Chapter 3 — Agile Software Development

Lecture 1

Chapter 3 Agile software development 1

Topics covered

S
=
o

Agile methods

Plan-driven and agile development

Extreme programming

Agile project management

Scaling agile methods

J

Chapter 3 Agile software development

NolvereDeeipmen

» Rapid development and delivery: A basic requirement

— Businesses operate in a fast —changing requirement. It is practically
impossible to produce a set of stable software requirements

— Software has to evolve quickly to reflect changing business needs

Rapid software development

Howr the customer How the project Howvr the analyst Howvr the Howr the sales
explained it leader understood designed it programmer executive
it wrote it described it

Howr the project vwhat operations How the customer How the helpdesk What the
was documented installed was billed supported it customer
really needed

Chapter 3 Agile software development 3

Rapid software development

» Rapid software development

- Specification, design and implementation are inter-leaved

- System is developed as a series of versions with stakeholders
involved in version evaluation

— User interfaces are often developed using an IDE and graphical
toolset.

Development

Analysis a.nd Quick ¢ \ V T ——
Design
o)
zZ
) Y
® < S
2

Y
S

Chapter 3 Agile software development 4

Agile methods

<> Dissatisfaction with legacy methods of 1980s, 1990 led
to agile methods

<> Aim: To reduce overheads in software process

Extensive rework

**

Agile Methods Focus

1. Code rather than
design

2. lterative

3. Evolution

Team lead Team member

Domain expert

\

~~~~~~
——————————

Chapter 3 Agile software development 5



Agile manifesto

Agile method preferences

Aqgile Methods Legacy Methods

Individual and interaction Process and tools

Working software Comprehensive documents

Customer collaboration Contract negotiation

Responding to change Following a plan

Chapter 3 Agile software development



Principles of agile methods

Customer
involvement

Continued Incremental
Improvement delivery

Maintain People not
simplicity process

Embrace
change

Chapter 3 Agile software development 7



Principles of agile methods: Explained

Customer involvement

Incremental delivery

People not process

Embrace change

Maintain simplicity

Customers should be closely involved throughout the
development process. Their role is provide and prioritize new
system requirements and to evaluate the iterations of the
system.

The software is developed in increments with the customer
specifying the requirements to be included in each increment.

The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive processes.

Expect the system requirements to change and so design the
system to accommodate these changes.

Focus on simplicity in both the software being developed and
in the development process. Wherever possible, actively work
to eliminate complexity from the system.

Chapter 3 Agile software development 8



| need agile methodology: What is It?




Agile method applicability

Agile methods can be:

* People-centric: way to create innovative solutions
= Product-centric: alternative to documents/process
= Market-centric: model to maximize business value

Two types of development with Agile Methods:

Product development Custom system development

- Customer fully involved in the
u Small size software 1\ EI development process

[
y/E Not a lot of external rules and
(@) Medium size software RAE | regulations

! 7

http://semanticommunity.info/AOL_Government/ACT-IAC_Agile_Development

Chapter 3 Agile software development 10



Problems with agile methods

= Difficulty in keeping the interest of
Involved customers D

* Unsuited team members with
characteristics of agility

» Multiple stakeholders(difficulty in
prioritizing updates)

= Simplicity costs extra work

= Contracts may be a problem

Chapter 3 Agile software development 11



) ] 2
Agile methods and software maintenance ;‘Qg:\

» Most organizations spend more on maintaining existing software
than they do on new software development. So, if agile methods are
to be successful, they have to support maintenance as well as

original development

Agile methodology

Software maintenance | _._. :

Developmentteam |
maintenance !

Software development | .-.-. S -

Issues

Emphasis on development or
documentation?

Evolution based on user
requests

, What if development team

can’t be maintained?

Chapter 3 Agile software development 12



Plan-driven and agile development o 7
specification i

1
|
Plan driven development ; Comparison

F i
|
Requirements Requirements Design and i
engineering specification implementation !
|
|
|
i

1 Time

= Agile Software Development
Plan Driven Development

Requirements Design and
engineering implementation

Aqgile development

Chapter 3 Agile software development 13



Plan-driven vs. Agile methods

= Most projects include elements of plan-driven and agile
