
Chapter 5 – System Modeling

Chapter 5 System modeling

Topics covered

2Chapter 5 System modeling

Modeling with UML
• What is Modeling?
• Use case diagram
• Class diagram
• Sequence diagram
• State diagram
• Activity diagram

System perspectives
• Context models
• Interaction models
• Structural models
• Behavioral models

Model-driven Engineering
• Model-driven Architecture – MDA
• MDA Model Levels
• MDA Transformations
• Executable UML

Lecture-1
Lecture-1

Lecture-2
Lecture-2

Modeling with UML

Chapter 5 System modeling

Lecture 1

3

What is modeling?

 Modeling consists of building an abstraction of reality.

 Abstractions are simplifications because:
 They ignore irrelevant details and
 They only represent the relevant details.

 What is relevant or irrelevant depends on the purpose of
the model.

 Example: Street map

4Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

Why model software?

 Software is getting increasingly more complex
 Windows XP > 40 million lines of code
 A single programmer cannot manage this amount of code in its

entirety.

 Code is not easily understandable by developers who
did not write it

 We need simpler representations for complex systems
 Modeling is a mean for dealing with complexity e.g. Flight

simulator

5Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

What is Model?

 Central artifact of software
development

 Helps the analyst to
understand the
functionality of the system

 Represented by Unified
Modeling Language –
UML notations

Chapter 5 System modeling 6

Model

Statistical
Analysis

Rapid
Prototyping

Code
Generation

Automated
Testing

Transformation

Documentation

Rumpe, Bernhard. "Agile modeling with the UML."
Radical Innovations of Software and Systems
Engineering in the Future. Springer Berlin
Heidelberg, 2004. 297‐309.

The potential uses of UML-models

Systems, Models and Views

 A model is an abstraction describing a subset of a
system

 A view depicts selected aspects of a model

 A notation is a set of graphical or textual rules for
depicting views

 Views and models of a single system may overlap each
other

7Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

Systems, Models, and Views (UML)

System Model View
**

Depicted byDescribed by

Airplane: System

Blueprints: View Fuel System: View Electrical Wiring: View

Scale Model: Model Flight Simulator: Model

8Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

What is UML?

 UML (Unified Modeling Language)
 An emerging standard for modeling object-oriented software.
 Resulted from the convergence of notations from three leading

object-oriented methods:
• OMT (James Rumbaugh)
• OOSE (Ivar Jacobson)
• Booch (Grady Booch)

 Supported by several CASE tools
 Rational ROSE
 TogetherJ

9Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

UML diagram types

 Use case diagrams, which show the interactions
between a system and its environment.

 Class diagrams, which show the object classes in the
system and the associations between these classes.

 Sequence diagrams, which show interactions between
actors and the system and between system components.

 State diagrams, which show how the system reacts to
internal and external events.

 Activity diagrams, which show the activities involved in a
process or in data processing .

Chapter 5 System modeling 10

UML diagram types

UML
diagrams

Activity
diagram

Class
diagram

Sequence
diagram

State
diagram

Use Case
diagram

11Chapter 5 System modeling

What is a Use Case?

Chapter 5 System modeling 12http://www.youtube.com/watch?v=nN7lTDWKP6g

Use Case diagrams

 Developed originally to
support requirements
elicitation

 Each use case represents a
discrete task that involves
external interaction with a
system

 Actors in a use case may be
people or other systems

13Chapter 5 System modeling

Actor

Use case

Package

Use Case Model - Example
(Recommendation Manager)

Use Case Diagrams

 Actors
 Represent roles i.e. a type of user of the system

 Use cases
 Represent a sequence of interaction for a type of functionality

 Use case model
 The set of all use cases
 A complete description of the functionality of the system and its

environment

14Chapter 5 System modeling

Tabular description of the ‘Classify
Recommendation’ use-case

15Chapter 5 System modeling

ID: UC-2

Title: Classify Recommendation

Primary Actor: Explainer

Preconditions:  Recommendation is filtered

Post conditions:  Recommendation is classified

Cross Reference: UC-1: Filter Recommendation

Main Success Scenario: 1. Explainer gets the filtered recommendation from Filter recommendation component.

