
1Chapter 3 Agile software development

Chapter 3 – Agile Software Development

Lecture 1

Topics covered

2Chapter 3 Agile software development

Agile methods

Plan-driven and agile development

Extreme programming

Agile project management

Scaling agile methods

Rapid software development

 Rapid development and delivery: A basic requirement
− Businesses operate in a fast –changing requirement. It is practically

impossible to produce a set of stable software requirements
− Software has to evolve quickly to reflect changing business needs

3Chapter 3 Agile software development

Testing

Development

ImplementationAnalysis and Quick
Design

Rapid software development

 Rapid software development
− Specification, design and implementation are inter-leaved
− System is developed as a series of versions with stakeholders

involved in version evaluation
− User interfaces are often developed using an IDE and graphical

toolset.

4Chapter 3 Agile software development

Iterations

Team memberTeam lead

Architecture. expert Owner

Stakeholder

Specialist

Domain expert

Integrator

Extensive rework

 Dissatisfaction with legacy methods of 1980s, 1990 led
to agile methods

 Aim: To reduce overheads in software process

Agile methods

5Chapter 3 Agile software development

Agile Methods Focus
1. Code rather than

design
2. Iterative
3. Evolution

Development team

Experts

Agile manifesto

Agile method preferences

6Chapter 3 Agile software development

Individual and interaction

Working software

Customer collaboration

Responding to change Following a plan

Contract negotiation

Comprehensive documents

Process and tools

Agile Methods Legacy Methods

Agility

Customer
involvement

Incremental
delivery

People not
process

Embrace
change

Maintain
simplicity

Continued
Improvement

Principles of agile methods

7Chapter 3 Agile software development

Principles of agile methods: Explained

Chapter 3 Agile software development 8

Principle Description
Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the
system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

I need agile methodology: What is It?

Chapter 3 Agile software development 9

Product development

Small size software

Medium size software

Custom system development

Customer fully involved in the
development process

Not a lot of external rules and
regulations

Agile method applicability

10Chapter 3 Agile software development

http://semanticommunity.info/AOL_Government/ACT-IAC_Agile_Development

Agile methods can be:
 People-centric: way to create innovative solutions
 Product-centric: alternative to documents/process
 Market-centric: model to maximize business value

Two types of development with Agile Methods:

Problems with agile methods

 Difficulty in keeping the interest of
involved customers

 Unsuited team members with
characteristics of agility

 Multiple stakeholders(difficulty in
prioritizing updates)

 Simplicity costs extra work

 Contracts may be a problem

11Chapter 3 Agile software development

Agile methods and software maintenance

Agile methodology

Software development

Software maintenance

Development team
maintenance

Issues

Emphasis on development or
documentation?

Evolution based on user
requests

What if development team
can’t be maintained?

12Chapter 3 Agile software development

 Most organizations spend more on maintaining existing software
than they do on new software development. So, if agile methods are
to be successful, they have to support maintenance as well as
original development

Plan-driven and agile development
specification

Requirements
engineering

Requirements
specification

Design and
implementation

Design and
implementation

Requirements
engineering

Plan driven development

Agile development

13Chapter 3 Agile software development

Comparison

Plan-driven vs. Agile methods

 Most projects include elements of plan-driven and agile
processes. Deciding on the balance depends on:
− Detailed specification and design before moving to

implementation? If so, you probably need to use a plan-driven
approach.

− Is an incremental delivery strategy and feedback from
customers, realistic? If so, consider using agile methods.

− How large is the system that is being developed?
• Small co-located team who can communicate informally: Agile

method
• Large systems that require larger development teams: Plan-

driven approach

14Chapter 3 Agile software development

From waterfall to agile

Chapter 3 Agile software development 15

Plan-driven vs. Agile methods
Co

nt
in
uu

m Very controlled
Communication and control

predictive

Very agile

Informal information
communication

adaptive

GeneralitiesExtremes

16Chapter 3 Agile software development

Plan-driven vs. Agile methods

Approach

Plan-driven

Artifact,
milestone

Up-front
planning

Structured
communication

Well-defined
roles

Agile method

Coded
deliverables

On-going
planning

Limited change
control

Lower project
ceremony

17Chapter 3 Agile software development

Technical, human, organizational issues

 Most projects include elements of plan-driven and agile
processes. Deciding on the balance depends on:
− Is it important to have a very detailed specification and design

before moving to implementation? If so, you probably need to
use a plan-driven approach.