processes. Deciding on the balance depends on:

— Detailed specification and design before moving to

implementation? If so, you probably need to use a plan-driven
approach.

- Is an incremental delivery strategy and feedback from
customers, realistic? If so, consider using agile methods.

- How large is the system that is being developed?

« Small co-located team who can communicate informally: Agile
method

« Large systems that require larger development teams: Plan-
driven approach

Chapter 3 Agile software development 14



methodology

From waterfall to agile A‘IL

Waterfall

Chapter 3 Agile software development 15



Plan-driven vs. Agile methods

&
>
>
c
e
c
@)
@)

Extremes Generalities

|
|
|
!

Very controlled -

Chapter 3 Agile software development

ml COMMunication and control |
predictive !

: Informal information '
; communication
Very agile —t—

16



Plan-driven vs. Agile methods

Plan-driven

Artifact,
milestone

Structured W
communication

Approach

_ Up-front Coded
planning deliverables
Well-defined Limited change
roles control

Chapter 3 Agile software development

Agile method

On-going
planning

Lower project
ceremony

17



. n M M ‘|
Technical, human, organizational issues i \

= Most projects include elements of plan-driven and agile
processes. Deciding on the balance depends on:

— Is it important to have a very detailed specification and design
before moving to implementation? If so, you probably need to
use a plan-driven approach.

— Is an incremental delivery strategy, where you deliver the
software to customers and get rapid feedback from them,
realistic? If so, consider using agile methods.

- How large is the system that is being developed? Agile
methods are most effective when the system can be developed
with a small co-located team who can communicate informally.
This may not be possible for large systems that require larger
development teams so a plan-driven approach may have to be
used.

Chapter 3 Agile software development 18



Technical, human, organizational issues /f} H

Issues

What type of system is being developed?

Plan-driven approaches may be required for systems that
require a lot of analysis before implementation

What is expected lifetime of the system?

Long-lifetime systems require more design documentation
to communicate the original intentions of the system
developers to the support team

What technologies are available and how is team organized?
Agile methods rely on good tools.

If the development team is distributed or if part of the
development is being outsourced

Chapter 3 Agile software development

19



Technical, human, organizational issues /1 } y

Issues

Are there cultural or organizational issues that may
affect the system development?

Traditional engineering organizations have a culture of plan-
based development, as this is the norm in engineering

How good are the designers and programmers in the
development team?

It is sometimes argued that agile methods require higher
skill levels than plan-based approaches in which
programmers simply translate a detailed design into code.

Is the system subject to external regulation?

If a system has to be approved by an external regulator (e.g.
the FAA approve software that is critical to the operation of
an aircraft) then you will probably be required to produce
detailed documentation as part of the system safety case.

Chapter 3 Agile software development 20



Agile Methods in this lecture

g )
£ 3
Agile
\ Methods
i =
4 4
p
Scrum
g
\__

Chapter 3 Agile software development

21



Extreme programming

Perhaps the best-known and most
widely used agile method

Release plan
P months

Iteration plan
weeks

Acceptance test ]

days

Pair negotiation
hours

minutes

seconds

Ref:. http://petercodes.wordpress.com/2013/11/09/personal-extreme-
programming-part-2-why-agile-and-why-xp/ )
Chapter 3 Agile software development 22



XP and agile principles

* Incremental development is supported through small,
frequent system releases.

= Customer involvement means full-time customer
engagement with the team.

* People not process through pair programming.
» Change supported through regular system releases.

» Maintaining simplicity through constant refactoring of
code.

Chapter 3 Agile software development 23



XP release cycle

Select user stories Break down stories

. Plan release
for this release to tasks

Develop/Integrate/t
est software

Evaluate system Release software

Chapter 3 Agile software development 24



rogrammin,
Extreme programming practices XP o

Small releases

Metaphor
/ \

Sustainable pace Cont integration

Pair programmlng Test- drlven

Planning Customer tests

Simple deS|gn Refactorlng

Coding standard

\ Collective Ownersh|p

Whole team

Ref: http://xprogramming.com/what-is-extreme-programming/
Chapter 3 Agile software development




Extreme programming practices (a) Programming

