
- Software Testing
Lecture 1

1Chapter 8 Software testing

Topics covered

2Chapter 8 Software testing

Development testing

Test-driven development

Release testing

User testing

Software testing

Chapter 8 Software testing 3

Software testing is an investigation conducted to provide stakeholders with
information about the quality of the product or service under test.

http://en.wikipedia.org/wiki/Software_testing

Program testing

 Testing is intended to show that a program does what it is
intended to do and to discover program defects before it is
put into use.

 When you test software, you execute a program using
artificial data.

 You check the results of the test run for errors, anomalies
or information about the program’s non-functional attributes.

 Can reveal the presence of errors NOT their
absence.

 Testing is part of a more general verification and validation
process, which also includes static validation techniques.

Chapter 8 Software testing 4

Program testing

Chapter 8 Software testing 5

errors

requirements conformance

performance

an indication of quality

Discover Program Defects

Unhide the Bugs

Verification

Validation

Program testing goals

 To demonstrate to the developer and the customer that
the software meets its requirements.
- For custom software, this means that there should be at least

one test for every requirement in the requirements document.
For generic software products, it means that there should be
tests for all of the system features, plus combinations of these
features, that will be incorporated in the product release.

 To discover situations in which the behavior of the
software is incorrect, undesirable or does not conform
to its specification.
- Defect testing is concerned with rooting out undesirable system

behavior such as system crashes, unwanted interactions with
other systems, incorrect computations and data corruption.

6Chapter 8 Software testing

Program testing goals

Chapter 8 Software testing 7

Meet Requirements

Meet Specification

Identification of undesired behavior

Wrong Computation

Validation and defect testing

 The first goal leads to validation testing
- You expect the system to perform correctly using a given set of

test cases that reflect the system’s expected use.

 The second goal leads to defect testing
- The test cases are designed to expose defects. The test cases

in defect testing can be deliberately obscure and need not
reflect how the system is normally used.

8Chapter 8 Software testing

Validation and defect testing

Chapter 8 Software testing 9

Meet Requirements

Meet Specification

Identification of undesired behavior

Wrong Computation

Defect Testing

Validation Testing

Testing process goals

 Validation testing
- To demonstrate to the developer and the system customer that

the software meets its requirements
- A successful test shows that the system operates as intended.

 Defect testing
- To discover faults or defects in the software where its

behaviour is incorrect or not in conformance with its
specification

- A successful test is a test that makes the system perform
incorrectly and so exposes a defect in the system.

10Chapter 8 Software testing

Testing process goals

Chapter 8 Software testing 11

Testing
Process

Goals

Validation Testing Defect Testing

Software Requirement Testing Undesirable Behavior Testing

Generic
Softwar

e

Custom
Software

Data
Corruptio

n

Wrong
Computati

on

Unwante
d

Interactio
n

System
Crashes

An input-output model of program testing

Chapter 8 Software testing 12

Input Test Data

Output Test Results

SystemSystem

Ie

Oe

Inputs causing
Anomalous behavior

Outputs which reveals the
presence of defects

Verification vs validation

13Chapter 8 Software testing

Verification

Are we building
the product right?

Specifications

Validation

Are we building
the right product?

Requirements

V & V confidence

 Aim of V & V is to establish confidence that the system
is ‘fit for purpose’.

14Chapter 8 Software testing

Aim
(confidence)

Software Purpose
(critical to organization)

Marketing Environment
(more efficient than reliable)

User Expectation
(low expectation)

Inspections and testing

15Chapter 8 Software testing

Inspections Testing

Exercising
Operations

Operational
Observation

Dynamic
Verification

Code Analysis

Tool-based
Documentation

Static
Verification

Software inspections:

Concerned with analysis
of the static system
representation to
discover problems
(static verification)

May be supplement by
tool-based document
and code analysis

Software inspections:

Concerned with analysis
of the static system
representation to
discover problems
(static verification)

May be supplement by
tool-based document
and code analysis

Software testing:

Concerned with
exercising and observing
product behaviour
(dynamic verification)

The system is executed
with test data and its
operational behaviour is
observed.

