
Chapter 6 – Architectural Design

Lecture 1

1Chapter 6 Architectural design

Topics covered

 Architectural design decisions

 Architectural views

 Architectural patterns

 Application architectures

2Chapter 6 Architectural design

Software architecture

 The design process for identifying the sub-systems

making up a system and the framework for sub-system

control and communication is architectural design.

 The output of this design process is a description of the

software architecture.

3Chapter 6 Architectural design

Architectural design

 An early stage of the system design process.

 Represents the link between specification and design

processes.

 Often carried out in parallel with some specification

activities.

 It involves identifying major system components and

their communications.

4Chapter 6 Architectural design

The architecture of a packing robot control

system

5Chapter 6 Architectural design

Architectural abstraction

 Architecture in the small is concerned with the

architecture of individual programs. At this level, we are

concerned with the way that an individual program is

decomposed into components.

 Architecture in the large is concerned with the

architecture of complex enterprise systems that include

other systems, programs, and program components.

These enterprise systems are distributed over different

computers, which may be owned and managed by

different companies.

6Chapter 6 Architectural design

Advantages of explicit architecture

 Stakeholder communication

 Architecture may be used as a focus of discussion by system
stakeholders.

 System analysis

 Means that analysis of whether the system can meet its non-
functional requirements is possible.

 Large-scale reuse

 The architecture may be reusable across a range of systems

 Product-line architectures may be developed.

7Chapter 6 Architectural design

Architectural representations

 Simple, informal block diagrams showing entities and

relationships are the most frequently used method for

documenting software architectures.

 But these have been criticised because they lack

semantics, do not show the types of relationships

between entities nor the visible properties of entities in

the architecture.

 Depends on the use of architectural models.The

requirements for model semantics depends on how the

models are used.

8Chapter 6 Architectural design

Box and line diagrams

 Very abstract - they do not show the nature of

component relationships nor the externally visible

properties of the sub-systems.

 However, useful for communication with stakeholders

and for project planning.

9Chapter 6 Architectural design

Use of architectural models

 As a way of facilitating discussion about the system

design

 A high-level architectural view of a system is useful for

communication with system stakeholders and project planning

because it is not cluttered with detail. Stakeholders can relate to

it and understand an abstract view of the system. They can then

discuss the system as a whole without being confused by detail.

 As a way of documenting an architecture that has been

designed

 The aim here is to produce a complete system model that shows

the different components in a system, their interfaces and their

connections.

Chapter 6 Architectural design 10

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

11Chapter 6 Architectural design

Architectural design decisions

 Is there a generic application architecture that can be

used?

 How will the system be distributed?

 What architectural styles are appropriate?

 What approach will be used to structure the system?

 How will the system be decomposed into modules?

 What control strategy should be used?

 How will the architectural design be evaluated?

 How should the architecture be documented?

12Chapter 6 Architectural design

Architecture reuse

 Systems in the same domain often have similar

architectures that reflect domain concepts.

 Application product lines are built around a core

architecture with variants that satisfy particular customer

requirements.

 The architecture of a system may be designed around

one of more architectural patterns or ‘styles’.

 These capture the essence of an architecture and can be

instantiated in different ways.

 Discussed later in this lecture.

13Chapter 6 Architectural design

Architecture and system characteristics

 Performance

 Localise critical operations and minimise communications. Use
large rather than fine-grain components.

 Security

 Use a layered architecture with critical assets in the inner layers.

 Safety

 Localise safety-critical features in a small number of sub-
systems.

 Availability

 Include redundant components and mechanisms for fault
tolerance.

 Maintainability

 Use fine-grain, replaceable components.
14Chapter 6 Architectural design

Architectural views

 What views or perspectives are useful when designing

and documenting a system’s architecture?

 What notations should be used for describing

architectural models?

 Each architectural model only shows one view or

perspective of the system.

 It might show how a system is decomposed into modules, how

the run-time processes interact or the different ways in which

system components are distributed across a network. For both

design and documentation, you usually need to present multiple

views of the software architecture.

15Chapter 6 Architectural design

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the

system as objects or object classes.

