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Web Search Engines

 A representative large-scale system, which handles billions of queries per day for a 

petabyte-scale database of tens of billions of Web pages [Dea09, Kun13, Nie10]

 Commercial Web Search engines (e.g., Google, Yahoo!)

 Being implemented based on a scalable distributed file system (DFS such as GFS, HDFS) 

using a large number of commodity PCs
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Functionality of NoSQL Systems

 Distributed file systems (DFS), key-value stores (so-called “NoSQL” systems) 

 They have very simple and primitive functionality

 They do not provide database functionality such as SQL, schemas, indexes, or query 

optimization

 Developers need to implement high-level functionality by using low-level primitive 

functions

 Parallel processing frameworks such as MapReduce and  Hadoop

 They are known to be suitable for performing extract-transform-load (ETL) tasks or 

complex data analysis

 But, they are not suitable for query processing on large-scale data because they are 

designed for batch processing and scanning of the whole data [Sto10]

 Commercial search engines use them primarily for data loading or indexing instead of 

query processing
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High-level Functionality

 High-level functionality such as SQL, schemas, or indexes that are provided by the 

DBMS allows developers to implement queries that are used in search engines 

easily

 providing a higher expressive power than primitive functions in key-value stores

 facilitating easy (and much less error-prone) application development and maintenance

 Thus, there have been a lot of research efforts to support SQL even in NoSQL systems (e.g., 

Pig[Ols08], Hive[Thu09])
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Advantage of High-Level Functionality in a 

Search Engine

 Example schemas and SQL statements

 Typical Queries:

Query (b): Find the Web pages that contain the word “Obama” 

Query (c) (d): Find the Web pages that contain the word “Obama” from the site having siteID = 6000

2013. 6  KAIST

(a) pageInfo relation. (c) SQL statement for site-limited search.

(b) SQL statement for keyword search

(d) An optimized version of SQL statement for site-limited search.

pageId integer Page identifier

siteId integer Site identifier

siteIdText text Site identifier

title text Page title

URL varchar Page URL

content text Page content

Attribute 
Name

Attribute 
Type

Description SELECT p.pageId
FROM pageInfo p
WHERE MATCH(p.content, “Obama”)>0;

SELECT p.pageId
FROM pageInfo p
WHERE MATCH(p.content, “Obama”)>0 
AND p.siteId = 6000;

SELECT p.pageId

FROM pageInfo p

WHERE MATCH(p.content, “Obama”)>0 AND MATCH(p.siteIdText, “6000”)>0;

Note: Queries (c) and (d), which are a site-limited search, represent a DB-IR integrated query
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 Advanced search with multiple search fields ― an on-line discussion board

2013. 6  KAIST

SELECT p.pageId

FROM pageInfo p

WHERE MATCH(p.title, “database”) > 0 

AND MATCH(p.content, “index”) > 0 

AND MATCH(p.communityIdtext, “3”) > 0 

AND p.reg_date>=“2001-01-01”;           

(a) Advanced search with multiple fields.

(b) An SQL statement for an advanced 

search using attribute embedding.

Community-limited search

Limited search: Search only within Linux community

Title+Content

Title

Content

Writer

database

index

AND

AND

2001-01-01 tofromDates
(ex: from 2002-01-25 to 2002-01-30)

Note: Query (b) represents a DB-IR integrated query
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Site-limited Search

 Limiting the scope of a query to the set of web pages collected from a specific site

 Requiring DB-IR integration

 Having both keyword and attribute conditions

 Example: Find the web pages that contain the keyword “Obama” from www.whitehouse.gov

Site 1

Site 2

Site n

search

search

search

database

server

a keyword condition 

on text data

an attribute condition 

on structured data
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 Naïve Implementation

 To find the record of the web page containing the word “Obama”

 To access the records and select those whose siteId = 6000

⇒ Very bad in performance

(Records are scattered all over the database causing excessive random accesses) 

 Solutions

 DB-IR tight integration

2013. 6  KAIST
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Parallel DBMSs

 Parallel DBMSs could be considered an alternative to a large-scale search engine

 having rich functionality such as SQL, schemas, indexes, and query optimization

 providing parallel processing capability

 having higher scalability and performance than traditional single node DBMSs

 Stonebreaker et al.[Sto10] argue that parallel DBMSs

 are (linearly) scalable to handle large-scale data and query loads

 can easily service multiple users for database systems with multi-petabytes of data