2. It accesses to concept dictionary for classification

3. It classifies the recommendation into either every-day or scientific

4. It provides the classified recommendation to Explanation module.

The <<extends>> Relationship

 <<extends>> relationships
represent exceptional or
seldom invoked cases.

 Example:
 Cancel
 OutofOrder

Passenger

PurchaseTicket

OutOfOrder

<<extends>>

Cancel

<<extends>>

16Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

The <<includes>> Relationship

 <<includes>> relationship
represents behavior that is
factored out of the use
case.

 <<includes>> behavior is
factored out for reuse.

 Example:
 CollectMoney

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

17Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

Sequence diagrams

 Shows the sequence of interactions that take place
during a particular use case or use case instance

 Used to model the interactions between the actors and
the objects within a system

 The objects and actors involved are listed along the top
of the diagram, with a dotted line drawn vertically from
these.

 Useful to find missing objects

18Chapter 5 System modeling

Sequence diagram for Shopping Cart

19Chapter 5 System modeling

 Represent behavior
in terms of
interactions
between system’s
components

 Interactions
between objects
are indicated by
annotated arrows.

ObjectActor

Lifeline

Activation

Message

http://wc1.smartdraw.com/examples/content
/examples/06_software_design/uml_diagram
s/shopping_cart_sequence_diagram_l.jpg

Class diagrams

 Represents the static structure of the system: objects,
attributes, associations

 Shows the classes in a system and the associations between
these classes

 Used during :
 requirements analysis to model problem domain concepts
 system design to model subsystems and interfaces
 object-oriented design to model classes

 An object class can be thought of as a general definition of
one kind of system object.
 The objects represent something in the real world, such as a patient, a

prescription, doctor, etc.

20Chapter 5 System modeling

Classes

 A class represent a concept
 A class encapsulates state (attributes) and behavior (operations).
 Each attribute has a type.
 Each operation has a signature.
 The class name is the only mandatory information

zone2price
getZones()
getPrice()

TarifSchedule
Array zone2price
List getZones()
Float getPrice(Zone)

TarifSchedule
Name

Attributes

Operations
Signature

TarifSchedule

21Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

Class

Class and Associations

 Associations denote relationships between classes.

 The multiplicity of an association end denotes how many
objects the source object can legitimately reference.

Chapter 5 System modeling 22

1

2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
load

1

2

1

Time
now

1

Watch

Class Association

Multiplicity

state
PushButton

www.utdallas.edu/~chung/RE/ch02lect1.ppt

Generalization

 Use to manage complexity by placing entities in more general
form (animals, cars, houses, etc)

 Implemented using the class inheritance mechanisms like in
Java language

 Inheritance simplifies the model by eliminating redundancy.

 The children classes inherit the attributes and operations of
the parent class. These children classes then add more
specific attributes and operations.

 Attributes and operations that are associated with higher-level
classes are also associated with the lower-level classes

Chapter 5 System modeling 23

A generalization hierarchy with added detail

24Chapter 5 System modeling

Parent class

Child class

Child class

Generalization

https://subversion.american.edu/aisaac/
notes/images/uml‐class‐diagram.png

 Allows to infer common characteristics e.g. Student and
Professor are Person

Object class aggregation models

 An aggregation model shows how classes that are
collections are composed of other classes.

 Aggregation models are similar to the part-of relationship
in semantic data models.

25Chapter 5 System modeling

The aggregation association

26Chapter 5 System modeling

Patient record

Patient Consultation

1

1 1 .. *

1

 An aggregation is a special case of association denoting a
“consists of” hierarchy.

 A strong form of aggregation where components cannot exist
without the aggregate.

