
Chapter 16 – Software Reuse

Lecture 1

Chapter 16 Software reuse 1

Topics covered

Chapter 16 Software reuse 2

The reuse
landscape

Application
frameworks

Software
product

lines

COTS
product
reuse

1

2

3

4

To achieve better software at

Software reuse

 In most engineering disciplines, systems are designed
by composing existing components that have been used
in other systems.

 There has been a major switch to reuse-based
development over the past 10 years.

Chapter 16 Software reuse 3

More Quickly Lower Cost

so
ftw

ar
e

en
gi

ne
er

in
g

Reuse-based software engineering

Component reuse

Software
Reuse
Types

Application system reuse

Object and function reuse

The whole of an application system may be reused either
by incorporating it without change into other systems
(COTS reuse) or by developing application families.

Components of an application from sub‐systems to
single objects may be reused.

Software components that implement a single well‐
defined object or function may be reused.

Chapter 16 Software reuse 4

Benefits of software reuse

Chapter 16 Software reuse 5

Increased dependability

Reduced process risk

Effective use of specialists

Standards compliance

Accelerated development

Benefits of software reuse

Benefit Explanation

Increased dependability

Reused software, which has been tried and tested in
working systems, should be more dependable than
new software. Its design and implementation faults
should have been found and fixed.

Reduced process risk

The cost of existing software is already known,
whereas the costs of development are always a matter
of judgment. This is an important factor for project
management because it reduces the margin of error in
project cost estimation. This is particularly true when
relatively large software components such as
subsystems are reused.

Effective use of specialists

Instead of doing the same work over and over again,
application specialists can develop reusable software
that encapsulates their knowledge.

6Chapter 16 Software reuse

Benefits of software reuse

Benefit Explanation

Standards compliance

Some standards, such as user interface standards, can
be implemented as a set of reusable components. For
example, if menus in a user interface are implemented
using reusable components, all applications present the
same menu formats to users. The use of standard user
interfaces improves dependability because users make
fewer mistakes when presented with a familiar interface.

Accelerated development

Bringing a system to market as early as possible is often
more important than overall development costs. Reusing
software can speed up system production because both
development and validation time may be reduced.

7Chapter 16 Software reuse

Benefits of software reuse- IBM Enterprise Modernization Solution

Chapter 16 Software reuse 8

Problems with reuse

Chapter 16 Software reuse 9

with reuse
PROBLEMS

Not-invented-here syndrome

Finding, understanding, and
adapting reusable components

Creating, maintaining, and
using a component library

Increased maintenance costs

Lack of tool support2 3

54

1

Problems with reuse

Problem Explanation

Increased
maintenance costs

If the source code of a reused software system or
component is not available then maintenance costs may be
higher because the reused elements of the system may
become increasingly incompatible with system changes.

Lack of tool support

Some software tools do not support development with
reuse. It may be difficult or impossible to integrate these
tools with a component library system. The software
process assumed by these tools may not take reuse into
account. This is particularly true for tools that support
embedded systems engineering, less so for object-oriented
development tools.

Not-invented-here
syndrome

Some software engineers prefer to rewrite components
because they believe they can improve on them. This is
partly to do with trust and partly to do with the fact that
writing original software is seen as more challenging than
reusing other people’s software.

10Chapter 16 Software reuse

1

2

3

Problems with reuse

Problem Explanation

Creating, maintaining,
and using a

component library

Populating a reusable component library and ensuring the
software developers can use this library can be expensive.
Development processes have to be adapted to ensure that
the library is used.

Finding, understanding,
and adapting

reusable components

Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of
finding a component in the library before they include a
component search as part of their normal development
process.

11Chapter 16 Software reuse

4

5

The reuse landscape

 Although reuse is often simply thought of as the reuse of
system components, there are many different
approaches to reuse that may be used.

 Reuse is possible at a range of levels from simple
functions to complete application systems.

The reuse landscape covers
the range of possible reuse

techniques.