 However, parallel DBMSs have been considered as not having enough performance 

and scalability to be used as a large-scale search engine [Abo09, Dea04], one 

outstanding reason being the lack of efficient information retrieval (IR) 

functionality

2013. 6  KAIST
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Our Contributions

 We show that we can construct a commercial-level massively-parallel search engine 

using a parallel DBMS, which to date has not be considered practical

 Shared-nothing architecture with masters and slaves

 Commercial-level scalability and efficiency by using a DB-IR tight-integrated DBMS

 Higher-level functionality including SQL, schemas, and indexes

 Each slave (DBMS) being capable of indexing 1 million Web pages

 We propose an analytic and experimental performance model (simply, a hybrid 

model) that estimates the performance of the proposed architecture and validate the 

accuracy of the model

 Analytic (queuing) model : for estimating the master and network time (3.57 ~ 7.72%)

 Experimental model : for estimating the slave max time (92.28 ~ 96.43%)

We argue that this model can accurately estimate the performance of a massively-parallel 

search engine using the experimental results obtained from a small-scale one

The hybrid model is helpful in realistically estimating the performance of a system by 

using limited resources without actually building a large-scale system

2013. 6  KAIST



11Copyright ©  2013 Kyu-Young Whang et al.

 By using the performance model, we demonstrate that the proposed architecture is 

capable of handling commercial-level data and query loads with a rather small 

number of machines

 The proposed architecture is expected to handle 1 billion queries/day (81 queries/sec) for 

30 billion Web pages with an average query response time of 

 194 ms with 43,472 nodes

 148 ms with 86,944 nodes

2013. 6  KAIST
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DB-IR Integration

 Integration of DBMS with IR features has been studied actively as the need of 

handling unstructured data (e.g., text) as well as structured data is rapidly increasing

 DB and IR have been parallel universes [Cha05][Wei07]

 But, many recent applications require integration of structured data and text data 

(e.g., CRM, E-commerce, etc.) [Wei07]

 It is preferable to support new data types (e.g., text) as the “first-class citizens” within the 

DBMS architecture [Lowell Report 2003]

2013. 6  KAIST

Database Systems Information Retrieval

Canonical application business/accounting libraries

Data type structured data         
(numbers, short strings)

unstructured data 
(text documents)

Foundation algebra / logic probability / statistics

Search paradigm exact queries, sets/bags of 
results

vague queries, (ranked) lists 
of results
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An Example: Digital Library

 Find papers about “spatial join” that are published after “1995”

title authors abstract publication_year

Spatial Join
Processing Using 
Corner 
Transformation

Song, J., 
Whang, K., 
Lee, Y., and 
Kim, S.

Spatial join finds pairs of spatial objects 
having a specific spatial relationship in 
spatial database systems. …

1999

… … … …

Papers

SELECT        *

FROM           Papers

WHERE       ( Match(title, “spatial join”) > 0 OR 

Match(abstract, “spatial join”) > 0) AND

publication_year > 1995;

query on text data

query on structured data

2013. 6  KAIST
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Possible Approaches [Wha05]

 Loose-Coupling Architecture 

 Provides IR features as user defined types and functions outside of the DBMS engine 

(e.g., Oracle Cartridge and IBM Extender)

 Poor performance: access paths are long; concurrency control and recovery in fine 

granularity are hard to perform;

 Tight-Coupling Architecture ← our approach

 IR features are implemented directly into the core of the DBMS engine (e.g., 

Odysseus [Wha02, Wha05, Wha13] and MySQL[Len04]) †

 Good performance: access paths are short; concurrency control and recovery can be 

done in fine granularity; no extra inter-process communication overhead is incurred 

 Tight coupling method is appropriate for a large-scale system to efficiently handle a 

large amount of data and high query loads 

2013. 6  KAIST
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Structure of the IR Index 

(U.S. Patented, 2002) [Wha02]

 IR index is (automatically) constructed for a column having the text type, consisting of

 B+-tree index: for keywords, each keyword pointing to a posting list

 Posting list: # of postings + postings for the keyword

 Posting: document identifier (docID) + location information where the keyword appears (offset)