Software testing:

Concerned with
exercising and observing
product behaviour
(dynamic verification)

The system is executed
with test data and its
operational behaviour is
observed.

Inspections and testing

In
sp

ec
tio

n
Requirements
specification System prototype

Software architecture

UML design models

Database schemas

Program

Chapter 8 Software testing 16

Testing

Software inspections

 These involve people examining the source
representation with the aim of discovering anomalies
and defects.

 Inspections not require execution of a system so may
be used before implementation.

 They may be applied to any representation of the
system (requirements, design, configuration data, test
data, etc.).

 They have been shown to be an effective technique for
discovering program errors.

17Chapter 8 Software testing

Advantages of inspections

 During testing, errors can mask (hide) other errors.
Because inspection is a static process, you don’t have
to be concerned with interactions between errors.

 Incomplete versions of a system can be inspected
without additional costs. If a program is incomplete,
then you need to develop specialized test harnesses to
test the parts that are available.

 As well as searching for program defects, an inspection
can also consider broader quality attributes of a
program, such as compliance with standards, portability
and maintainability.

Chapter 8 Software testing 18

Advantages of inspections

Broader quality attributes
(standards, portability, maintainability)

Incomplete Versions
(no additional components)

Interconnected errors
(errors can’t mask other errors)

Chapter 8 Software testing 19

A
dv

an
ta

ge
s

Inspections and testing

 Inspections and testing are complementary and not
opposing verification techniques.

 Both should be used during the V & V process.

 Inspections can check conformance with a specification
but not conformance with the customer’s real
requirements.

 Inspections cannot check non-functional characteristics
such as performance, usability, etc.

20Chapter 8 Software testing

A model of the software testing process

Chapter 8 Software testing 21

Stages of testing

Development
Testing

Release
Testing

User
Testing

Chapter 8 Software testing 22

Development testing

 Development testing includes all testing activities that
are carried out by the team developing the system.
- Unit testing, where individual program units or object classes

are tested. Unit testing should focus on testing the functionality
of objects or methods.

- Component testing, where several individual units are
integrated to create composite components. Component
testing should focus on testing component interfaces.

- System testing, where some or all of the components in a
system are integrated and the system is tested as a whole.
System testing should focus on testing component interactions.

Chapter 8 Software testing 23

Development testing

Component
Testing

System
Testing

Chapter 8 Software testing 24

Development
Testing

Unit
Testing

Object
Classes

Composite
Components

Functions
Methods

Unit testing

 Unit testing is the process of testing individual
components in isolation.

 It is a defect testing process.

25Chapter 8 Software testing

Unit

Object class testing

 Complete test coverage of a class involves
- Testing all operations associated with an object
- Setting and interrogating all object attributes
- Exercising the object in all possible states.

 Inheritance makes it more difficult to design object class
tests as the information to be tested is not localised.

26Chapter 8 Software testing

Weather station testing

 Test Cases
- reportWeather
- Calibrate
- test
- startup
- shutdown

 State model
- sequences of state transitions
- event sequences

 For example
- Shutdown -> Waiting -> Shutdown
- Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

27Chapter 8 Software testing

Automated testing

 Whenever possible, unit testing should
be automated so that tests are run and
checked without manual intervention.

 In automated unit testing, you make use
of a test automation framework (such as
JUnit) to write and run your program
tests.

 Unit testing frameworks provide generic
test classes that you extend to create
specific test cases. They can then run
all of the tests that you have
implemented and report, often through
some GUI, on the success of otherwise
of the tests.

Chapter 8 Software testing 28

Automated test components

 A setup part, where you initialize the
system with the test case, namely
the inputs and expected outputs.

 A call part, where you call the object
or method to be tested.

 An assertion part where you
compare the result of the call with
the expected result. If the assertion
evaluates to true, the test has been
successful if false, then it has
failed.

Chapter 8 Software testing 29

Unit test effectiveness

 The test cases should show that, when used as
expected, the component that you are testing does what
it is supposed to do.