Chapter 16 Software reuse 12

The reuse landscape

Chapter 16 Software reuse 13

Design
Patterns

Architectural
Patterns

Software Product
lines

Application
Frameworks

COTS
Integration

ERP Systems

Legacy System
Wrapping

Configurable Vertical
Application

Component based
Software Engineering

Model-driven
Engineering

Service-oriented
Systems

Aspect-oriented
Software Development

Program
generators

Program
Libraries

Approaches that support software reuse

Approach Description
Architectural patterns Standard software architectures that support common types

of application systems are used as the basis of applications.
Described in Chapters 6, 13, and 20.

Design patterns Generic abstractions that occur across applications are
represented as design patterns showing abstract and
concrete objects and interactions. Described in Chapter 7.

Component-based
development

Systems are developed by integrating components
(collections of objects) that conform to component-model
standards. Described in Chapter 17.

Application frameworks Collections of abstract and concrete classes are adapted and
extended to create application systems.

Legacy system
wrapping

Legacy systems (see Chapter 9) are ‘wrapped’ by defining a
set of interfaces and providing access to these legacy
systems through these interfaces.

14Chapter 16 Software reuse

Approaches that support software reuse

Approach Description
Service-oriented

systems
Systems are developed by linking shared services, which
may be externally provided. Described in Chapter 19.

Software product lines An application type is generalized around a common
architecture so that it can be adapted for different customers.

COTS product reuse Systems are developed by configuring and integrating
existing application systems.

ERP systems Large-scale systems that encapsulate generic business
functionality and rules are configured for an organization.

Configurable vertical
applications

Generic systems are designed so that they can be configured
to the needs of specific system customers.

15Chapter 16 Software reuse

Approaches that support software reuse

Approach Description
Program libraries Class and function libraries that implement commonly used

abstractions are available for reuse.
Model-driven
engineering

Software is represented as domain models and
implementation independent models and code is generated
from these models. Described in Chapter 5.

Program generators A generator system embeds knowledge of a type of
application and is used to generate systems in that domain
from a user-supplied system model.

Aspect-oriented
software development

Shared components are woven into an application at different
places when the program is compiled. Described in Chapter
21.

16Chapter 16 Software reuse

Reuse planning factors

Chapter 16 Software reuse 17

REUSE PLANNING FACTORS
You could be considered for reuse:

Development Schedule Expected Software Lifetime

Skills And Experience Of The Development Team Functional & Non-functional Requirements

The application domain The execution platform

1 2 3 4

5 6

Application frameworks

 Application frameworks Somewhere between system
and component reuse

 The sub-system is implemented by adding components
to fill in parts of the design and by instantiating the
abstract classes in the framework.

Chapter 16 Software reuse 18

They are a sub-system design made of collection of abstract and
concrete classes and the interfaces between them

Systems ComponentsFrameworks

Framework classes

Frameworks Class

System
infrastructure
frameworks

Middleware
integration
frameworks

Enterprise
application
frameworks

Standards and classes that
support component
communication and
information exchange.

Support the development of
system infrastructures such as
communications, user
interfaces and compilers

Support the development of
specific types of application
such as telecommunications or
financial systems.

 System infrastructure
frameworks

 Enterprise application
frameworks

 Middleware
integration
frameworks

Chapter 16 Software reuse 19

Web application frameworks (WAFs)

Chapter 16 Software reuse 20

WEB APPLICATION

FRAMEWORKS

Support the construction of dynamic websites
as a front-end for web applications.

WAFs are now available for all of the commonly used
web programming languages e.g. Java, Python, Ruby,
etc.

Interaction model is based on the Model-
View-Controller composite pattern.

Model-view controller

 System infrastructure framework for GUI design.

 Allows for multiple presentations of an object and
separate interactions with these presentations.

 MVC framework involves the instantiation of a number of
patterns.

Chapter 16 Software reuse 21

The Model-View-Controller pattern

Chapter 16 Software reuse 22

Model Controller View

Use
r

Model Methods

Data storage,
integrity,

Queries etc.

Controller Methods

Receive, interpret &
validate input.