Detalled

Incremental planning

Small releases

Simple design

Test-first development

Refactoring

Requirements are recorded on story cards and the stories to be
included in a release are determined by the time available and
their relative priority. The developers break these stories into
development ‘“Tasks’. See Figures 3.5 and 3.6.

The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent
and incrementally add functionality to the first release.

Enough design is carried out to meet the current requirements
and no more.

An automated unit test framework is used to write tests for a
new piece of functionality before that functionality itself is
implemented.

All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

Chapter 3 Agile software development 26



Extreme programming practices (b) Programming i el

Detalled

Pair programming

Developers work in pairs, checking each other’'s work and
providing the support to always do a good job.

Collective ownership

The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers take
responsibility for all of the code. Anyone can change anything.

Continuous integration

As soon as the work on a task is complete, it is integrated into
the whole system. After any such integration, all the unit tests in
the system must pass.

Sustainable pace

Large amounts of overtime are not considered acceptable as
the net effect is often to reduce code quality and medium term
productivity

On-site customer

A representative of the end-user of the system (the customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of
the development team and is responsible for bringing system
requirements to the team for implementation.

Chapter 3 Agile software development 27




Requirements scenarios

= |n XP, a customer or user is part of the XP team and is
responsible for making decisions on requirements.

= User requirements are expressed as scenarios or user
stories.

* These are written on cards and the development team
break them down into implementation tasks. These tasks
are the basis of schedule and cost estimates.

*» The customer chooses the stories for inclusion in the
next release based on their priorities and the schedule
estimates.

Chapter 3 Agile software development 28



LLLLILLITNY

A ‘prescribing medication’ story

Precembing madicataon

The rerz o of k2 pat2rz s a2 o e aps Chek an v medicahnn, B 4 And
seled it “crent med exfiar, e mred satim ' ar Yormalay

IF wau erloct “saraat madicat an' yed willbn sked 4r 0k thn doco: IF sau wch ba
raange n: dase, £ak2r s naau Aose gy contirm e Ewsrapkan

If wan rhnose, e reednansn’, the spsien assimes thaspop koo walum

redicat av ynu wish iz prescibe. Tpe the fiest e lefters aof the dreg name vau
vl then e A liss of pasdble drpgs stasicg otk fese hers ©ancss The sqiires
tossdical snn Yioa wnll Lo s wssazi Il ok b Ales povceiabiaan poa wws e i
it ¢nrnect Enkar e 40%e then candirny the prasar anzn

If wan rhaosse o alary soiw 2 presenced weth a seack Bax far the gpprnver
larmula=y Sexck lar e dug reqe od then select i, Yow wall then bre ssked e
rrck thal the mediacion wan b seleai is (artees Evler g dase then camdirm
e presc’ pnan.

Im all zases Fae systorr wll shieck B2t the dnse 5 widhie. e aparesed savge and
vall Ask prn. B <harge ol it 5 coibsicse the rarge of reeanimrended dnses

Adk2r wauni hawe <onfire2 bae resraphon i wuill a6 4 5 saed o checking Eitkar
c <k "URor “Lhange It wou chics "UK, vaur presciphan wil be recsrded on the sudit
ralangse 1psa clirk "Changa’ ya . seenter the TFaeser Jing mad Lans o pravess

Chapter 3 Agile software development 29



A ‘prescribing medication’ story

Prescmbing m

Examples of task cards for prescribing medication

The rerg o o =l
solrel mibves "o

IF wau enlock oy
rhangs e 4a

IF wasts rhrgs
riedical an yru
sl Thein 4 A
riedical an. ¥r.
is enrnser Enbai

If wats rhrnse 1
lormulary Sex
raegk thatthe
P presciphor

In all c2se5 e
il si5k e b

Adtar g | b
c <k "K' ar 'Ch
ralanase 1y,

Task 1: Change dose of presonbed drug

Task ¥: Fosmaubary s&lection

. Task 3: Dose chacking

Dose checking is a safety precaution ta check that
the doctor has not prescribed a dangercusly smell or

Large dose
Usang the formulary id for the genenc dug name,

knokup the fFormulary and refreve the recommended
MaETUm and minemum dose.

Chie<k the prescribed dose against the minémam and
miaxEmum. | outside the range, issue an emor

miessage saying that the dose is too hegh or too ko,
i wathin the range, enabde the 'Confem” bution.

Chapter 3 Agile software development

30



XP and change

= Conventional wisdom in software engineering is to
design for change as this reduces costs later in the life
cycle.

= XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

= Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

Chapter 3 Agile software development 31



Refactoring

Chapter 3 Agile software development 32



