
1

Software in Robot : Software
Engineering Perspectives

Sooyong Park

Computer Science and Engineering
Sogang University

sypark@sogang.ac.kr

selab.sogang.ac.kr 2

Background

 The research field of Intelligent Service
Robots …
 Has become more and more popular over the last

years.

 Covers a wide range of applications from cleaning
robots to robotic assistance for disabled or elderly
people.

 Public Service Robot (PSR) systems have
been developed for indoor service tasks
at Korea Institute of Science and
Technology (KIST)
 PSR-1,

 PSR-2 and

 Jinny

selab.sogang.ac.kr 3

Background (cont.)

 The worldwide population of elderly
people is rapidly growing and is set
to become a major problem in the
future.
 This can lead to a huge market for

assistive robots.

 In this context, the intelligent
service robot for the elderly, called
T-Rot is under-developed at Center
for Intelligent Robotics (CIR).

selab.sogang.ac.kr 4

Background (cont.)

selab.sogang.ac.kr 5

Issues

 Complexity of Software in Robot
 More 10 groups consisting of more than 150

researchers and engineers from academia and
industry.

 9 years project that is divided into three stages.

 Dynamics in Environments and user’s
needs during run-time
 Changes in user needs

 Various home environments/resources

 Unexpected faults

selab.sogang.ac.kr 6

Challenges

 Software Engineering for
Development time

 Software Engineering for run-time

selab.sogang.ac.kr 7

New Software Engineering
Approach

Requirements

Analysis

Architecture &

Design
Implementation

Development Phase

Intention Decision Maker Reconfigurator

Runtime(Operation Phase)

Users’ new need

Observed Information

(by Monitor)

System instance

Natural Language

Requirements

selab.sogang.ac.kr 8

SE for Development Time :
Applying the COMET/UML

 COMET Software Life Cycle Model
• Use Case Model

• Use Case Description

• Static Model

• Dynamic Model

• Distributed Software Architecture

• Task Architecture

• Detailed S/W Design

selab.sogang.ac.kr 9

Requirements Modeling

Summary The Commander enters a
destination and the robot
system moves to the
destination.

Actor Commander

Preconditi
on

The robot system has the grid map
and the current position is
known

Descriptio
n

1. The use case begins when the
commander enters a
destination.

2. The system calculates an
optimal path to the destination.

3. The system commands the
wheel actuator to start moving
to the destination.

4. The wheel actuator notifies the
system that it has started
moving.

5. The system periodically reads
sensor data and calculates the
current position.

6. The system determines that it
arrives at the destination and
commands the wheel actuator
to stop.

7. The wheel actuator notifies the
system that it has stopped

Use Case Diagram

Use Case Description for Navigation

selab.sogang.ac.kr 10

Analysis Modeling
- Static Modeling

Robot Navigation System

context class diagram

Object structuring class diagram

for Robot Navigation System

selab.sogang.ac.kr 11

Analysis Modeling
- Dynamic Modeling

Collaboration diagram for

Navigation use case

Collaboration diagram for Obstacle

Avoidance use case

selab.sogang.ac.kr 12

Analysis Modeling
- Dynamic Modeling (cont.)

Statechart for Navigation Control

selab.sogang.ac.kr 13

Design Modeling

Consolidated collaboration diagram for

Navigation System

Collaboration diagram for

Obstacle Avoidance use case

Collaboration diagram for

Navigation use case
Merged

selab.sogang.ac.kr 14

Design Modeling (cont.)

Distributed Software Architecture

selab.sogang.ac.kr 15

Task Architecture for Navigation System

Consolidated collaboration

diagram for Navigation System

Design Modeling
- Task Structuring

selab.sogang.ac.kr 16

Design Modeling
- Detailed Software Design

Detailed software design for Navigation Controller

selab.sogang.ac.kr 17

Design Modeling
- Detailed Software Design (cont.)

