

Open New Era of Personalized Healthcare

Prof. Sungyong Lee Kyung Hee University South Korea

http://uclab.khu.ac.kr sylee@oslab.khu.ac.kr 09-January-2015

Contents

Introduction

- What is Big Data
- Big Data in Healthcare
- Personalized Healthcare
- Personalized Healthcare Platform
 - Abstract of Mining Minds (MM) Platform
 - Mining Minds Platform Details
 - Uniqueness
- Demo for MM Platform Version-1
- Conclusion

INTRODUCTION

is changing the World !!!

Big Data at A Glance

• Definition of Big Data:

A collection of large and complex data sets which are difficult to process using common database management tools or traditional data processing applications.

The four dimensions (V's) of Big Data

- Volume
- Velocity
- Variety
- Veracity

IBM

Big Data Landscape

h

Technologies

- Infrastructure As A Service
- Operational Infrastructure
- Analytics Infrastructure
- Structured Databases
- Data As A service
- Business Intelligence
- Analytics and Visualization
- Log Data Apps
- Ad/Media Apps
- Vertical Apps

Big Data Landscape

Big Data in Healthcare

Big Data in *Healthcare* **is revolutionizing the Healthcare Paradigm**

Realization of Big data in Healthcare

- It is estimated that by 2015 average hospital will generate about 665TB of data
- Big data processing technique will be essential in Healthcare

http://www.dr4ward.com/dr4ward/2013/04/what-is-the-power-of-the-big-data-in-healthcare-infographic.html http://www.flickr.com/photos/ibm_media/8591808129/

- 3. http://www.govtech.com/infographics/Infographic-Big-Data-and-Your-Health.html
- 4. http://www.apcoforum.com/health-care-and-big-data/

1.

2.

Big Data Pools in Healthcare

Data Sources

- Pharmaceutical R&D Data
- Clinical Data
- Activity (Claims) and Cost Data
- Patient Behavior and Sentiment Data

Data pools

Pharmaceutical R&D data

- Owner: Pharmaceutical companies, academia
- Example datasets: clinical trials, high throughput screening (HTS) libraries

Integration of data pools required for major opportunities

Activity (claims) and cost data

- Owners: payors, providers
- Example datasets: utilization of care, cost estimates

Clinical data

- Owners: providers
- Example datasets: electronic medical records, medical images

Patient behavior and sentiment data

- Owners: various including consumer and stakeholders outside health care (e.g., retail, apparel)
- Example data sets: patient behaviors and preferences, retail purchase history, exercise data captured in running shoes

Goals of Big Data Analytics in Healthcare

- Take advantage of the massive amounts of data and provide right intervention to the right patient at the right time.
- Personalized care to the patient.
- Potentially benefit all the stakeholders (provider, payer, patient, and management) of a healthcare system

Big Data Challenges in Healthcare

- Inferring knowledge from complex heterogeneous patient sources.
- Understanding unstructured clinical notes in the right context.
- Efficiently handling large volumes of healthcare data and extracting potentially useful information.
- Analyzing healthcare big data is a computationally intensive task and combining with standard clinical data adds additional layers of complexity.
- Capturing the patient's behavioral data through several sensors; their various social interactions and communications.

Personalized Healthcare (pHealthcare)

Big Data in *Healthcare* enables personalized Healthcare

12

Definition of pHealthcare

• What is Personalized Healthcare?

Personalized Health Care is the **tailoring of health care to the individual characteristics of the patient**. These characteristics can include environment, social history, health history, family history, genetics, proteomics, and more.

Why pHealthcare?

• Why Personalized Healthcare?

Preventive and predictive for disease, consequently Improve patient's safety, quality and effectiveness of healthcare

PREDICT • PREVENT • PERSONALIZE • PARTICIPATE

• What Benefits?

Through improved science, *personalized healthcare* has great potential to improve quality and reduce overall costs of health promotion and care delivery.

Source: IBM, T-enabled personalized healthcare Improving the science of health promotion and care delivery

pHealthcare System in General

Current pHealthcare Systems

Limitations of Existing pHealthcare Systems

- Lack of an interoperable Healthcare Information Technology (HIT) environment for care delivery and research
- Prevalence of tightly coupled applications and data
- Inadequate data and knowledge standards
- Insufficient analytics capabilities due to lack of infrastructure support
- Absence of a clinical decision-making foundation

Proposed pHealthcare – Mining Minds (MM) Platform

Proposed Solutions	Approach
Interoperable HIT environment with data acquisition service	Data conformance and uniform representation
Layered infrastructure for providing loosely coupled applications	Data, Information, and Service Curation layers on the Cloud
Use of healthcare standards for data and knowledge creation and processing	Healthcare data (e.g., CDA, FHIR) and knowledge (e.g., MLM, SNOMED) standards
Utilizing Personalized Big Data in healthcare for analytics	Real-time data, information and knowledge management of heterogeneous resources
Clinical decision making by maintaining high quality service	Data driven and Expert driven knowledge creation and maintenance

18

Additional Considerations in MM Platform

- Prevention is better than treatment to reduce the healthcare cost efficiently
- Bad habits in our daily life cause the chronic diseases which are dominant factors to increase healthcare cost
- Provide monitoring and recommendation services by means of MM Platform to promote healthy habits

Focuses on MM Platform

 \bigcirc

- How to support pHealthcare?
- How to improve QoH?
- How to induce habituation service?

• Mining Minds: Read Mind & Change Habits

• Big Data Analytics

23

• Curation: Time, location and Situation

Concpt of Mining Minds Platform

26

Reference of Mining Minds Platform

Considering Factors in pHealthcare

Source: Little, L. and Briggs, P., "Ubiquitous Healthcare: Do we want it?" Proceedings of the 22nd British HCl Group Annual Conference on People and Computers: Culture, Creativity, Interaction-Volume 2, 2008

PERSONALIZED HEALTHCARE PLATFORM

pHealthcare (Mining Minds) Platform in a Nutshell

"Collection of innovative services, tools, and techniques, working collaboratively to investigate on human's daily-life routines data generated from heterogeneous resources, for personalized wellbeing and healthcare support"

Target Services

31

User Centric Approach for Personalized Service

32

Abstract View of Ming Minds Platform - Curation

33

Architecture of Mining Minds Platform

Data Curation Layer

35

Data Curation Component

- To predict the data stream on real-time
- To remove the noise from the large volume of data
- To preserve the heterogeneous data of diverse format

Data Representation and mapping

- Conformance of diverse unstructured data formats to ontological format
- Uniform ontological representation of data that is acquired from heterogeneous data sources
- Provide scalable data model and dynamic model selection based on input sources

Data Streaming and Communication

- To support streaming data retrieval on ontological data using improved caching mechanism
- To generate intermediate structured data
- To predict future requests based on itemset techniques

Information Curation Layer

High Level Context Awareness

 Context Modeling – find the abstract context from low-level activities and information 36

Behavior Modeling – model the user's behaviors in different contexts and scenarios

Low Level Context Awareness

- Acquisition collect, process sensory, social data
- Recognition Recognize different physical activities, location and emotional states of user
- **Fusion** Fuse decisions from different classifiers in the same category

Multimodal Data Layer

Service Curation Layer

Supporting Layer

Platform Workflow

마이닝 마인즈 플랫폼 개선

Original Architecture

Updated Architecture

Multimodal Data Source

개선된 플랫폼 구조

Gen./Pers. Recommendations Service Orchestrator Prediction Manager

Knowledge Curation Layer

Lifelog Ontology Personalized Prediction

Feedback Analysis

Analytics

Multimodal Data Source