 Sub-index

 Sub-index

− To index postings in each posting list

− To allow quick finding of the location of a specific posting having a given docID within a 

posting list

− To allow posting skipping and fast query processing

2013. 6  KAIST
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Implementation of the IR Index

 IR index: created as a relation for each attribute of the TEXT type 

(the relation’s name is “<table name>_<attr name>_Inverted”)

Example: pageInfo relation

siteId
(integer)

content
(text)

pageInfo_content_Inverted

keyword reverseKeyword nPostings postingList

B+-tree B+-tree

Subindex

Subindex

large object

IR index is created

Reversed strings 
need not be stored. 
This field does not 

contain a value.

title
(text)

URL
(varchar)

pageInfo_title_Inverted
2013. 6  KAIST
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Compression of the IR index

 Compression: done primarily on the posting lists of the IR index

 Compression ratio: approximately 60%

 The posting lists are compressed to 44% of their original size, but the subindexes are not 

compressed; thus, the overall compression ratio is 60%

 Query performance: improved by approximately 20%

 Reduced disk I/O’s due to compressed IR index

2013. 6  KAIST
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DB-IR Query Processing Using the IR Index

 IR Index Join [Wha03][Guo03][Hal03][Wha05]

 Supporting fast query processing for multiple-keyword queries

 Nontext attributes are redundantly stored as text attributes as well

 Posting Skipping: an optimization technique for IR Index Join

 Using subindexes, the exact parts of posting lists that need to be merged can be 

identified

2013. 6  KAIST
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 Attribute Embedding [Wha03][Wha05]

 Attribute Embedding: other attribute values of the record are embedded in the postings of 

another attribute

 DB-IR integrated queries can be efficiently processed by embedding attribute values of the 

structured data in the postings of a text attribute

 Attribute embedding can be specified through schema definition

 Example: Create Table pageInfo (siteID integer, content text(embedded_attributes(siteID)), …); 

Note: siteID (of type integer) is embedded in the postings of the attribute content (of type text)

2013. 6  KAIST
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Odysseus Object-Relational DBMS [WLL+05]

 Being developed at KAIST for over 23 years

 An earlier version of this technology played a vital role in starting up  NaverCom Co. 

(currently, NHN Co.)  (Founding CEO: Haejin Lee) in 1997-2000, which is the number one 

portal in Korea

 Winning the Best Demonstration Award at the IEEE 21st Int’l Conf. on Data Engineering 

(ICDE), Tokyo, Japan, Apr. 5-8, 2005  

 Tightly coupling IR (U.S. patented) features as well as spatial database features

 Being a DBMS and, at the same time, a search engine
 Providing concurrency control and recovery (coarse granularity and fine granularity)
 Providing IR performance comparable to or better than those of commercial search engines
 Indexing up to 100 million web pages per node
 Allowing immediate updates

 Being a DBMS and, at the same time, a GIS engine

 Having many commercial applications

 Consisting of approximately 450,000 lines of C/C++  (high precision) codes

2013. 6  KAIST
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 한국공학상 (2012. 12): 대통령상/교과부/한국과학재단

 2006년 우수연구성과 50선 (2006. 8): 한국과학재단

 한국의 대표적 기초연구성과 30선 (2005.10): 한국과학재단

 제 15회 과학기술우수논문상 (2005.5): 한국과학기술단체총연합회

 최우수 시스템시연 논문상 (2005.4): IEEE Int’l Conf. on Data Engineering

 20세기 100대 기술상 (1999.12) : 과학기술부/서울경제신문

 정보문화상 기술상 (1999. 6): 정보통신부/한국정보문화센터

 이달의 과학자상 (1998. 5): 과학기술부/한국과학재단

 멀티미디어인상 기술 대상 (1997): 한국멀티미디어협회
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Example1: A DBMS and, at the same time, a search engine

<ODYS, a Large-Scale Parallel Search 

Engine, powered by ODYSSEUS>

<KAIST Digital Library Search Engine

(1998 ~ 2004) >
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Example2: A DBMS and, at the same time, a GIS engine (a spatial DBMS)

<A Geographical Information System(GIS) Implemented Using ODYSSEUS>

2013. 6  KAIST
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 Architecture of Odysseus