 : CommandLineInterface : Navigation
Control

 : Navigation
Coordinator

 : Destination : Navigation
Map

 : Current
Position

 : Navigation
Path

 : WheelActuatorInterface : Navigation
Timer

 :
SensorInterface

1. startRobot(destination)

1.2. store(destination)

1.4. read(map)

1.6. read(sensorData, map, currentPosition)

1.1. processEvent(event, action)

1.3. processEvent(event, action)

1.5. processEvent(event, action)

1.7. processEvent(event, action)

1.8. update(sensorData, currentPosition, map)

1.9. processEvent(event, action)

1.10. read(destination, currentPosition, map, path)

1.11. processEvent(event, action)

1.12. start(path, started)

1.13. processEvent(event, action)
1.14. startTimer()

2. activate()

2.1. processEvent(event, action)
2.2. read(sensorData)

2.3. processEvent(event, action)
2.4. read(map)

2.5. processEvent(event, action)
2.6. read(sensorData, map, currentPosition)

2.7. processEvent(event, action)

2.8. check(currentPosition, yes/no)

2.10. update(sensorData, currentPosition, map)

2.9. processEvent(event, action)

2.12. read(destination, currentPosition, map, path)

2.11. processEvent(event, action)

2.13. processEvent(event, action)

2.14. move(path)

3. stop(stopped)

4. processEvent(event, action)

5. stopTimer()

if not desitniation

if destination

The task event diagram

for Navigation

Controller

selab.sogang.ac.kr 18

Lessons Learned

 UML for service robot domain
 UML was very useful for analyzing, designing and

modeling the service robot system
 Different research groups and development teams can

communicate among themselves and with others to
develop and integrate specific components by UML.

 Importance of systematic process/method
for service robot domain
 It is not possible to resolve the issues in integrating

and developing the robots without systematic
software development methods, particularly for service
robots.

 Applying the COMET/UML method led to developing an
effective service robot architecture, implementing
technical components based on the architecture, and
integrating these components systematically.

selab.sogang.ac.kr 19

Lessons Learned (cont.)

 Human communication
 Human communication to understand and

develop what is desired of the service robot is
likely to be more difficult than expected.

 Several things can be done to improve the
situation.

 It is very important that all engineers and
developers from different groups and teams
interact directly.

 A common medium or language such as UML is
critical.

 Guidelines about what notation to use, when to use
it, and how to use the notation systematically are
required.

 One day or half-day technical workshop is needed
when there is little domain knowledge and
experience.

selab.sogang.ac.kr 20

Lessons Learned (cont.)

 Customizing the COMET method
for service robot domain
 The layered strategy of the prior PSR

systems has been applied for designing
and modeling the T-Rot and was helpful in
arranging various hardware and software
modules.

 The task event diagrams were used for
the event sequencing logic instead of
pseudo code to improve understanding
and readability in the detailed software
design.

selab.sogang.ac.kr 21

Lessons Learned (cont.)

 Necessity of multi-aspect integration
method for service robot domain
 We focused on designing and modeling the

robot’s behavioral aspect.
 Planning and learning abilities have to also be

considered when designing and developing the
intelligent service robots.

 Task Manager has been in charge of these robotic
abilities.

 Different analysis and design methods are needed
for the task manager.
 To integrate these methods with COMET into a

multi-aspect integration method is required for
developing intelligent service robot software.

selab.sogang.ac.kr 22

Software engineering for run-
time

 We understood that SE for
development time is not enough to
handle run-time changes

 SW systems must become very
flexible enough to handle these
requirements => really “soft”
software is needed

selab.sogang.ac.kr 23

Why “Soft” Software is difficult ?

 Complexity

 Software is limited by the skill of the
human and not limited by the
strength of the raw materials

 Invisibility

 Hard to understand – Progress,
changes and its impacts

selab.sogang.ac.kr 24

Making software really soft – 1st

Generation

 Just do it !

 Programming focused development

 Development of computer program
not software

selab.sogang.ac.kr 25

Making software really soft – 2nd

Generation

 Reduction of complexity - Modularization
 Decomposition

 Software visualization
 Visualized software model

 Visualization of software development
activities
 Visible software process

 Software measurement

 Structured Method, OO method etc

selab.sogang.ac.kr 26

Making software really soft – 3rd
Generation

 소프트웨어를 아키텍쳐 기반으로 구성
(build by composition)

 소프트웨어 구성요소들의 교체가 가능
(Interface)

 소프트웨어 구성요소들의 재 구성이 가능
(Connector)

 소프트웨어 구성요소들 내부의 변화가 외부
에 영향을 미치지 않음(Component)