Create & update
view, modify model

Controller Methods

Presentation assets
& code

User inputs

Model edits

Model queries, updates View updates

User view

WAF features

Chapter 16 Software reuse 23

Dynamic web pages
Classes are provided to help you define web

page templates and to populate these
dynamically from the system database.

Database support
The framework may provide classes that
provide an abstract interface to different

databases.

Session management
Classes to create and manage sessions

(a number of interactions with the
system by a user) are usually part of a

WAF.

User interaction
Most web frameworks now provide AJAX
support (Holdener, 2008), which allows

more interactive web pages to be
created.

Security
WAFs may include classes to

help implement user
authentication (login) and

access.

2 31

4 5

 Frameworks are generic and are extended to create a more
specific application or sub-system. They provide a skeleton
architecture for the system.

 Problem with frameworks is their complexity which means
that it takes a long time to use them effectively.

Adding methods that are called
in response to events that are
recognized by the framework.

Extending
the

framework
involves

Extending frameworks

Chapter 16 Software reuse 24

Adding concrete classes that
inherit operations from abstract

classes in the framework

Inversion of control in frameworks

25Chapter 16 Software reuse

Key points

 Most new business software systems are now developed by reusing
knowledge and code from previously implemented systems.

 There are many different ways to reuse software. These range from
the reuse of classes and methods in libraries to the reuse of
complete application systems.

 The advantages of software reuse are lower costs, faster software
development and lower risks. System dependability is increased.
Specialists can be used more effectively by concentrating their
expertise on the design of reusable components.

 Application frameworks are collections of concrete and abstract
objects that are designed for reuse through specialization and the
addition of new objects. They usually incorporate good design
practice through design patterns.

Chapter 16 Software reuse 26

Chapter 16 – Software Reuse

Lecture 2

27Chapter 16 Software reuse

Software product lines

 Software product lines or application families are
applications with generic functionality that can be
adapted and configured for use in a specific context.

 A software product line is a set of applications with a
common architecture and shared components, with each
application specialized to reflect different requirements.

Software Product Line = Set of applications

1. common architecture 2. shared components 3. Reflect different
requirements

Chapter 16 Software reuse 28

Software product lines

Chapter 16 Software reuse 29

ADAPTATION

Adding new
components to the

system

Selecting from a
library of existing

components

Modifying
components to

meet new
requirements

Component and
system

configuration

1 2 3 4

may involve

Software product lines- Video

Chapter 16 Software reuse 30

Software product lines

Chapter 16 Software reuse 31

Products

APPLICATION
DOMAIN

ARCHITECTURE

COMPONENTS &
SERVICES

CORE
ASSETS

Software Product Lines
 Take economic advantage of commonality
 Bound variation

Application frameworks and product lines

Chapter 16 Software reuse 32

Application
frameworks

 Rely on object-oriented
features such as
polymorphism to implement
extensions

 Focus on providing
technical rather than
domain-specific support

Product Lines

 Need not be need not be
object-oriented

 Embed domain and platform
information

 Control applications for
equipment

 Made up of a family of
applications, usually owned
by the same organization

Software
reuse

Product line specialisation

Different versions of the application
are developed for different

platforms

Platform specialization
Different versions of the application

are created to handle different
operating environments e.g.

different types of communication
equipment

Environment specialization

Different versions of the application
are created for customers with

different requirements

Functional specialization
Different versions of the application

are created to support different
business processes

Process specialization

Product line
specialisation

Chapter 16 Software reuse 33

Product line architectures

 Architectures must be structured in such a way to
separate different sub-systems and to allow them to be
modified.

 The architecture should also separate entities and their
descriptions and the higher levels in the system access
entities through descriptions rather than directly.

Chapter 16 Software reuse 34

The architecture of a resource allocation system

Chapter 16 Software reuse 35

User interface

User
authentication

Resource
delivery

Query
management

Resource
tracking

Resource policy
control

Resource
allocation

Resource management

Transaction management
Resource database

I/O management

Interaction

Database management

The product line architecture of a vehicle
dIspatcher

Chapter 16 Software reuse 36

Operator interface

Map and route
planner

Query
management

Vehicle status
manager

Incident
logger

Equipment
manager

Comms system
interface

Operator
authentication

Query
management

Vehicle
locator

Vehicle
despatcher

Equipment
database

Transaction management

Vehicle database

Incident log

Map database

http://www.vardhmansoft.com/gps-taxi-dispatch-system/

Vehicle dispatching

 A specialised resource management
system where the aim is to allocate
resources (vehicles) to handle incidents.