− Is an incremental delivery strategy, where you deliver the
software to customers and get rapid feedback from them,
realistic? If so, consider using agile methods.

− How large is the system that is being developed? Agile
methods are most effective when the system can be developed
with a small co-located team who can communicate informally.
This may not be possible for large systems that require larger
development teams so a plan-driven approach may have to be
used.

18Chapter 3 Agile software development

Technical, human, organizational issues

19Chapter 3 Agile software development

Issues What type of system is being developed?
Plan‐driven approaches may be required for systems that
require a lot of analysis before implementation

What is expected lifetime of the system?
Long‐lifetime systems require more design documentation
to communicate the original intentions of the system
developers to the support team

What technologies are available and how is team organized?
Agile methods rely on good tools.
If the development team is distributed or if part of the
development is being outsourced

Technical, human, organizational issues

20Chapter 3 Agile software development

Issues Are there cultural or organizational issues that may
affect the system development?
Traditional engineering organizations have a culture of plan‐
based development, as this is the norm in engineering

How good are the designers and programmers in the
development team?
It is sometimes argued that agile methods require higher
skill levels than plan‐based approaches in which
programmers simply translate a detailed design into code.

Is the system subject to external regulation?
If a system has to be approved by an external regulator (e.g.
the FAA approve software that is critical to the operation of
an aircraft) then you will probably be required to produce
detailed documentation as part of the system safety case.

Agile Methods in this lecture

Agile
Methods

Extreme
Programming Scrum

Chapter 3 Agile software development 21

Extreme programming

Release plan

Iteration plan

Acceptance test

Pair negotiation

Unit test

Pair
programming

Code

months

weeks

days

hours

minutes

seconds

22Chapter 3 Agile software development

Ref: http://petercodes.wordpress.com/2013/11/09/personal-extreme-
programming-part-2-why-agile-and-why-xp/

Perhaps the best-known and most
widely used agile method

XP and agile principles

 Incremental development is supported through small,
frequent system releases.

 Customer involvement means full-time customer
engagement with the team.

 People not process through pair programming.

 Change supported through regular system releases.

 Maintaining simplicity through constant refactoring of
code.

23Chapter 3 Agile software development

XP release cycle

24Chapter 3 Agile software development

Select user stories
for this release

Break down stories
to tasks Plan release

Evaluate system Release software Develop/Integrate/t
est software

Extreme programming practices

Whole team

Small releases

Planning Customer tests

Refactoring

Sustainable pace Cont. integration

Collective ownership
Coding standard

Test-driven

Simple design

Pair programming

Metaphor

25Chapter 3 Agile software development
Ref: http://xprogramming.com/what-is-extreme-programming/

Extreme programming practices (a)
Detailed

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be
included in a release are determined by the time available and
their relative priority. The developers break these stories into
development ‘Tasks’. See Figures 3.5 and 3.6.

Small releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent
and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements
and no more.

Test-first development An automated unit test framework is used to write tests for a
new piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

26Chapter 3 Agile software development

Extreme programming practices (b)
Detailed

Pair programming Developers work in pairs, checking each other’s work and
providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers take
responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into
the whole system. After any such integration, all the unit tests in
the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as
the net effect is often to reduce code quality and medium term
productivity

On-site customer A representative of the end-user of the system (the customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of
the development team and is responsible for bringing system
requirements to the team for implementation.

27Chapter 3 Agile software development

Requirements scenarios

Chapter 3 Agile software development 28

 In XP, a customer or user is part of the XP team and is
responsible for making decisions on requirements.

 User requirements are expressed as scenarios or user
stories.

 These are written on cards and the development team
break them down into implementation tasks. These tasks
are the basis of schedule and cost estimates.

 The customer chooses the stories for inclusion in the
next release based on their priorities and the schedule
estimates.

A ‘prescribing medication’ story

Chapter 3 Agile software development 29

A ‘prescribing medication’ story

30Chapter 3 Agile software development

Examples of task cards for prescribing medication

XP and change

 Conventional wisdom in software engineering is to
design for change as this reduces costs later in the life
cycle.

 XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

 Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

31Chapter 3 Agile software development

Chapter 3 Agile software development 32

Refactoring

Refactoring

What is Refactoring?
Changing the structure of the
code without changing its
behavior for better
understanding

Example refactoring
Rename
Extract
method/interface
Inline
Pull up/Push down

33Chapter 3 Agile software development

Ref: http://www.oxygenxml.com/img/mb_dev_schema_refactoring.png

Key points

 Agile methods are incremental development methods that focus on:
− Rapid development
− Frequent releases of the software
− Reducing process overheads and producing high-quality code.

 Use an agile or a plan-driven approach depends on:
− The type of software being developed
− The capabilities of the development team and the culture of the company

developing the system.

 Extreme programming:
− A well-known agile method that integrates a range of good programming

practices

Chapter 3 Agile software development 34

Chapter 3 – Agile Software Development

Lecture 2

Testing in XP

Chapter 3 Agile software development 36
Ref: http://fileadmin.cs.lth.se/cs/Education/EDA270/Reports/2009/SvenssonGraden.pdf

Requirements
analysis

Acceptance
tests

System testsSystem design

Integration
tests

Module design

Architecture
design

Unit tests

Coding

 Testing features:
− Test-first development
− Incremental test

development
− User involvement in

test validation
− Automated test

harness to run all
tests each time a new
release is built

Test-first development

Chapter 3 Agile software development 37

Write failing tests: end-to-
end Write failing unit test

Make the test pass

Refactor

Deploy system

Start

 Writing tests before code clarifies the requirements to be
implemented.

Customer involvement in XP

Chapter 3 Agile software development 38

 The role of the customer in the testing process is to help
develop acceptance tests for the stories that are to be
implemented in the next release of the system.

 All new code is therefore validated to ensure that it is
what the customer needs.

 They may feel that providing the requirements was
enough of a contribution and so may be reluctant to get
involved in the testing process.

Test case description for dose checking

Chapter 3 Agile software development 39

Test 4: Dose Checking

Input:
1: A number in mg representing a single dose of the drug.
2: A number representing the number of single doses per day.

Tests:
1: Test for inputs where the single dose is correct but the frequency is too
high.
2: Test for inputs where the single dose is too high and too low.
3: Test for inputs where the single dose frequency is too high and too low
4: Test for inputs where the single dose frequency is in the permitted
range.

Output:
Ok or error message indicating that the dose is outside safe range

Test automation

Chapter 3 Agile software development 40

Test case 1

Test script 1 Test script 2 Test script 3

Test case 2

CleanupRefactor

Test?

 Test automation means that tests are written as
executable components before the task is implemented

XP testing difficulties

 Programmers prefer programming

 Taking short cuts when writing tests

 Writing incomplete tests that do not check for all possible
exceptions that may occur.

 Difficult to write test that work incrementally
− For example unit tests for the code that implements the ‘display

logic’ and workflow between screens.

 It is difficult to judge the completeness of a set of tests.

Chapter 3 Agile software development 41

Chapter 3 Agile software development 42

Pair Programming

Pair programming

Chapter 3 Agile software development 43

 Two people working together at a
single computer.

 2 people working at a single
computer will add as much
functionality as two working
separately except that it will be
much higher in quality.

 A review process
My experience Your experienceCollective experience

Pair programming

 In pair programming, programmers sit together at the
same workstation to develop the software.

 Pairs are created dynamically so that all team members
work with each other during the development process.

 The sharing of knowledge that happens during pair
programming is very important as it reduces the overall
risks to a project when team members leave.

 Pair programming is not necessarily inefficient and there
is evidence that a pair working together is more efficient
than 2 programmers working separately.

44Chapter 3 Agile software development

Advantages of pair programming

Chapter 3 Agile software development 45

Review

Dynamicity

Idea sharing

Responsibility

Chapter 3 Agile software development 46

Scrum

Agile project management (SCRUM)

Chapter 3 Agile software development 47

Planning Collaboration Delivery

Feedback

Continuous review

Items

Ref: http://en.wikipedia.org/wiki/Project_management

 The Scrum approach is a general agile method but its focus is on managing
iterative development rather than specific agile practices

The Scrum process

Chapter 3 Agile software development 48

Planning and
architecture

Select

Review

Adjust

Develop

ClosureSprints

 The Scrum approach is a general agile method but its focus is on managing
iterative development rather than specific agile practices.