Parent class Child class

Aggregation and Composition

http://www‐acad.sheridanc.on.ca/~jollymor/
prog24178/images/compAgg.jpg 27Chapter 5 System modeling

 Describe the dynamic behavior of an individual object
 Show how the system reacts to internal and external events

State diagrams

State

Initial state

Transition

Final state

Event

http://agilemodeling.com/images/style/
stateChartDiagramTopLevel.gif 28Chapter 5 System modeling

 Describes the dynamic behavior of a system
 Shows the flow control within a system or
 Represents the activities involved in a process
 Special case of a state chart diagram in which states are

activities (“functions”)

Activity diagrams

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

29Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

State Diagram vs. Activity Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived

Incident-
Handled

Incident-
Documented

Incident-
Archived

 State Diagram for Incident:
 State: Attribute or Collection of Attributes of object of type Incident

 Activity Diagram for Incident:
 State: Operation or Collection of Operations

Trigger-less
Transition

Completion of activity
causes state transition

Event causes
State transition

30Chapter 5 System modelingwww.utdallas.edu/~chung/RE/ch02lect1.ppt

Key points

 A model is an abstract view of a system that ignores system details.

 UML is an emerging standard for modeling object-oriented software.

 Use cases describe interactions between a system and external
actors.

 Use case diagrams and Sequence diagrams are used to describe
the interactions between users and systems.

 Class diagrams are used to define the static structure of classes in
a system and their associations.

 State diagrams are used to model a system’s behavior in response
to internal or external events.

 Activity diagrams may be used to model the processing of data.

Chapter 5 System modeling 31

Further Readings

 UML Tutorial - Use Case, Activity, and Sequence
Diagrams - Essential Software Modeling
- http://www.youtube.com/watch?v=RMuMz5hQMf4

Chapter 5 System modeling 32

System perspectives and Model-driven Engineering

Chapter 5 System modeling

Lecture 2

33

What is System modeling?

 System modeling is the process
of developing abstract models of
a system

 Each model presenting a different
view or perspective of that system

 System modeling helps the
analyst to understand the
functionality of the system and
models are used to communicate
with customers

34Chapter 5 System modelinghttp://www.idef.com/pdf/compendium.pdf

Existing and planned system models

 Models of the existing system are used during requirements
engineering.
 They help clarify what the existing system does and can be used as a

basis for discussing its strengths and weaknesses. These then lead to
requirements for the new system.

 Models of the new system are used during requirements
engineering to explain the proposed requirements to other
system stakeholders.
 Engineers use these models to discuss design proposals and to

document the system for implementation.

 In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from
the system model.

35Chapter 5 System modeling

Use of graphical models

 As a means of facilitating discussion about an existing or
proposed system
 Incomplete and incorrect models are OK as their role is to

support discussion.

 As a way of documenting an existing system
 Models should be an accurate representation of the system but

need not be complete.

 As a detailed system description that can be used to
generate a system implementation
 Models have to be both correct and complete.

36Chapter 5 System modeling

System perspectives

37Chapter 5 System modeling

External
perspective

- Model the context or environment of the system

- Context models

Interaction
perspective

- Model the interactions between a system and its environment, or
between the components of a system
- Interaction models

Structural
perspective

- Model the organization of a system or the structure of the data that
is processed by the system
- Structural models

Behavioral
perspective

- Model the dynamic behavior of the system and how it responds to
events
- Behavioral models, State machine models

System perspectives

System
perspectives

Behavioral
perspective

External
perspective

Interaction
perspective

Structural
perspective

38Chapter 5 System modeling

Context models

 Used to illustrate the operational context of a system
 They show what lies outside the system boundaries

 Defines the physical scope of the system:
 what is part of the system (under your control)
 what is external to the system

 Social and organisational concerns may affect the
decision on where to position system boundaries

 Architectural models show the system and its
relationship with other systems

Chapter 5 System modeling 39
http://www.aconventional.com/2010/05/
towards‐working‐theory‐of‐learning.html

System boundaries

 System boundaries are established to define what is
inside and what is outside the system.
 They show other systems that are used or depend on the system

being developed.

 The position of the system boundary has a profound
effect on the system requirements.

 Defining a system boundary is a political judgment
 There may be pressures to develop system boundaries that

increase / decrease the influence or workload of different parts of
an organization.

40Chapter 5 System modeling

The context of the MHC-PMS

41Chapter 5 System modeling

<system>
Patient record

system

<system>
Appointments

system

<system>
HC statistics

system

<system>
Prescription

system

<system>
MHC-PMS

<system>
Management

reporting
system

<system>
Admissions

system

Process perspective

 Context models simply show the other systems in the
environment, not how the system being developed is
used in that environment.