 A process view, which shows how, at run-time, the

system is composed of interacting processes.

 A development view, which shows how the software is

decomposed for development.

 A physical view, which shows the system hardware and

how software components are distributed across the

processors in the system.

 Related using use cases or scenarios (+1)

16Chapter 6 Architectural design

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge.

 An architectural pattern is a stylized description of good

design practice, which has been tried and tested in

different environments.

 Patterns should include information about when they are

and when the are not useful.

 Patterns may be represented using tabular and graphical

descriptions.

17Chapter 6 Architectural design

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The

Model component manages the system data and associated operations on

that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction

(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are

unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made

in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

18Chapter 6 Architectural design

The organization of the Model-View-Controller

19Chapter 6 Architectural design

Web application architecture using the MVC

pattern

20Chapter 6 Architectural design

Layered architecture

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.

 Supports the incremental development of sub-systems in

different layers. When a layer interface changes, only the

adjacent layer is affected.

 However, often artificial to structure systems in this way.

21Chapter 6 Architectural design

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer

above it so the lowest-level layers represent core services that

are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents

held in different libraries, as shown in Figure 6.7.

When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each

team responsibility for a layer of functionality; when there is a

requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be

provided in each layer to increase the dependability of the

system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with

lower-level layers rather than through the layer immediately

below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at

each layer.

22Chapter 6 Architectural design

A generic layered architecture

23Chapter 6 Architectural design

The architecture of the LIBSYS system

24Chapter 6 Architectural design

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectures may be documented from several different

perspectives or viewssuch as a conceptual view, a

logical view, a process view, and a development view.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.
Chapter 6 Architectural design 25

Chapter 6 – Architectural Design

Lecture 2

26Chapter 6 Architectural design

Repository architecture

 Sub-systems must exchange data. This may be done in
two ways:

 Shared data is held in a central database or repository and may
be accessed by all sub-systems;

 Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

 When large amounts of data are to be shared, the
repository model of sharing is most commonly used a
this is an efficient data sharing mechanism.

27Chapter 6 Architectural design

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not

interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use

a repository of system design information. Each software tool

generates information which is then available for use by other

tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be

stored for a long time. You may also use it in data-driven

systems where the inclusion of data in the repository triggers

an action or tool.

Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one

component can be propagated to all components. All data can

be managed consistently (e.g., backups done at the same

time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in

organizing all communication through the repository.

Distributing the repository across several computers may be

difficult.
28Chapter 6 Architectural design

A repository architecture for an IDE

29Chapter 6 Architectural design

Client-server architecture

 Distributed system model which shows how data and
processing is distributed across a range of components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

30Chapter 6 Architectural design

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a

separate server. Clients are users of these services and access

servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized

as a client–server system.

When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be

used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing

service) can be available to all clients and does not need to be

implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable

because it depends on the network as well as the system. May be

management problems if servers are owned by different

organizations.

31Chapter 6 Architectural design

A client–server architecture for a film library

32Chapter 6 Architectural design

Pipe and filter architecture

 Functional transformations process their inputs to
produce outputs.

 May be referred to as a pipe and filter model (as in UNIX
shell).

 Variants of this approach are very common. When
transformations are sequential, this is a batch sequential
model which is extensively used in data processing
systems.

 Not really suitable for interactive systems.

33Chapter 6 Architectural design

The pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type of

data transformation. The data flows (as in a pipe) from one component

to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for

processing invoices.

When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to

generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by

adding transformations is straightforward. Can be implemented as

either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its

input and unparse its output to the agreed form. This increases system

overhead and may mean that it is impossible to reuse functional

transformations that use incompatible data structures.

34Chapter 6 Architectural design

An example of the pipe and filter architecture

35Chapter 6 Architectural design

Application architectures

 Application systems are designed to meet an

organisational need.

 As businesses have much in common, their application

systems also tend to have a common architecture that

reflects the application requirements.

 A generic application architecture is an architecture for a

type of software system that may be configured and

adapted to create a system that meets specific

requirements.

36Chapter 6 Architectural design

Use of application architectures

 As a starting point for architectural design.

 As a design checklist.