 Three phases
Scrum master

The Scrum Process: Explained

Planning and architecture:

Sprint cycles:

Closure:

Chapter 3 Agile software development 49

Establishing objectives and design
architecture

Each sprint develops an increment of system

Wrap up of project, documentation, such as
manuals and lessons learned completion

Sprint cycle

• Normally 2-4 weeks
• Corresponds to a release development of

XP
Length

• Start point: backlog of product
• Backlog is a list of work to be doneAdjust

• Involves project team to select features etc.
• Develop functionalitySelect

• Reviewed and shown to stakeholders
• Next cycle beginsReview

• Manage all communication
• Protect from external distractionMaster

Chapter 3 Agile software development 50

Teamwork in Scrum

Scrum
master

Works as
facilitator

Arranges
meetings

Tracks backlog

And manages
communication
with outer world

Team
members

Attends
meetings

Describe
progress

Discuss
problems

Next plan

Chapter 3 Agile software development 51

Team work

Scrum benefits

delivery

On-time Feedback Trust and project success

Communication

Visible to everyone Improved communication

Product divided into chunks

manageable Understandable Requirements does not
hold progress

Chapter 3 Agile software development 52

Chapter 3 Agile software development 53

Scaling Large/Long Systems

Scaling agile methods

 Agile methods have proved to be successful for small
and medium sized projects that can be developed by a
small co-located team.

 It is sometimes argued that the success of these
methods comes because of improved communications
which is possible when everyone is working together.

 Scaling up agile methods involves changing these to
cope with larger, longer projects where there are multiple
development teams, perhaps working in different
locations.

Chapter 3 Agile software development 54

Large systems development
C

ol
le

ct
io

n
of

 s
ep

ar
at

e
sy

st
em

s • Independent
developed

• In different
places

• In different
zones

B
ro

w
nf

ie
ld

 s
ys

te
m

s • Interaction
with other
systems

• Systems
interaction

C
on

ce
rn

ed
 w

ith
 c

on
fig

ur
at

io
n • Part of

system
concerned
with
configuration

• Along with
code
development

Chapter 3 Agile software development 55

Large systems development

 Constraints:
− Often constrained by external rules and regulations and limiting

the way they can be developed

 Time:
− long development time, difficult to maintain coherent teams.

people move to other job etc.

 Stakeholders:
− Many stakeholders, difficult to involve all in the development

process

Chapter 3 Agile software development 56

Scaling out and scaling up

Chapter 3 Agile software development 57

Concerned with using agile methods for large systems
That can not be developed by small teams

Concerned with how agile methods can be introduced in
large organizations with many years of experience

S
ca

lin
g

up

Scaling out

Scaling out Or scaling up?

Chapter 3 Agile software development 58

Scaling up to large systems: Requirements

Large
systems

development
Documentation

design

Cross-team
communication

Continuous
integration

Frequent builds
and release

Chapter 3 Agile software development 59

Scaling out to large companies: Issues

Scale-
Out

Issues

Reluctance
to new

approach by
managers

Standards by
organizations

Wide range of
skills in large
organizations

Cultural
resistance

Chapter 3 Agile software development 60

Scaling out to large companies

 Project managers who do not have experience of agile
methods may be reluctant to accept the risk of a new approach.

 Large organizations often have quality procedures and
standards that all projects are expected to follow and, because
of their bureaucratic nature, these are likely to be incompatible
with agile methods.

 Agile methods seem to work best when team members have a
relatively high skill level. However, within large organizations,
there are likely to be a wide range of skills and abilities.

 There may be cultural resistance to agile methods, especially in
those organizations that have a long history of using
conventional systems engineering processes.

61Chapter 3 Agile software development

Key points

 A particular strength of extreme programming is the
development of automated tests before a program
feature is created. All tests must successfully execute
when an increment is integrated into a system.

 The Scrum method is an agile method that provides a
project management framework. It is centred round a set
of sprints, which are fixed time periods when a system
increment is developed.

 Scaling agile methods for large systems is difficult. Large
systems need up-front design and some documentation.

62Chapter 3 Agile software development

