
Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

UML Software Models

Taewoong Jeon

Jeon@korea.ac.kr

Dept. Computer Science, Korea University

May 3, 2014

Object-Oriented Software Modeling Using UML

Lecture Notes

mailto:Jeon@korea.ac.kr


Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 2

Overview

An objected-oriented system is modeled as a collection of discrete 

objects that interact to perform work that ultimately benefits an outside 

user.

The static structure defines the kinds of objects important to a system 

and to its implementation, as well as the relationships among the 

objects.

The dynamic behavior defines the history of objects over time and the 

communications among objects to accomplish goals.

The UML can be used to capture information about the static structure 

and dynamic behavior of a system.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 3

UML Concept Areas (1/6)

UML concepts and models can be grouped into the following concept 

areas:

• Static structure view

• Design view

• Deployment view

• Dynamic behavior view

• Model organization

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 4

UML Concept Areas (2/6)

Static View

Application concepts are modeled as classes, each of which 

describes discrete objects that hold information and communicate to 

implement behavior.

The information they hold is modeled as attributes.

The behavior they perform is modeled as operations.

Object-to-object relationships are modeled as associations among 

classes.

Several classes can share their common structure and behavior using 

generalization.

The static view is notated using class diagrams and its variants.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 5

UML Concept Areas (3/6)

Design View

UML models are meant for both logical analysis and designs intended 

for implementation. Certain constructs represent design items.

A structured classifier expands a class into its implementation as a 

collection of parts held together by connectors.

A class can encapsulate its internal structure behind externally 

visible ports.

A collaboration models a collection of objects that play roles within 

a transient context.

A component is a replaceable part of a system that conforms to 

and provides the realization of a set of interfaces.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 6

UML Concept Areas (4/6)

Deployment View

A node is a run-time computing resource that defines a location.

An artifact is a physical unit of information or behavior description in a 

computing system.

Artifacts are deployed on nodes.

An artifact can be a manifestation (i.e., an implementation) of a 

component.

The deployment view describes the configuration of nodes in a 

running system, and the arrangement of artifacts on them.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 7

UML Concept Areas (5/6)

Behavior View

There are three ways to model behavior:

The life history of one object as it interacts with the rest of the 

world (state machine view)

The communication patterns of a set of connected objects as they 

interact to implement behavior (interaction view)

The execution process of a computation as it passes through 

various activities (activity view)

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 8

UML Concept Areas (6/6)

Model Organization

In a large system, the modeling information must be divided into 

coherent pieces so that teams can work on different parts concurrently.

Packages are general-purpose hierarchical organizational units of 

UML models.

They can be used for storage, access control, configuration 

management, and constructing libraries that contain reusable 

model fragments.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 9

Vocabulary of UML 2
The UML

Things Relationships Diagrams

Structural Behavioral Grouping Annotational

Class

Active class

Interface

Component

Collaboration

Node

Activity

Interaction

State machine

Use case

Package

Model

Subsystem

Framework

Comment

Dependency

Association

Generalization

Class

Object

Composite Structure

Package

Component

Deployment

Activity

Interaction

State Machine

UseCase



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 10

Taxonomy of UML 2 Diagrams

[OMG11]

Structure

Diagram

Behavior

Diagram

UML Diagram

Class Diagram

Object Diagram

Composite Structure

Diagram

Package Diagram

Component Diagram

Deployment Diagram

Activity Diagram

Interaction Diagram

Use case Diagram

Sequence Diagram

Communication Diagram

Timing Diagram

State Machine

Diagram

Interaction Overview

Diagram

Collaboration Diagram

Internal Structure

Diagram



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 11

Use Case View (1/2)

The use case view models the functionality of a subject (e.g., a system) 

as perceived by outside agents, called actors, that interact with the 

subject from a particular viewpoint.

A use case is a unit of functionality expressed as a transaction among 

actors and the subject.

The purpose of the use case view is to list the actors and use cases 

and show which actors participate in each use case.

The behavior of use cases is expressed using dynamic views, 

particularly the interaction view.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 12

Use Case View (2/2)

[RJB05]

buy tickets

buy subscription

make charges

survey sales

Clerk

Credit card service

Supervisor

Kiosk

«include»

«include»

Box Office

A Use Case Diagram



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 13

Static View (1/4)

The elements of the static view of a model are concepts that are 

meaningful in an application, including all kinds of found in systems.

• Real-world concepts.

• Abstract concepts.

• Implementation concepts.

• Computer concepts.

For example, a ticket system for a theater has concepts such as tickets, 

reservations, subscription plans, seat assignment algorithms, 

interactive web pages for ordering, and archival data for redundancy.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 14

Static View (2/4)

The static view captures object structure.

An object-oriented system unifies data structure and behavioral 

features into a single object structure.