 Adaptations include:
• At the UI level, there are components for

operator display and communications;
• At the I/O management level, there are

components that handle authentication,
reporting and route planning;

• At the resource management level,
there are components for vehicle
location and despatch, managing
vehicle status and incident logging;

• The database includes equipment,
vehicle and map databases.

http://eecatalog.com/transportation/2011/06/02/purpose-built-embedded-computers-drive-telematics-applications/
Chapter 16 Software reuse 37

Product instance development

Chapter 16 Software reuse 38

Elicit stakeholder
requirements

Choose
Closest-fit

System instance

Renegotiate
requirements

Adapt existing
system

Deliver new
System instance

Use existing family member
as a prototype

Find the family member that
best meets the requirements

Adapt requirements as necessary to
capabilities of the software

Document key features
for further member

development

Develop new modules and make
changes for family member

Product line configuration

Chapter 16 Software reuse 39

Design time
configuration

Deployment time
configuration

The product line is adapted
and changed according to the

requirements of particular
customers

The product line is configured by
embedding knowledge of the
customer’s requirements and

business processes. The software
source code itself is not changed

Deployment-time configuration

Chapter 16 Software reuse 40

Configuration
Planning tool

Configuration
database

System database

Generic system

Levels of deployment time configuration

Chapter 16 Software reuse 41

Component selection

where you select the modules in a system that
provide the required functionality

Workflow and rule definition
where you define workflows (how information is
processed, stage-by-stage) and validation rules
that should apply to information entered by
users or generated by the system

Parameter definition
where you specify the values of specific system
parameters that reflect the instance of the
application that you are creating

COTS product reuse

Chapter 16 Software reuse 42

COTS product reuse

 A commercial-off-the-shelf (COTS) product is a software
system that can be adapted for different customers
without changing the source code of the system.

 COTS systems have generic features and so can be
used/reused in different environments.

 COTS products are adapted by using built-in
configuration mechanisms that allow the functionality of
the system to be tailored to specific customer needs.
 For example, in a hospital patient record system, separate input

forms and output reports might be defined for different types of
patient.

Chapter 16 Software reuse 43

Benefits of COTS reuse

Chapter 16 Software reuse 44

more rapid deployment of a reliable
system may be possible.

It is possible to see what functionality is
provided by the applications and so it is
easier to judge whether or not they are

likely to be suitable.

Some development risks are
avoided by using existing

software

Businesses can focus on their
core activity without having to
devote a lot of resources to IT

systems developmentrapid
deployment

see what
functionality

Benefits of
COTS reuse

risks are
avoided

focus on
core activity

Problems of COTS reuse

Chapter 16 Software reuse 45

Requirements usually have to be
adapted to reflect the
functionality and mode
of operation of the COTS
product

Choosing the right COTS
system for an enterprise can be
a difficult process, especially as
many COTS products are not well
documented

There may be a lack of
local expertise to support

systems development.

The COTS product may be
based on assumptions

that are practically
impossible to change

Difficult process Lack of local expertise

AssumptionsAdapation

COTS-solution and COTS-integrated systems

Chapter 16 Software reuse 46

COTS-solution systems COTS-integrated systems

1 Single product that provides the
functionality required by a customer

Several heterogeneous system products are
integrated to provide customized functionality

2 Based around a generic solution and
standardized processes

Flexible solutions may be developed for
customer processes

3 Development focus is on system
configuration Development focus is on system integration

4 System vendor is responsible for
maintenance System owner is responsible for maintenance

5 System vendor provides the platform
for the system

System owner provides the platform for the
system

COTS solution systems

 COTS-solution systems are generic application systems
that may be designed to support a particular business
type, business activity or, sometimes, a complete
business enterprise.
• For example, a COTS-solution system may be produced for

dentists that handles appointments, dental records, patient
recall, etc.