 Existing defects in the component should be revealed
by test cases.

 Two types of unit test case:
- Normal Operations: Unit test case should reflect normal

operation of a program as expected.

- Abnormal Operations: Unit test case should use abnormal
inputs to check that these are properly processed and do not
crash the component.

30Chapter 8 Software testing

Testing strategies

Chapter 8 Software testing 31

Partition

Strategy

Guided

Testing strategies

 Partition testing, where you identify groups of inputs that
have common characteristics and should be processed
in the same way.
- You should choose tests from within each of these groups.

 Guideline-based testing, where you use testing
guidelines to choose test cases.
- These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing
components.

Chapter 8 Software testing 32

Partition testing

 Input data and output results often fall into different
classes where all members of a class are related.

 Each of these classes is an equivalence partition or
domain where the program behaves in an equivalent
way for each class member.

 Test cases should be chosen from each partition.

33Chapter 8 Software testing

Equivalence partitioning

Chapter 8 Software testing 34

Equivalence partitions

Chapter 8 Software testing 35

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Testing guidelines (sequences)

Chapter 8 Software testing 36

Test software with sequences having a single value.

Use sequences of different sizes in different tests.

Tests to access the first, middle and last elements.

Test with sequences of zero length.

General testing guidelines

37Chapter 8 Software testing

Repeat the same input numerous times

Choose inputs that force the system to generate all error

Design inputs that cause input buffers to overflow

Force invalid outputs to be generated

Force computation results to be too large or too small

Key points

 Testing can only show the presence of errors in a
program. It cannot demonstrate that there are no
remaining faults.

 Development testing is the responsibility of the software
development team. A separate team should be
responsible for testing a system before it is released to
customers.

 Development testing includes unit testing in which we
test individual objects and methods, component testing
in which we test related groups of objects and system
testing in which we test partial or complete systems.

Chapter 8 Software testing 38

– Software Testing

Lecture 2

39Chapter 8 Software testing

Component testing

 Software component
- Composite components of several interacting objects.

 Access the functionality
- Through defined component interface.

 Testing composite components
- Focus on showing that the component interface behaves

according to its specification.

Chapter 8 Software testing 40

Interface testing

Chapter 8 Software testing 41

Test cases

A

C

B

Interface testing

 Objectives are to detect faults due to interface errors or
invalid assumptions about interfaces.

42Chapter 8 Software testing

In
te

rfa
ce

s Parameter
Interfaces

Shared Memory
Interfaces

Procedural
Interfaces

Message Passing
interfaces

Data passed from one method or
procedure to another.

Block of memory is shared between
procedures or functions.

Encapsulates set of procedures
called by other sub-systems.

Sub-systems request services
from other sub-systems

Interface errors

43Chapter 8 Software testing

• A calling component
calls another
component and
makes an error in its
use of its interface
e.g. parameters in the
wrong order.

Interface Misuse

• A calling component
embeds assumptions
about the behaviour
of the called
component which are
incorrect.

Interface
Misunderstanding

• The called and the
calling component
operate at different
speeds and out-of-
date information is
accessed.

Timing Errors

Interface testing guidelines

44Chapter 8 Software testing

Design tests with extreme ends parameters for called procedure.

Always test pointer parameters with null pointers.

Design tests which cause the component to fail.

Use stress testing in message passing systems.

In shared memory systems, vary the activation order of components.

System testing

 System testing during development involves integrating
components to create a version of the system and then testing the
integrated system.

 The focus in system testing is testing the interactions between
components.

 System testing checks that components are compatible, interact
correctly and transfer the right data at the right time across their
interfaces.

 System testing tests the emergent behavior of a system.

45Chapter 8 Software testing

System and component testing

 During system testing, reusable
components that have been separately
developed and off-the-shelf systems may
be integrated with newly developed
components. The complete system is
then tested.

 Components developed by different team
members or sub-teams may be
integrated at this stage. System testing is
a collective rather than an individual
process.
- In some companies, system testing may

involve a separate testing team with no
involvement from designers and
programmers.