 Process models reveal how the system being developed
is used in broader business processes.

 UML activity diagrams may be used to define business
process models.

42Chapter 5 System modeling

Process model of involuntary detention

43Chapter 5 System modeling

<System>
Admissions system

<System>
MHC-PMS

Confirm
Detention
Decision

Record
Detention
Decision

Inform
Patient of

rights

Find Source
place

Transfer to
police station

Transfer to
secure
hospital

Inform social
care

Inform next
of kin

Update
register

Admit to
Hospital

<System>
MHC-PMS

[not available]

[available]

[dangerous]

[not
dangerous]

Interaction models

 Modeling user interaction is important as
it helps to identify user requirements.

 Modeling system-to-system interaction
highlights the communication problems
that may arise.

 Modeling component interaction helps us
understand if a proposed system
structure is likely to deliver the required
system performance and dependability.

 Use case diagrams and sequence
diagrams may be used for interaction
modeling.

44Chapter 5 System modeling

Interaction

System-to-
System

Interaction

Components
Interaction

Structural models

 Display the organization of a system in
terms of the components that make up
that system and their relationships

 Structural models are created when
system architecture is discussed and
designed.

 Models may be static or dynamic model

 Static Model
 Show the structure of the system design

 Dynamic Model
 Show the organization of the system when it

is executing

45Chapter 5 System modeling

Structural
models

Static
models

Dynamic
models

Behavioral models

 Represents the dynamic behavior (execution) of a
system
 which is specified declaratively using the object constraint

language, or expressed using UML’s action language.

 Shows what happens or what is supposed to happen
when a system responds to a stimulus from its
environment.

 Allows the analyst to capture when and how the system
functionality is available.

46Chapter 5 System modeling

Chapter 5 System modeling 47

Behavioral models

 Stimuli can be think of two types

 Data
 Some data arrives that is to be

processed by the system

 Events
 Some event happens that triggers

system processing
 Events may have associated data,

although this is not always the case

Stimuli
types

Data

Events

Data-driven modeling

 Many business systems are data-processing systems
that are primarily driven by data. They are controlled by
the data input to the system, with relatively little external
event processing.

 Data-driven models show the sequence of actions
involved in processing input data and generating an
associated output.

 Show end-to-end processing in a system

 Useful during the analysis of requirements

48Chapter 5 System modeling

An activity model of the insulin pump’s
operation

49Chapter 5 System modeling

Blood sugar
sensor

Get sensor
value Sensor Data Compute

sugar level
Blood sugar

level

Calculate
insulin

delivery

Insulin
requirement

Calculate
pump

commands

Pump Control
commands Control pump Insulin pump

Order processing

50Chapter 5 System modeling

:Order:Order BudgetBudget <database>
Orders

<database>
Orders

Fillin() Validate()

[Validation OK]

Update(amount)

Save()

Send()

Purchase officer Supplier

Event-driven modeling

 Real-time systems are often event-driven, with minimal
data processing.
 For example, a landline phone switching system responds to

events such as ‘receiver off hook’ by generating a dial tone.

 Event-driven modeling shows how a system responds to
external and internal events.

 It is based on the assumption that a system has a finite
number of states and that events (stimuli) may cause a
transition from one state to another.

Chapter 5 System modeling 51

State machine models

 Model the behaviour of the system in response to
external and internal events

 Show the system’s responses to stimuli

 Used for modelling real-time systems

 Represented by UML Statechart diagrams
- System states represents nodes
- Events represents arcs between these nodes

 When an event occurs, the system moves from one state
to another

52Chapter 5 System modeling

State diagram of a microwave oven

53Chapter 5 System modeling

States and stimuli for the microwave oven (a)

State Description
Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

54Chapter 5 System modeling

States and stimuli for the microwave oven (b)

Stimulus Description
Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

55Chapter 5 System modeling

Microwave oven operation

56Chapter 5 System modeling

Model-driven engineering - MDE

 An approach to software development where models
rather than programs are the principal outputs

 The programs are generated automatically from models

 MDE raises the level of abstraction
- No need to concern with programming language details or the

specifics of execution platforms

Chapter 5 System modeling 57

Usage of model-driven engineering

Chapter 5 System modeling 58

 Allows systems to be
considered at higher
levels of abstraction
 Generating code
automatically
 Cheaper to adapt
systems to new platforms

 Abstracted models are
not necessarily right for
implementation
 Savings from
generated code may be
outweighed by the costs of
developing translators for
new platforms

 Still at an early stage of development and unclear
whether or not it will have a significant effect on software
engineering practice.

