quanta

Non-preemptive

until a task runs

out its time slice

WFQ

Preemptive with

scheduling tick

Interactivity

Context switching overhead

Good Poor

High Low

Fairness Good Poor

20

1. GPS (Generalized Processor Sharing)

 For interval [t1, t2], task τi is given the following

amount of CPU time

 GPS follows an idealized fluid-flow sharing model

All tasks must run simultaneously and be scheduled with

infinitesimally small quanta

3. Fair Share Scheduling

)t(t
weight

weight
 time CPU 12

j
τ

τ

τ

j

i

i

0㎳ 16㎳ 32㎳ 48㎳ 8㎳ 24㎳ 40㎳

weight
Arrival

time(㎳)
Service

time(㎳)

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24

τ1

τ2

τ3 τ4

21

2. WRR (Weighted Round Robin)

 Approximation of GPS

 Assigns weighted time slice to each task

 Schedules tasks in round robin manner

3. Fair Share Scheduling

interval robin round
weight

weight
 slice Time

j
τ

τ

τ

j

i

i

0㎳ 16㎳ 32㎳ 48㎳ 8㎳ 24㎳ 40㎳

weight
Arrival

time(㎳)
Service

time(㎳)
Time slice

(㎳)

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24

Round robin interval=28㎳

τ1 τ2 τ4 τ3
16

8

-
4

14

7

3.5
3.5

τ1 τ2
16

8

-
4

22

3. WFQ (Weighted Fair Queuing)

 Computes virtual finish time on every scheduling tick

 Schedules tasks in increasing order of virtual finish

time

3. Fair Share Scheduling

iτ

ii
weight

period tick
 1)-t,time(finish virtualt),time(finish virtual

weight
Arrival

time(㎳)
Service

time(㎳)
Virtual

finish time

τ1 4 0 48

τ2 2 0 48

τ3 1 0 36

τ4 1 24 24

0㎳ 16㎳ 32㎳ 48㎳ 8㎳ 24㎳ 40㎳

Scheduling tick=4㎳

τ1 τ2 τ4 τ3 τ1 τ2 τ1 τ1 τ4 τ3 τ2 τ1 0
0

-

0

1
0

-

0

1

2

-

0

1

2

-

4

2

2

-

4

2

4

-

4

3

4

0

4

3

4

4

4

4

4

4

4

4

4

4

8

4

6

4

8

5

6

4

8

5

6

8

8

23

Agenda

1. OS Evolution

2. Conventional Kernel Scheduling

3. Fair Share Scheduling

4. CFS: The Linux Kernel Scheduler

Understanding Linux Kernel Schedulers

24

Terminology (1)

 Nice value of task

Integer value that denotes relative weight of the task in CFS

• Ranges over [-20, 19] where lower nice value corresponds to

higher weight

Used to denote task priority in conventional Linux

• Lower nice value represents higher priority

4. CFS: The Linux Kernel Scheduler

25

Terminology (2)

Weight of task

Specified by nice value in CFS

4. CFS: The Linux Kernel Scheduler

Nice -20 -19 -18 -17 -16 -15 -14 -13 -12 -11

Weight 88761 71755 56483 46273 36291 29154 23254 18705 14949 11916

Nice -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Weight 9548 7620 6100 4904 3906 3121 2501 1991 1586 1277

Nice 0 1 2 3 4 5 6 7 8 9

Weight 1024 820 655 526 423 335 272 215 172 137

Nice 10 11 12 13 14 15 16 17 18 19

Weight 110 87 70 56 45 36 29 23 18 15

26

Terminology (3)

 Time slice

Time interval for which the task is allowed to run without

being preempted

• The length of task τi’s time slice is proportional to its weight

• φ : the set of runnable tasks, P : the constant for given

workload

• n : the number of tasks

• In current Linux implementation,

– sched_latency : 6, nr_latency : 8, min_granularity :0.75

4. CFS: The Linux Kernel Scheduler

(1)

(2)

P
weight

weight
 slice time

j
τ

τ

τ

j

i

i

otherwisenaritymin_granul

nr_latencyn ifncysched_late
P

27

Terminology (4)

 Virtual runtime

The task’s cumulative execution time inversely scaled by its

weight

• weight0 : the weight of nice value 0

Used to approximate GPS (perfect fair share scheduling)

• CFS assigns each task virtual runtime to account for how long

a task has run and thus how much longer it ought to run

4. CFS: The Linux Kernel Scheduler

(3) t),runtime(τ physical
weight

weight
 t),runtime(τ virtual i

τ

0
i

i

28

Run Queue

Maintained independently in each core

 Implemented with a red-black tree

Tasks are sorted in increasing order of virtual runtime

Task insertion and deletion take O(log n)