In the object-oriented perspective, data and behavior are closely 

related.

For example, a Ticket object carries data, such as its price, date of 

performance, and seat number, as well as operations on it, such as 

reserving itself or computing its price with a special discount.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 15

Static View (3/4)

The static view describes behavioral declarations, such as operations, 

as discrete things to be named, owned by classes, and invoked.

Their dynamic behavior is described by other views that describe the 

internal details of their dynamics.

These other views include the interaction view and the state machine 

view.

Dynamic views require the static view to describe the things that 

interact dynamically. The static view is the foundation on which the 

other views are built.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 16

Static View (4/4)

[RJB05]

Customer

name: String

phone: String

add(name, phone)

Reservation

date: Date

Subscription

Series

Individual

Reservation

Ticket

sell(c: Customer)

exchange()

available: Boolean

Show

name: String

Performance

date: Date

time: TimeOfDay
seat: String

1

*

owner

purchased

0..1 0..1

3..6

1

0..1 1

1

1..*

show

performances
{xor}

A Class Diagram



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 17

Design View (1/9)

The design view shows decisions about decomposition of a system into 

modular units with encapsulation boundaries and external interfaces.

Although the elements in the design view are more abstract than the 

final code, they do require knowledge of implementation trade-offs that 

will eventually be reflected in the code.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 18

Design View (2/9)

Complex systems require multiple levels of structure.

During early modeling, a class is defined by its external properties.

During design modeling, the internal design of a high-level class 

may be expanded into constituent parts.

A structured classifier is a classifier with internal parts that are 

connected within the context of the classifier.

The types of the internal parts may themselves be structured classifiers. 

Therefore the decomposition of the system can span several levels.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 19

Design View (3/9)

Collaborations (1/3)

In a design, independent objects often work together to perform 

operations and other behaviors.

A collaboration is a description of a group of objects than have a 

temporary relationships within the context of performing a behavior.

The connections among objects in a collaboration may include various 

kinds of transient relationships, such as parameters, variables, and 

derived relationships, as well as ordinary associations.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 20

Design View (4/9)

Collaborations (2/3)
[RJB05]

A Ticket in a TicketSale collaboration has a seller, something that is not 

relevant to a Ticket in general.

One person may be a buyer in one collaboration and a seller in another 

collaboration.

seller: Person buyer: Personticket: Ticket

TicketSale

network: TicketingNetwork

role name type role

connector



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 21

Design View (5/9)

Collaborations (3/3)
[OMG11]

Using an alternative notation, a line may be drawn from the collaboration icon 

to each symbols denoting classifiers that are the types of properties of the 

collaboration.

Person Person

Ticket

TicketSale

TicketingNetwork

role name

type

connector
seller buyer

ticketnetwork



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 22

Design View (6/9)

Components (1/4)

The design view shows the logical organization of the reusable pieces 

of the system into substitutable units, called components.

A component has a set of external interfaces and a hidden, internal 

implementation.

Components interact through interfaces so that dependencies on 

specific other components are avoided.

During implementation, any component that supports an interface can 

be substituted for it, allowing parts of a system to be developed without 

dependency on internal implementation.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 23

Design View (7/9)

Components (2/4)
[RJB05]

Camcorder

test signalTV in

mic in

private (hidden) port

NTSC TV signal

microphone level audio

line level audio

audio out[2]

digital: IEEE 1394

Firewire in Firewire out

set of ports

provided interfaces

required interfaces

external port with mixed interfaces

port type

External view of a component



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 24

Design View (8/9)

Components (3/4)
[RJB05]

: CreditCardCharges

CreditCardAgency

applyCharges

: Tickets

: TicketSeller : ManagerInterface

: KioskInterface : ClerkInterface

manage

customerAccess clientAccess

charge

purchase

status

subscriptionSales
individualSales

group

Sales

External view of 

a component



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 25

Design View (9/9)

Component Diagram (4/4)
[RJB05]

: CreditCardChargesapplyCharges : Tickets

: TicketSeller : ManagerInterface

: KioskInterface : ClerkInterface

manage

customerAccess clientAccess

charge purchase
status

subscriptionSales
individualSales

group

Sales

status

group

Sales

individual

SalesSubscription

Sales
subscriptionSales

individual

Sales

purchase
charge



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 26

Behavior View (1/2)

A variety of behavior specification mechanisms are supported by 

UML.

• Automata (state machines)

• Petri-net like graphs (activity diagrams)

• Partially-ordered sequences of event occurrences 

(interactions)

[OMG11]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 27

Behavior View (2/2)

The styles of behavioral specification differ in their expressive power 

and domain of applicability.

Further, they may specify behaviors explicitly, by describing the 

observable event occurrences resulting from the execution of 

the behavior,

or implicitly, by describing a machine that would induce these 

events.