Model-driven Architecture - MDA

 Precursor of model-driven engineering

 A model-focused approach to software design and
implementation

 Models at different levels of abstraction are created.

 From a high-level, platform independent model, it is
possible, in principle, to generate a working program
without manual intervention.

Chapter 5 System modeling 59

Types of model

Chapter 5 System modeling 60

MDA

Computation
independent
model (CIM)

Platform
independent
model (PIM)

Platform
specific

model (PSM)

Types of model

61Chapter 5 System modeling

Computation
independent
model (CIM)

- Model the important domain abstractions used in a system

- Also called Domain model / Business Model

- Used in requirement gathering

Platform
independent
model (PIM)

- Model the operation / functionality of the system without implementation

- Shows the static system structure and its reactions against events

- Used in functional (aka analysis) patterns

Platform
specific
model (PSM)

- Transformation of PIM into multiple application platform PSM layers

- Each layer of PSM adds some platform-specific detail

- Used in technical (aka Design / Implementation) patterns

MDA Transformations

62Chapter 5 System modeling

Computation
Independent Model

Platform Specific
Model Executable codePlatform

Independent Model

Domain Specific
Guidelines

Platform Specific
Patterns and Rules

Language Specific
Patterns

Translator Translator Translator

Multiple platform-specific models

63Chapter 5 System modeling

Platform Independent Model - PIM

J2EE Translator

J2EE Specific Model

Java Code Generator

Java Program

.NET Translator

.NET Specific Model

C# Code Generator

C# Program

Model Driven Development
PIM to PSM and PSM to Code

Chapter 5 System modeling 64http://www.youtube.com/watch?v=7q7kKk_eaJg

Agile methods and MDA

 The MDA supports iterative
approach  Agile methods

 But notions of MDA contradicts with
the fundamental ideas in the agile
manifesto

 If transformations can be
completely automated and a
complete program generated from a
PIM, then, in principle, MDA could
be used in an agile development
process as no separate coding
would be required.

Chapter 5 System modeling 65
http://www.idt.mdh.se/utbildning/exjobb/files/
TR0962_5_Model_Based_Testing_final.ppt

Executable UML

 The fundamental notion behind model-driven
engineering is that completely automated transformation
of models to code should be possible.

 Possible using a subset of UML 2, called Executable
UML or xUML

 Helps in automated transformation of models to code

 Notions of xUML are used in model-driven engineering

 The dynamic behavior of the system may be specified
declaratively using the object constraint language (OCL),
or may be expressed using UML’s action language.

Chapter 5 System modeling 66

Types of Executable UML

Chapter 5 System modeling 67

• Identify the principal concerns in a system
• Defined using UML class diagrams
• Include objects, attributes, and associations

Domain models

• Define classes, attributes, and operations

Class models

• Associated with each class
• Describe the life cycle of the class

State models

Key points

 Complementary system models can be developed to show the
system’s context, interactions, structure, and behaviour.

 Context models show how a system is positioned in an
environment with other systems and processes.

 Interaction models show the system to system and components
interactions.

 Structural models show the organization / architecture of a system.

 Behavioral models are used to describe the dynamic behavior of
an executing system.

 Model-driven engineering is an approach to software development
in which a system is represented as a set of models that can be
automatically transformed to executable code.

Chapter 5 System modeling 68

Further Readings

 Systems Modelling Overview
- http://www.youtube.com/watch?v=ayP5Ey-djgw

 Effective SE Communication through Models and
Representations
- http://www.youtube.com/watch?v=7-JCgxNgX40

 Requirements Analysis Models - Systems perspectives
- https://blog.feabhas.com/tag/context-model/

Chapter 5 System modeling 69