 Domain-specific COTS-solution systems, such as
systems to support a business function (e.g. document
management) provide functionality that is likely to be
required by a range of potential users.

Chapter 16 Software reuse 47

Enterprise Resource Planning (ERP)

Chapter 16 Software reuse 48

Enterprise Resource Planning (ERP) - Video

Chapter 16 Software reuse 49

ERP systems

 An Enterprise Resource Planning (ERP) system is a
generic system that supports common business
processes such as ordering and invoicing,
manufacturing, etc.

 These are very widely used in large companies - they
represent probably the most common form of software
reuse.

 The generic core is adapted by including modules and
by incorporating knowledge of business processes and
rules.

Chapter 16 Software reuse 50

The architecture of an ERP system

Chapter 16 Software reuse 51

Business rules

System database

Processes

Purchasing Supply chain Logistics CRM

Processes Processes Processes

ERP architecture

 A number of modules to support different business
functions.

 A defined set of business processes, associated with
each module, which relate to activities in that module.

 A common database that maintains information about all
related business functions.

 A set of business rules that apply to all data in the
database.

Chapter 16 Software reuse 52

COTS integrated systems

 COTS-integrated systems are applications that include
two or more COTS products and/or legacy application
systems.

 You may use this approach when there is no single
COTS system that meets all of your needs or when you
wish to integrate a new COTS product with systems that
you already use.

Chapter 16 Software reuse 53

Design choices

Chapter 16 Software reuse 54

Design
Choices

Which COTS products offer
the most appropriate functionality? How will data be

exchanged?
Different products normally
use unique data structures
and formats. You have to write
adaptors that convert from
one representation to another

Different products normally
use unique data structures
and formats. You have to write
adaptors that convert from
one representation to another

What features of a product
will actually be used?

COTS products may include more functionality than
you need and functionality may be duplicated across
different products.

Server

Client

A COTS-integrated procurement system

Chapter 16 Software reuse 55

Web browser

Ordering and
invoicing system

E-commerce
system

AdaptorE-mail system

E-mail system

Adaptor

Service-oriented COTS interfaces

 COTS integration can be simplified if a service-oriented approach is
used.

 A service-oriented approach means allowing access to the
application system’s functionality through a standard service
interface, with a service for each discrete unit of functionality.

 Some applications may offer a service interface but, sometimes, this
service interface has to be implemented by the system integrator.
You have to program a wrapper that hides the application and
provides externally visible services.

Chapter 16 Software reuse 56

simplified=+COTS
Integration

service-oriented
approach

service-oriented approach
allowing access to the application system’s functionality through a
standard service interface, with a service for each discrete unit of
functionality.

Application wrapping

57Chapter 16 Software reuse

COTS system integration problems

 Lack of control over functionality and
performance
 COTS systems may be less effective than they

appear
 Problems with COTS system inter-operability
 Different COTS systems may make different

assumptions that means integration is difficult
 No control over system evolution
 COTS vendors not system users control

evolution
 Support from COTS vendors
 COTS vendors may not offer support over the

lifetime of the product
Chapter 16 Software reuse 58

Key points

 Software product lines are related applications that are developed from a
common base. This generic system is adapted to meet specific
requirements for functionality, target platform or operational
configuration.

 COTS product reuse is concerned with the reuse of large-scale, off-the-
shelf systems. These provide a lot of functionality and their reuse can
radically reduce costs and development time. Systems may be developed
by configuring a single, generic COTS product or by integrating two or more
COTS products.

 Enterprise Resource Planning systems are examples of large-scale
COTS reuse. You create an instance of an ERP system by configuring a
generic system with information about the customer’s business processes
and rules.

 Potential problems with COTS-based reuse include lack of control over
functionality and performance, lack of control over system evolution, the
need for support from external vendors and difficulties in ensuring that
systems can inter-operate.

Chapter 16 Software reuse 59

