Intelligent Computing in Smart Reality

2012.05.

Sang-goo Lee School of Computer Science & Engineering SNU-SAMSUNG Joint Center for Intelligent Computing Seoul National University, Seoul, Korea sglee@snu.ac.kr

Gartner's IT Predictions

[Gartner IT Expo, 2011]

Cloud Computing

Cloud

- Web as a Programming Platform
- Elastic Computing: SaaS, PaaS, IaaS, ...
- Supercomputing for everyone & everything!

Smart Apps & Gadgets

Google

Google Goggles

Use pictures to search the web. > Watch a video

8

Data Explosion

- ▶ 1,800,000,000,000,000,000 Bytes (1.8ZB)
 - Digital data produced in 2011
 - $ary 1 E years = \sum V 44 in 2020$
 - Doubles every 1.5 years => X 44 in 2020

2020: 35.2 Zettabytes

Big

Data

Large Scale Bio-Network Inference

[DH Lee, 2012]

Big

Data

sentence (문장):	95,119,665,584
unigrams (홑 단어):	13,588,391
bigrams (두 단어 조합):	314,843,401
trigrams (세 단어 조합):	977,069,902
4-grams (네 단어 조합)	1,313,818,354
5-grams: (다섯 단어 조합)	: 1,176,470,663

Robots => Cloud-bots

Big Data Cloud

+

GENT COMPUTING

Social

Page 8

Mobile

Profit shares of eight mobile phone vendors

Smart Everything!

Sensors in Smartphones

- Multi-touch
- Accelerometer (aka motion sensor)
 - Acceleration in 3-axis, gravity
- Proximity sensor (InfraRed)
- Ambient light sensor
- A-GPS
- Camera
- Microphone
 - E.g. stethoscope
- Digital/electronic Compass
 - Magnetic sensor
- Three-axis Gyroscope
- Water sensor

More sensors to come!

Mobile

- Temperature, humidity
- Barometer
- Chemical sensors like smell
- Biomedical sensors
 - Apple has patents for an earbud
 - Blood oxygen, heat flux, body temperature, heart rate,...

Sensors & Actuators

- Open-source physical computing platform
 - sense and control more of the physical world
 - board + SW

Photograph by SparkFun Electronics. Used under the Creative Commons Attribution

Mobile

35,000,000,000 Smart Devices

... a world where *reality and cyberspace are tightly integrated* by billions of *sensing and control devices* that are capable of autonomous computation and communication, thereby, *empowering the reality with computational intelligence*.

Smart Reality Service Scenario

Infinitely many choices of contents, devices, services
Information overload, device overload, service overload

Context-Awareness in Smart Reality

- Ability to provide the right service through the right device at the right situation for the right person is essential in a successful implementation of smart reality.
- Challenges
 - Infinitely many contexts => a Long Tail problem
 - Must deal with abnormal, unexpected, extraordinary situations as well as the normal, expected, ordinary ones
 - Data integration and interoperability
 - Privacy!
 - New
 - No metrics, no testbeds, little or no logs available

What is Context-Awareness?

Intelligent Office

- Sense
- Recognize
- Decide
- Action

Augmented Reality

- Sense
- Recognize
- Decide
- Action

General components of the traditional recommendation process.

Content-based

Collaborative Filtering

Modeling Context for Recommendation (Multidimensional)

 $R: User \times Season \times VacationLocation \rightarrow Rating$

 $R: User \times Time \times Song \rightarrow Rating$

. . .

Fig. 2 Multidimensional model for the User \times Item \times Time recommendation space.

Incorporating Context into Recommender Systems

We need to do better!