Refactoring

What is Refactoring? |
> Changing the structure of the TEW_name” <=y Rename Component in

. : : all schemas
code without changing its —{@ )

behavior for better —
understanding

> Example refactoring

> Rename @——(=)

> Extract :
method/interface G

> |nline = |

> Pull up/Push down T ‘ J—

Extract as Global Component

Ref: http://www.oxygenxml.com/img/mb_dev_schema_refactoring.png

Chapter 3 Agile software development 33



Key points

» Agile methods are incremental development methods that focus on:
— Rapid development
- Frequent releases of the software
— Reducing process overheads and producing high-quality code.

= Use an agile or a plan-driven approach depends on:

— The type of software being developed

— The capabilities of the development team and the culture of the company
developing the system.

= Extreme programming:

- A well-known agile method that integrates a range of good programming
practices

Chapter 3 Agile software development 34



Chapter 3 — Agile Software Development

Lecture 2



Testing in XP

= Testing features: _
. Requirements Acceptance
— Test-first development analysis tests
— Incremental test
development
— User involvement in
test validation

— Automated test Architecture R Integration
harness to run all design tests

tests each time a new
release is built

System design System tests

Module design , Unit tests

.

Chapter 3 Agile software development 36

Ref: http://fileadmin.cs.lth.se/cs/Education/EDA270/Reports/2009/SvenssonGraden.pdf



Test-first development

» Writing tests before code clarifies the requirements to be
Implemented.

Deploy system

i a; E Make the test pass }
Write failing tests: end-to- : Write failing unit test
end
[ Refactor }

Chapter 3 Agile software development 37




Customer involvement in XP

* The role of the customer in the testing process is to help
develop acceptance tests for the stories that are to be
implemented in the next release of the system.

= All new code is therefore validated to ensure that it is
what the customer needs.

» They may feel that providing the requirements was
enough of a contribution and so may be reluctant to get
Involved in the testing process.

Chapter 3 Agile software development 38



Test case description for dose checking

Test 4: Dose Checking

Input:
1: A number in mg representing a single dose of the drug.
2: A number representing the number of single doses per day.

Tests:

1: Test for inputs where the single dose is correct but the frequency is too
high.

2: Test for inputs where the single dose is too high and too low.

3: Test for inputs where the single dose frequency is too high and too low
4: Test for inputs where the single dose frequency is in the permitted
range.

Output:
Ok or error message indicating that the dose is outside safe range

Chapter 3 Agile software development 39



Test automation

» Test automation means that tests are written as
executable components before the task is implemented

Test case 1 Test case 2

Test script 2

Test script 3

Chapter 3 Agile software development 40




XP testing difficulties

» Programmers prefer programming
= Taking short cuts when writing tests

» Writing incomplete tests that do not check for all possible
exceptions that may occur.

= Difficult to write test that work incrementally

— For example unit tests for the code that implements the ‘display
logic’ and workflow between screens.

= |tis difficult to judge the completeness of a set of tests.

Chapter 3 Agile software development 41



Pair Programming

ONE
MACHINE
EFFICIENT
NAVIGATOR TEAM

% x
ki

Chapter 3 Agile software development 42



Pair programming

= Two people working together at a
single computer.

= 2 people working at a single
computer will add as much
functionality as two working
separately except that it will be
much higher in quality.

= Areview process

My experfence Collective experience Your expgyience

Chapter 3 Agile software development 43



Pair programming

* |n pair programming, programmers sit together at the
same workstation to develop the software.

» Pairs are created dynamically so that all team members
work with each other during the development process.

* The sharing of knowledge that happens during pair
programming is very important as it reduces the overall
risks to a project when team members leave.

= Pair programming is not necessarily inefficient and there
IS evidence that a pair working together is more efficient
than 2 programmers working separately.

Chapter 3 Agile software development 44



Advantages of pair programming

Review |dea sharing

Chapter 3 Agile software development 45



Chapter 3 Agile software development 46



Agile project management (SCRUM)

» The Scrum approach is a general agile method but its focus is on managing
iterative development rather than specific agile practices

Continuous review

Feedback

ltems

Planning Collaboration Delivery