The choice of specification mechanism is one of convenience and 

purpose; typically the same kind of behavior could be described by 

any of the different mechanisms.

[OMG11]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 28

State Machine View (1/2)

A state machine models the possible life histories of an object of a class.

A state machine contains states connected by transitions.

• Each state models a period of time during the life of an object 

which satisfies certain conditions.

• When an event occurs, it may cause the firing of a transition 

from the current state to a new state.

• When a transition fires, an effect (action or activity) attached to 

the transition may be executed.

State machines are shown as state machine diagrams.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 29

State Machine View (2/2)

State machines may be used to describe:

• reactive subsystems such as user interfaces and device 

controllers.

• passive objects that go through several qualitatively distinct 

phases during their lifetime, each of which has its own special 

behavior.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 30

State Machine Diagram

[RJB05]

subscribe / assign()

Available Locked Sold
accept / buy()

exchange(other) / assign(); reset(other)

timed out / unlock()

select / lock()

reject / unlock()

initial state

state

transition

trigger event event parameter effect



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 31

State Machine Containing a 

Sequential Decomposition of a State 

[RJB05]

identifyUser: Identity

Selecting
pick(seat) / add to selection(seat)

Confirming

Selling
entry / sell(seat)

Idle

/ reset selection

push “buy”push “resume”

push “confirm”

insert card

push “cancel”

initial state

normal exit

internal 

transition

entry activity

completion 

transition

activity

final state

submachine reference

event

completion 

transition

outer transition 

aborts internal 

activity

explicit exit

fail

Purchasing

exit / eject card



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 32

State Machine with Orthogonal 

Composite State
[RJB05]

Taking Class

Incomplete

Lab1 Lab2

TermProject

FinalTest

failed

lab done

project done

pass

fail

orthogonal state

initial state

(default entry)

state machine

explicit exit

final state

(default entry)

normal 

completion 

transition

final state of 

one region

orthogonal 

region
exit point

lab done



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 33

Activity View (1/2)

An activity shows the flow of control among the computational activities 

involved in performing a task or a workflow.

Activities are shown on activity diagrams.

• An action is a primitive computational step.

• An activity node is a group of actions or subactivities.

• An activity describes both sequential and concurrent 

computation.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 34

Activity View (2/2)

Activity diagrams may be used to model:

• the real-world workflows of a human organization.

• Software activities.

An activity diagram is helpful in understanding the high-level execution 

behavior of a system, without getting involved in the internal details of 

message passing required by a collaboration diagram.

The input and output parameters of an activity can be shown using flow 

relationships connecting the action and object nodes.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 35

Activity Diagram

[RJB05] Propose 

show

Buy scripts 

and music

Hire 

artists

[yes]

produce?

Publicize 

show

Sell tickets

Schedule show

Build 

sets

Design 

lighting

Make 

costumes

Rehearse

Dress 

rehearse

Perform

[no]

initial node decision

activity

fork

join

completion transition

activity final node



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 36

Activity Diagram with Partitions

Take Order

Accept

Payment

Ship Order

Send Invoice

Fill Order

Make

Payment

Invoice

Close Order

[order

accepted]

[order

rejected]

Place Order
Receive

Shipment

O
rd

e
rP

ro
c
e
s
s
o
r

C
u
s
to

m
e
r



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 37

Interaction View

The interaction view describes sequences of message exchanges 

among the parts of a system.

This view shows the flow of control across many objects.

An interaction is based on a structured classifier or a collaboration.

A role is a slot that may be filled by objects in a particular use of an 

interaction.

The interaction view is displayed in two diagrams focused on different 

aspects:

• sequence diagrams

• communication diagrams

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 38

Sequence Diagram (1/4)

A sequence diagram shows a set of messages arranged in time 

sequence.

Each role is shown as a lifeline – a vertical line that represents the 

role over time through the entire interaction.

Messages are shown as arrows between lifelines.

Structured control constructs such as loops, conditionals, and parallel 

execution are shown as nested rectangles with keywords and one or 

more regions.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 39

Sequence Diagram (2/4)

A sequence diagram can show a scenario – an individual history of a 

transaction.

A sequence diagram is often used to show the behavior sequence of a 

use case.

When the behavior is implemented, each message on a sequence 

diagram corresponds to an operation of a class or an event trigger on a 

transition in a state machine.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 40

Sequence Diagram (3/4)

[RJB05]

kiosk: Kiosk box office: Box Office
credit card service

: Credit Card Service

loop

request(count, performance)

show availability(seat list)

select(seats)

demand payment(cost)

insert card(card numbert)

charge(card number, cost)

lifeline

message

head symbol



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 41

Sequence Diagram (4/4)

[RJB05]

kiosk: Kiosk box office: Box Office
credit card service

: Credit Card Service

alt authorized

print tickets(performance, seats)

unauthorized

reject

eject card



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 42

Communication Diagram (1/3)

A communication diagram shows roles in an interaction as a geometric 

arrangement.