Chapter 8 Software testing 46

Use-case testing

 The use-cases developed to
identify system interactions can
be used as a basis for system
testing.

 Each use case usually involves
several system components so
testing the use case forces these
interactions to occur.

 The sequence diagrams
associated with the use case
documents the components and
interactions that are being tested.

Chapter 8 Software testing 47

Collect weather data sequence chart

Chapter 8 Software testing 48

Testing policies

 Exhaustive system testing is impossible so testing policies which
define the required system test coverage may be developed.

 Examples of testing policies:
- All system functions that are accessed through menus should be

tested.
- Combinations of functions (e.g. text formatting) that are accessed

through the same menu must be tested.
- Where user input is provided, all functions must be tested with both

correct and incorrect input.

Chapter 8 Software testing 49

Test-driven development

Add Test

Watch
Test Fail

Write
Code

Run
Tests

Refactor

Chapter 8 Software testing 50

 Test Driven Development
‐ Inter-leave testing & code

development

 Test before Code
‐ Passing the test is the

critical driver of
development

 Incremental Process
‐ Passes test
‐ Increment in code

 TDD part of Agile Method
‐ Extreme Programming

Test-driven development

51Chapter 8 Software testing

TDD process activities

 Start by identifying the increment of functionality that is
required. This should normally be small and
implementable in a few lines of code.

 Write a test for this functionality and implement this as
an automated test.

 Run the test, along with all other tests that have been
implemented. Initially, you have not implemented the
functionality so the new test will fail.

 Implement the functionality and re-run the test.

 Once all tests run successfully, you move on to
implementing the next chunk of functionality.

52Chapter 8 Software testing

Benefits of test-driven development

 Code coverage
‐ Every code segment has at least

one associated test.

 Regression testing
‐ A regression test suite is

developed incrementally.

 Simplified debugging
‐ When a test fails, the newly

written code needs to be checked
and modified.

 System documentation
‐ The tests themselves are a form

of documentation that describe
what the code should be doing.

System
documentation

Simplified
debugging

Regression testing

Code coverage

Chapter 8 Software testing 53

Regression testing

 Regression testing is testing the
system to check that changes
have not ‘broken’ previously
working code.

 In a manual testing process,
regression testing is expensive
but, with automated testing, it is
simple and straightforward. All
tests are rerun every time a
change is made to the program.

 Tests must run ‘successfully’
before the change is committed.

54Chapter 8 Software testing

Release testing

 Release testing is the process of testing a particular
release of a system that is intended for use outside of the
development team.

 The primary goal of the release testing process is to
convince the supplier of the system that it is good enough
for use.
- Release testing, therefore, has to show that the system delivers its

specified functionality, performance and dependability, and that it
does not fail during normal use.

 Release testing is usually a black-box testing process
where tests are only derived from the system specification.

55Chapter 8 Software testing

Release testing

Chapter 8 Software testing 56

Release testing has to
show that the system
delivers its specified

functionality,
performance and

dependability, and it
does not fail during

normal use

www.SoftwareTestingSoftware.com

Release testing and system testing

 Release testing is a form of system testing.

 Important differences:
- A separate team that has not been involved in the system

development, should be responsible for release testing.
- System testing by the development team should focus on

discovering bugs in the system (defect testing). The objective
of release testing is to check that the system meets its
requirements and is good enough for external use (validation
testing).

57Chapter 8 Software testing

Requirements based testing

 Requirements-based testing involves examining each
requirement and developing a test or tests for it.

58Chapter 8 Software testing

http://bettersoftwareprojects.com/articles/debug‐your‐requirements/

MHC-PMS case study

 MHC-PMS requirements
- If a patient is known to be allergic to any particular medication,

then prescription of that medication shall result in a warning
message being issued to the system user.

- If a prescriber chooses to ignore an allergy warning, they shall
provide a reason why this has been ignored.