 As a way of organising the work of the development
team.

 As a means of assessing components for reuse.

 As a vocabulary for talking about application types.

37Chapter 6 Architectural design

Examples of application types

 Data processing applications

 Data driven applications that process data in batches without

explicit user intervention during the processing.

 Transaction processing applications

 Data-centred applications that process user requests and update

information in a system database.

 Event processing systems

 Applications where system actions depend on interpreting

events from the system’s environment.

 Language processing systems

 Applications where the users’ intentions are specified in a formal

language that is processed and interpreted by the system.

Chapter 6 Architectural design 38

Application type examples

 Focus here is on transaction processing and language
processing systems.

 Transaction processing systems

 E-commerce systems;

 Reservation systems.

 Language processing systems

 Compilers;

 Command interpreters.

39Chapter 6 Architectural design

Transaction processing systems

 Process user requests for information from a database
or requests to update the database.

 From a user perspective a transaction is:

 Any coherent sequence of operations that satisfies a goal;

 For example - find the times of flights from London to Paris.

 Users make asynchronous requests for service which
are then processed by a transaction manager.

40Chapter 6 Architectural design

The structure of transaction processing

applications

41Chapter 6 Architectural design

The software architecture of an ATM system

42Chapter 6 Architectural design

Information systems architecture

 Information systems have a generic architecture that can

be organised as a layered architecture.

 These are transaction-based systems as interaction with

these systems generally involves database transactions.

 Layers include:

 The user interface

 User communications

 Information retrieval

 System database

43Chapter 6 Architectural design

Layered information system architecture

44Chapter 6 Architectural design

The architecture of the MHC-PMS

45Chapter 6 Architectural design

Web-based information systems

 Information and resource management systems are now

usually web-based systems where the user interfaces

are implemented using a web browser.

 For example, e-commerce systems are Internet-based

resource management systems that accept electronic

orders for goods or services and then arrange delivery of

these goods or services to the customer.

 In an e-commerce system, the application-specific layer

includes additional functionality supporting a ‘shopping

cart’ in which users can place a number of items in

separate transactions, then pay for them all together in a

single transaction.
Chapter 6 Architectural design 46

Server implementation

 These systems are often implemented as multi-tier client

server/architectures (discussed in Chapter 18)

 The web server is responsible for all user communications, with

the user interface implemented using a web browser;

 The application server is responsible for implementing

application-specific logic as well as information storage and

retrieval requests;

 The database server moves information to and from the

database and handles transaction management.

Chapter 6 Architectural design 47

Language processing systems

 Accept a natural or artificial language as input and generate

some other representation of that language.

 May include an interpreter to act on the instructions in the

language that is being processed.

 Used in situations where the easiest way to solve a

problem is to describe an algorithm or describe the system

data

 Meta-case tools process tool descriptions, method rules, etc

and generate tools.

48Chapter 6 Architectural design

The architecture of a language processing

system

49Chapter 6 Architectural design

Compiler components

 A lexical analyzer, which takes input language tokens

and converts them to an internal form.

 A symbol table, which holds information about the names

of entities (variables, class names, object names, etc.)

used in the text that is being translated.

 A syntax analyzer, which checks the syntax of the

language being translated.

 A syntax tree, which is an internal structure representing

the program being compiled.

Chapter 6 Architectural design 50

Compiler components

 A semantic analyzer that uses information from the

syntax tree and the symbol table to check the semantic

correctness of the input language text.

 A code generator that ‘walks’ the syntax tree and

generates abstract machine code.

Chapter 6 Architectural design 51

A pipe and filter compiler architecture

52Chapter 6 Architectural design

A repository architecture for a language

processing system

53Chapter 6 Architectural design

Key points

 Models of application systems architectures help us

understand and compare applications, validate

application system designs and assess large-scale

components for reuse.

 Transaction processing systems are interactive systems

that allow information in a database to be remotely

accessed and modified by a number of users.

 Language processing systems are used to translate

texts from one language into another and to carry out the

instructions specified in the input language. They include

a translator and an abstract machine that executes the

generated language.
54Chapter 6 Architectural design