Each rectangle shows a role – a lifeline representing the life of an 

object over time.

The messages among objects playing roles are shown as arrows 

attached to connectors.

The sequence of messages is indicated by sequence numbers 

prepended to message descriptions.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 43

Communication Diagram (2/3)

One use of a communication diagram is to show the implementation of 

an operation.

A collaboration shows the parameters and local variables of the 

operation as roles, as well as more permanent associations.

When the behavior is implemented, the message sequencing on a 

communication diagram corresponds to the nested calling structure and 

signal passing of the program.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 44

Communication Diagram (3/3)

[RJB05]

ticketSeller

kiosk

performanceGuide

db: performanceDB[*]

Guide: DBCluster

1: request(count, performance)

4: offer(seat_list)

5: buy(seats)

8: confirm(seats, cost)

3: seat_list := lock(count)

6: claim(seats)

7: unlock(seat_count)

2: db := findDB(performance)
guide

db

connector bound to transient links

role bound to active objects

message

link

role bound to passive objects

connector bound to permanent links



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 45

Sequence Diagrams and 

Communication Diagrams

Both sequence diagrams and communication diagrams show 

interactions, but they emphasize different aspects.

A sequence diagram shows time sequence as a geometric 

dimension, but the relationships among roles are implicit.

A communication diagram shows the relationships among roles 

geometrically and relates messages to the connectors, but time 

sequence is less clear.

Each diagram should be used when its main aspect is the focus of 

attention.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 46

Deployment View (1/2)

A deployment diagram represents the deployment of run-time artifacts 

on nodes.

An artifact is a physical implementation unit such as a file.

A node is a run-time resource such as a computer, device, or 

memory.

An artifact may be a manifestation (implementation) of one or more 

components.

This view permits the consequences of distribution and resource 

allocation to be assessed.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 47

Deployment View (2/2)

Two different levels of deployment can be depicted using deployment 

diagrams: a descriptor level and an instance level.

Descriptor-level deployment diagrams show the kinds of nodes in 

the system and the kinds of artifacts they hold.

Instance-level diagrams show the individual nodes and their links in 

a particular configuration of the system.

In a descriptor-level diagram, an artifact type can be located on different 

kinds of nodes, and different artifact types can manifest the same kind 

of component.

In modeling the deployment of a system in different levels, the instance-

level information must be consistent with the descriptor-level 

information

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 48

Deployment Diagram

(Descriptor Level)
[RJB05]

Customer

TicketServer

«artifact»

CreditCardCharges.jar
«artifact»

ManagerInterface.jar

«artifact»

TicketSeller.jar
«artifact»

TicketDB.jar

«artifact»

CustomerInterface.c
«artifact»

ClerkInterface.c

KioskInterface ClerkInterface

Kiosk SalesTerminal

Clerk

CreditCardAgency

Manager

1

*

1

*
dependency

node

node

«manifest» «manifest»

communication association

actor

artifact



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 49

Deployment Diagram (Instance Level)

[RJB05]

Main St. kiosk: kiosk

headquarter: TicketServer

River St. box office: SalesTerminal Telesales office: SalesTerminal

Valley Mall kiosk: Kiosk

node instance

communication link

node name node type



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 50

Model Management View (1/3)

The model management view models the organization of the model 

itself.

A model comprises a set of packages that hold model elements, such 

as classes, state machines, and use cases.

Packages may contain other packages.

Packages are units for manipulating the contents of a model, as 

well as units for access control and configuration control.

Every model element is owned by one package or one other element.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 51

Model Management View (2/3)

A model is a complete description of a system at a given precision from 

one viewpoint.

There may be several models of a system from various viewpoints.

For example, an analysis model and a design model.

A model may be shown as a special kind of packages, but usually it is 

sufficient to show only the (ordinary) packages.

Model management information is usually shown on package diagrams, 

which are a variety of class diagram.

[RJB05]



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 52

Model Management View (3/3)

[RJB05]

Publicity

package

Scheduling

Planning

Customer

Records
Ticket Sales

Box Office

Ticket Records

Customer

Records
Ticket Sales

Box Office

Ticket Records

dependency



Taewoong Jeon, Korea UniversityObject-Oriented Software Modeling Using UML

5-03-2014 UML Software Models 53

References

[RJB05] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling 

Language Reference Manual, 2/e, Addison-Wesley, 2005

[OMG11] OMG, Unified Modeling Language (OMG UML) Superstructure, 

Version 2.4.1, OMG Document: formal/2011-08-06, 2011