• Red-black tree is a self-balanced tree

• n : the number of tasks in the tree

4. CFS: The Linux Kernel Scheduler

CPU1 CPU2

…

CPUN

Task 4
vr = 400

Task 2
vr = 200

Task 5
vr = 500

Task 1
vr = 100

Task 3
vr = 300

Task 6
vr = 600

Task 7
vr = 700

Task 14
vr = 411

Task 12
vr = 230

Task 15
vr = 511

Task 11
vr = 120

Task 13
vr = 302

Task 16
vr = 612

Task 24
vr = 440

Task 22
vr = 203

Task 25
vr = 511

Task 21
vr = 101

Task 26
vr = 622

0

1

99

100
NORMAL

TASK

RT TASK

run queue

Task 1 Task 2 Task 3

Task 4

…

Priority

2

0

1

99

100

RT TASK

run queue

Task 8 Task 9

Task 10

…

Priority

2

NORMAL

TASK

0

1

99

100

RT TASK

run queue

Task 17 Task 18

Task 19

…

Priority

2

NORMAL

TASK

Task 20

Real-Time tasks

Normal tasks

* vr = virtual runtime

29

Algorithm

 On each scheduling tick, CFS

Subtracts the currently running task’s time slice by tick

period

• When the time slice reaches 0, NEED_RESCHED flag is set

Updates the virtual runtime of the currently running task

• Virtual runtime is computed using Equation (3)

Checks NEED_RESCHED flag

• If set, schedules the task with the smallest virtual runtime in the

run queue (the left-most node in the red-black tree)

4. CFS: The Linux Kernel Scheduler

30

Running Example

 φ={τ1, τ2, τ3, τ4, τ5}, P = 6, Scheduling tick = 1㎳

4. CFS: The Linux Kernel Scheduler

nice 𝑤𝑒𝑖𝑔ℎ𝑡𝜏𝑖
𝑤𝑒𝑖𝑔ℎ𝑡𝜏𝑖

 𝑤𝑒𝑖𝑔ℎ𝑡𝜏𝑗𝑗∈𝜑

 time slice

τ1 -10 9548 0.6753 4.0518

τ2 -5 3121 0.2208 1.3248

τ3 0 1024 0.0724 0.4344

τ4 5 335 0.0237 0.1422

τ5 10 110 0.0078 0.0468

total 14138 1.000 6

τ4

vr = 0

τ2

vr =0

τ5

vr = 0

τ1

vr = 0

τ3

vr = 0

Currently running: N/A

τ4

vr = 0

τ3

vr =0

τ5

vr = 0

τ2

vr = 0

Currently running:
τ1

vr = 0.536

τ5

vr = 0

τ4

vr =0

τ1

vr = 0.536

τ3

vr = 0

Currently running:
τ2

vr = 0.656

τ1 τ2 τ3

τ1

vr = 0.536

τ5

vr =0

τ2

vr = 0.656

τ4

vr = 0

Currently running:
τ3

vr = 1.000

τ4

τ2

vr = 0.656

τ1

vr =0.536

τ3

vr = 1.000

τ5

vr = 0

Currently running:
τ4

vr = 3.057

τ5

τ3

vr = 1.000

τ2

vr =0.656

τ4

vr = 3.057

τ1

vr = 0.536

Currently running:
τ5

vr = 9.309

τ1

τ4

vr = 3.057

τ3

vr =1.000

τ5

vr = 9.309

τ2

vr = 0.656

Currently running:
τ1

vr = 1.072

τ4

vr = 3.057

τ1

vr =1.072

τ5

vr = 9.309

τ3

vr = 1.000

Currently running:
τ2

vr = 1.312

τ2 τ3

τ4

vr = 3.057

τ2

vr =1.312

τ5

vr = 9.309

τ1

vr = 1.072

Currently running:
τ3

vr = 2.000

τ1

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ2

vr = 1.312

Currently running:
τ1

vr = 1.609

τ2

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ1

vr = 1.609

Currently running:
τ2

vr = 1.969

τ1

τ4

vr = 3.057

τ3

vr =2.000

τ5

vr = 9.309

τ2

vr = 1.969

Currently running:
τ1

vr = 2.145

τ4

vr = 3.057

τ1

vr =2.145

τ5

vr = 9.309

τ3

vr = 2.00

Currently running:
τ2

vr = 2.625

τ2 τ3

τ4

vr = 3.057

τ2

vr =2.625

τ5

vr = 9.309

τ1

vr = 2.145

Currently running:
τ3

vr = 3.000

5ms 7ms 8ms 9ms 10ms 15ms 17ms 18ms 23ms 25ms 30ms 32ms 33ms

31

Questions or Comments?

Understanding Kernel Schedulers for Multicore Systems