Deal with higher-dimensional information

 It is not trivial to extend existing recommendation model to support multidimensional information space

Need more than '*Item* to User' recommendation

- Item to User in the context of Location and Mood
- User to User (Friend Recommendation)
- Item to Group of Users (Group Recommendation)
- Item to Item (Device Recommendation) in the context of User

Need to deal with sparsity problem

• As the number of dimensions increases, data becomes more sparse

Graph-based Data Model

- Graph is general and flexible
- Graph is good for dealing with heterogeneous information
- Exploiting indirect relationships among nodes is important
- Various graph ranking algorithms available

Goal: Ideal Situation

• Task: Michael에게 저녁식사를 위해 가장 적합한 레스토랑을 추천하기?

Page 25

Personalized PageRank

Random walk based relevance measure

- One of the most widely used methods in measuring relevance (distance) between two nodes
- Represents the relative importance of the nodes with respect to a start distribution.

Random Walk based Entity Ranking

Graph-based Approach that provides flexibility of recommendation

- Step 1 : Transform Implicit Feedback (log) data into Bipartite Graph
- Step 2 : Adapt Personalized PageRank and Rank Entities given a query

ACM ICUIMC 2011.

Sangkeun Lee, et al, Random Walk based Entity Ranking on Graph for Multidimensional Recommendation, *ACM RecSys 2011.* Sangkeun Lee, et al, Flexible Recommendation using Random Walks on Implicit Feedback Graph,

PathRank (Semantic PageRank)

Efficient Processing

- Computation of Personalized PageRank is expensive
 - Pre-computation
 - High pre-computation storage costs for large graphs
 - Cannot cope with new data
- Matrix multiplication via multi-way join
 - over MapReduce
- Runtime retrieval of top-k elements
 - Utilize shortest path algorithm
- Random walk semantics on RDB

	n_1	n_2	n_3		n_i
n_1		0.081	0.045		0.002
n_2	0.099		0.125		0.024
n_3	0.076	0.107			0.009
	:	:	:	·	:
n_i	0.015	0.019	0.038		

Personalized PageRank Table

secondary storage

Random Walk Operations on RDB

Random walks on database schema graph

: much smaller than instance-level graph

Random Walk Operations on RDB

Two phase process

- 1. Generate structured queries for the random walk
 - Interpret user's query semantics flexibly
 - Efficiently prune unpromising walk-paths
- 2. Evaluate the random walk queries on DBMS
 - Utilizing the power of database systems, such as, query processing and optimization
 - No need to alter/transform existing databases to graphs

J. Park and S.-g. Lee. Exploiting correlation to rank database query results, *DASFAA 2011*. J. Park and S.-g. Lee. Keyword search in relational databases. *Knowledge Information Systems*, 26(2), 2011.

Fast Retrieval of Top-k P-PageRank Elements

• •

CIC & Testbed

SNU Smart Reality Testbed

- A testbed implementing an open platform for Smart Reality
- A sandbox for various devices, apps and services
 - Real users, real data and real feedback
 - Integrated space of multiple devices and databases

A playing ground for Creative SW & Services Incubation (CSI) participants

Smart Reality Open Platform

기대효과

- ► Low-Risk & Low-Cost Test Environment
 - Controlled environment
 - Subscribed users
 - Readily available infrastructure
- Data-Driven Intelligence
 - Smartphone log data
 - Call: 0.25%
 - Text message: 0.44% => abundance of data to mine on
 - eMail: 0.75%
 - App usage: 13.15%
 - GPS & Other activities: 85.46%
- Network Effects of Smart Objects
 - More devices talking to one another => Value $\propto N^2$
- Crowd-Sourcing
 - Open platform for users/developers/vendors to freely add new services
- Standards
 - 다양한 스마트 서비스를 지원하기 위한 개발자 API
 - 다양한 스마트 서비스 사이의 데이터 전달을 위한 네트워크 프로토콜
 - 👝 다양한 스마트 서비스에서 발생하는 데이터 / 로그 통합 모델

• Cloud computing & security/privacy

4. Applied Research & Studies

- Automated social surveys
- Innovative services & applications

Social Implications

Intelligent Computing in Smart Reality