59Chapter 8 Software testing

Requirements tests

Chapter 8 Software testing 60

Requirement Test Action Result
Patient record with no known
allergies

Prescribe medication for
allergies

Warning message should not be
issued by the system

Patient record with a known
allergy

Prescribe the medication to that
the patient is allergic to

Warning message should be
issued by the system

Patient record in which allergies
to two or more drugs are
recorded

Prescribe both of these drugs
separately

Correct warning message
should be issued by the system
for each drug

Patient record with two known
allergic drug

Prescribe two drugs that the
patient is allergic to

Two warnings should be issued
correctly by system

Overrule the Warning Prescribe a drug that issues a
warning

The system should require the
user to provide information
explaining why the warning was
overruled

Features tested by scenario

Chapter 8 Software testing 61

Authentication by logging

Downloading and uploading patient records

Home visit scheduling.

Encryption and decryption of patient records

Record retrieval and modification.

Links with the drugs database & side-effect information

System for call prompting.

A usage scenario for the MHC-PMS

Kate is a nurse who specializes in mental health care. One of her responsibilities is to
visit patients at home to check that their treatment is effective and that they are not
suffering from medication side -effects.
On a day for home visits, Kate logs into the MHC-PMS and uses it to print her schedule
of home visits for that day, along with summary information about the patients to be
visited. She requests that the records for these patients be downloaded to her laptop.
She is prompted for her key phrase to encrypt the records on the laptop.
One of the patients that she visits is Jim, who is being treated with medication for
depression. Jim feels that the medication is helping him but believes that it has the side -
effect of keeping him awake at night. Kate looks up Jim’s record and is prompted for her
key phrase to decrypt the record. She checks the drug prescribed and queries its side
effects. Sleeplessness is a known side effect so she notes the problem in Jim’s record
and suggests that he visits the clinic to have his medication changed. He agrees so Kate
enters a prompt to call him when she gets back to the clinic to make an appointment with
a physician. She ends the consultation and the system re-encrypts Jim’s record.
After, finishing her consultations, Kate returns to the clinic and uploads the records of
patients visited to the database. The system generates a call list for Kate of those
patients who she has to contact for follow-up information and make clinic appointments.

62Chapter 8 Software testing

Performance testing

 Part of release testing may involve
testing the emergent properties of a
system, such as performance and
reliability.

 Tests should reflect the profile of use
of the system.

 Performance tests usually involve
planning a series of tests where the
load is steadily increased until the
system performance becomes
unacceptable.

 Stress testing is a form of performance
testing where the system is
deliberately overloaded to test its
failure behavior. 63Chapter 8 Software testing

User testing & Its Types

 User testing
‐ Users or customers provide input and advice on

system testing.

 Influence of Real environment
‐ Major effect on the reliability, performance,

usability and robustness of a system. These
cannot be replicated in a testing environment.

 Alpha Testing
‐ User work with development team

 Beta Testing
‐ After release, user perform testing

 Acceptance Testing
‐ Customers test system for deployment

Chapter 8 Software testing 64

User
Testing

Alpha
Testing

Beta TestingAcceptance
Testing

The acceptance testing process

Chapter 8 Software testing 65

Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

66Chapter 8 Software testing

Agile methods and acceptance testing

 In agile methods, the user/customer is part of the
development team and is responsible for making
decisions on the acceptability of the system.

 Tests are defined by the user/customer and are
integrated with other tests in that they are run
automatically when changes are made.

 There is no separate acceptance testing process.

 Main problem here is whether or not the embedded
user is ‘typical’ and can represent the interests of all
system stakeholders.

67Chapter 8 Software testing

How Google Test

Chapter 8 Software testing 68

Key points

 When testing software, you should try to ‘break’ the software by
using experience and guidelines to choose types of test case that
have been effective in discovering defects in other systems.

 Wherever possible, you should write automated tests. The tests are
embedded in a program that can be run every time a change is
made to a system.

 Test-first development is an approach to development where tests
are written before the code to be tested.

 Scenario testing involves inventing a typical usage scenario and
using this to derive test cases.

 Acceptance testing is a user testing process where the aim is to
decide if the software is good enough to be deployed and used in
its operational environment.

69Chapter 8 Software testing