Ref: http://en.wikipedia.org/wiki/Project_management

Chapter 3 Agile software development 47



The Scrum process

= The Scrum approach is a general agile method but its focus is on managing
iterative development rather than specific agile practices.

= Three phases
wScrum master

Planning and
architecture Sprints Closure

Chapter 3 Agile software development 48



The Scrum Process: Explained

— 53 : :
_‘ _ﬂ i=l| Planning and architecture:
4

- 1

/%
( ‘ Sprint cycles:

Closure:

Chapter 3 Agile software development 49



Sprint cycle

* Normally 2-4 weeks

» Corresponds to a release development of
XP

_ « Start point: backlog of product
e « Backlog is a list of work to be done

* Involves project team to select features etc.
Sl « Develop functionality

. * Reviewed and shown to stakeholders
S « Next cycle begins

« Manage all communication
* Protect from external distraction

Chapter 3 Agile software development

50



Teamwork in Scrum

Scrum Team
master members
Team work
4 ) ( A
o Works as u Attends
facilitator meetings
A y G J
a Y a N
| Arranges | Describe
meetings progress
g J o WV,
4 N 4 N
— Tracks backlog — Discuss
problems
G Y, G )
4 3 4 N
And manages
—! communication — Next plan
with outer world
\ J \. J —

Chapter 3 Agile software development 51



Scrum benefits

Product divided into chunks

Requirements does not

manageable Understandable hold progress

Communication

Visible to everyone Improved communication

delivery

On-time Feedback Trust and project success

Chapter 3 Agile software development 52



Scaling Large/Long Systems

Chapter 3 Agile software development 53



Scaling agile methods

» Agile methods have proved to be successful for small
and medium sized projects that can be developed by a
small co-located team.

* [tis sometimes argued that the success of these
methods comes because of improved communications
which is possible when everyone is working together.

= Scaling up agile methods involves changing these to
cope with larger, longer projects where there are multiple
development teams, perhaps working in different
locations.

Chapter 3 Agile software development 54



Large systems development

:!
* Independent

developed

* In different
places

* |n different
zones

* Interaction
with other
systems

« Systems
interaction

Brownfield systems ‘&

Collection of separate systems

Chapter 3 Agile software development

cC
9
-
©
| S
-}
(@]
U—
C
o
(&)
e
=
=
©
o
(-
| -
]
(@)
C
@)
@)

» Part of

system
concerned
with
configuration
» Along with
code
development

55



Large systems development

= Constraints:

— Often constrained by external rules and regulations and limiting
the way they can be developed

= Time:

— long development time, difficult to maintain coherent teams.
people move to other job etc.

= Stakeholders:

— Many stakeholders, difficult to involve all in the development
process

Chapter 3 Agile software development 56



Scaling out and scaling up

Scaling up

Concerned with how agile methods can be introduced in
large organizations with many years of experience

Scaling out

Chapter 3 Agile software development

57



Scaling out Or scaling up?




Scaling up to large systems: Requirements

Cross-team
communication

Continuous
integration

Frequent builds
and release

Documentation systems
development

Chapter 3 Agile software development 59



Scaling out to large companies: Issues

Reluctance
to new
approach by
managers

Scale-
Cultural Out Standards by

resistance organizations

Issues

Wide range of
skills in large
organizations

Chapter 3 Agile software development 60



Scaling out to large companies

* Project managers who do not have experience of agile
methods may be reluctant to accept the risk of a new approach.

» |Large organizations often have quality procedures and
standards that all projects are expected to follow and, because
of their bureaucratic nature, these are likely to be incompatible
with agile methods.

= Agile methods seem to work best when team members have a
relatively high skill level. However, within large organizations,
there are likely to be a wide range of skills and abilities.

* There may be cultural resistance to agile methods, especially in
those organizations that have a long history of using
conventional systems engineering processes.

Chapter 3 Agile software development 61



Key points

» A particular strength of extreme programming is the
development of automated tests before a program
feature is created. All tests must successfully execute
when an increment is integrated into a system.

* The Scrum method is an agile method that provides a
project management framework. It is centred round a set
of sprints, which are fixed time periods when a system
Increment is developed.

» Scaling agile methods for large systems is difficult. Large
systems need up-front design and some documentation.

Chapter 3 Agile software development 62