 CBD, Software Product line

selab.sogang.ac.kr 27

Making software really soft – 4th
Generation

 Run Time Softness

 소프트웨어 스스로 내/외부 변화를 인식

 소프트웨어 스스로 변화에 대한 대처 방안을
결정

 소프트웨어 스스로 구성요소들의 교체 및 재
구성 가능

 소프트웨어 스스로 자신의 행위를 검증 가능

Self-Managed Software

selab.sogang.ac.kr 28

Self-Managed Software

 “Self-managed software evaluates
its own behavior and changes
behavior when the evaluation
indicates that it is not
accomplishing what the software
is intended to do, or when better
functionality or performance is
possible.” (WOSS 2004)

selab.sogang.ac.kr 29

Run-Time Software Engineering
Activities

 Run-Time Requirements Analysis

 Observe the running system and abstract observed
behavior

 Analyze new environments or situation based on
original requirements

 Run-Time Design

 Determine the cause of constraint violation and choose
a repair strategy in terms of SW architecture

 Run-Time re-implementation

 Adapt new SW components or change the structure of
SW without violating run-time environment

 Run-Time Testing

 Continuously check design constraints via explicit run-
time models

selab.sogang.ac.kr 30

Our Approach

Monitoring

Decision
Making

Reconfigu-
ration

Brokering Learning

selab.sogang.ac.kr 31

SHAGE Framework

 SHAGE(Self-Healing, Adaptive, and
Growing SoftwarE) Framework
integrates following technologies
 Monitoring

 Brokering: Ontology(authoring relations
between environmental information and
architectural information)

 Decision & Learning: Case-Based Decision
Theory

 Reconfiguration: Slot-based architectural
style

selab.sogang.ac.kr 32

SHAGE Overall Architecture

selab.sogang.ac.kr 33

Architecture/Component Broker

<i1, s1>

…

A
 s

e
t o

f In
c
lin

a
tio

n
-
S
itu

a
tio

n
 P

a
irs

<i1, s2>

<in, sm>

Current Situation
(given by the
Task Manager)

…

A set of architecture configurations
(Abstract Level Architectures)

Candidate Set
(reduced by the
Architecture Broker)

selab.sogang.ac.kr 34

Architecture/Component Broker

 Role
 Searching abstract-level architecture

configurations related to the current
situation.

 Technology
 Ontological descriptions.

 Current Status
 It can only search in a small set of

configurations related to the navigation
subsystem.

 Rule-based search: it cannot relax rules.

selab.sogang.ac.kr 35

Decision Maker & Learner

…

A set of architecture configurations
(Abstract Level Architectures)

Candidate Set
(reduced by the
Architecture Broker)

Selected Concrete
Component
(Selected by the
Decision Maker)

Selected Architecture
Configuration
(Selected by the
Decision Maker)

selab.sogang.ac.kr 36

Decision Maker & Learner

 Role
 Select exactly one configuration and one

component for each slot from the
candidate set retrieved by the
architecture broker.

 Technology
 Case-Based Decision Theory

 Current Status
 It only carries out in limited scope.

 Limited search space: only in the
navigation subsystem.

 Limited learning time: few scenarios.

selab.sogang.ac.kr 37

Reconfigurator

Concrete Level

Abstract Level

Slot: MotionControl Slot: Coordinator Slot: Localizer

Slot: PathPlanner

Slot: MapBuilder

Slot: MotionControl Slot: Coordinator Slot: SLAM

Slot: PathPlanner

Slot: MotionControl Slot: Coordinator Slot: Localizer

Slot: PathPlanner

Slot: MapBuilder

A B C

D E

Slot: MotionControl Slot: Coordinator Slot: SLAM

Slot: PathPlanner

A.1 B F

G

C1 C1

C1 C1

C1 C2

C2

After ReconfigurationBefore Reconfiguration

selab.sogang.ac.kr 38

Reconfigurator

 Role

 Reconfiguring the current software architecture
dynamically.

 Technology

 Slot-based two-level software architectural style.

 Current Status

 It has reconfigured only the navigation subsystem.

 All configurations for the subsystem were verified in
the demonstration.

 It can manage components distributed in SBCs(Single
Board Computers) by RMI.

 It supports components implemented in Java and
C++(through JNI).

selab.sogang.ac.kr 39

Demonstration

selab.sogang.ac.kr 40

Research Issues

 Internal monitoring

 Ontology construction

 Learning speed

 Run-time measurement and
validation

 Componentization

 Domain Knowledge

selab.sogang.ac.kr 41

Conclusions

 Software in Robot is getting more important

 Software Engineering need to be applied not
only for development but run-time softness

 SHAGE Framework has been developed to
provide ‘self-managing capabilities’ to robot
software.

 The framework integrated ontology, decision
theory, and dynamic architecture and comprises

 Monitor

 Architecture/Component Broker

 Decision Maker & Learner

 Reconfigurator