 Client/server architecture

 The Odysseus server consists of 

Odysseus/COSMOS : a storage system 

Odysseus/OOSQL    : a query processor

Odysseus client

Network

2013. 6  KAIST
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Performance Comparisons with DBMSs

 Setting: a SUN Blade 2000 workstation(900MHz CPU), a T3+ disk array

 DBMSs: Odysseus (tight-coupling architecture), 
DBMS A: a widely-used DBMS (loose-coupling architecture)

 Data: 15 million web pages (approximately 60 GBytes)

 Schema: siteIdText, title, content 1) attributes are of type ‘text’;
other attributes are of type integer or varchar

1) The size of content is limited to 8 KBytes.
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Results for Single-Keyword Queries

 Odysseus outperforms DBMS A by 47.3~133.6 times at cold start and by 4.0~21.6 times at 

warm start

 This result demonstrates the superiority of the tight-coupling architecture over the loose-

coupling architecture
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Results for Multiple-Keyword Queries

 Odysseus outperforms DBMS A by 13.2~24.8 times at cold start and by 1.4~2.1 

times at warm start

(a) Cold Start
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Results for Site-limited Search

 Odysseus-Join (IR index join) and Odysseus-Embedding (attribute embedding)

 Both methods significantly outperform DBMS A

(a) Cold Start
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ODYS Search Engine

 A massively-parallel search engine using a DB-IR tightly-integrated parallel DBMS

 Efficiency

 DB-IR tight integration

 Scalability

 Shared-nothing architecture
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 High-level functionality

 SQL (especially, DB-IR integrated queries)

 Easy implementation of query interfaces by translating keyword queries into SQL 

queries

 Selection, aggregation, limited join (where only one table is partitioned), etc.

 Schemas

 Activation of advanced query processing methods (i.e., attribute embedding or IR 

index join) by controlling the schema

 Indexes

 B+-tree indexes for structured data and IR indexes for unstructured data (i.e., text)

 Limited transactions/consistency

 Updates in a single machine with ACIDity

 Good enough for large-scale applications such as on-line discussion (bulletin) boards 

or other SNS applications
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Architecture
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ODYS Parallel-IR Master

. . .
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. . . . . .

Slave
1+
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1)-(nh

Slave
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. . .Disk1 Diskw

Odysseus 
DBMS

Shared buffer

. . .
Odysseus 

DBMS

Parent

Child
(async. calls)

Hub1 Hubnh

. . .
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 Masters (ODYS Parallel-IR Master) † 

 Storing metadata(catalogs) such as global database schema, slaves’ IP addresses, and 

slaves’ database paths (i.e., the location of the disk device storing each slave database)

 Slaves (Odysseus Object-Relational DBMS) ‡

 Shared-nothing architecture

 Storing crawled Web pages and their IR indexes in a disk array

 Entire set of Web pages is partitioned horizontally (i.e., by documents)

 Network †‡

 The master and the slaves are connected by a gigabit network hub, and they communicate 

by using an asynchronous remote procedure call (RPC)

† The ODYS Parallel-IR Master consists of 58,000 lines of C and C++ code

‡ The Odysseus DBMS (slave) consists of 450,000 lines of C and C++ code

†‡ We use socket-based RPC consisting of 17,000 lines of C, C++, and Python code developed by the authors

2013. 6  KAIST
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Map of ODYS and 

Other Parallel Processing Systems

2013. 6  KAIST

To be 
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Performance Model – an Outline

 Hybrid (i.e., analytic and experimental) performance model

 Analytic: master and network (Master CPUs, master memory buses, and network hubs)

 We estimate the processing time of each component by using a queuing model

 Even if the estimation error were sizable, it could not affect the overall performance in 

a significant way since the overall performance largely depends on the performance of 

the slave time (i.e., 92.28% ~ 96.43%)

 Experimental : slave (slave CPUs, slave memory buses, and slave disk I/O)

− They work in parallel, and the overall slave time is bounded by the maximum slave 

time

− We estimate the processing time of the slaves by using an experimental (quasi 

measured) method; we call it the partitioning method

− We measure the processing time of slaves at semi-cold start to obtain a lower-

bounding performance

− We can be assured that the estimated performance of slaves is very close to the actual 

measurement since the estimation is directly derived from the measurement 

 Our performance model using a small-scale (e.g., 5-node) reference system is 

expected to quite accurately predict the performance of a large-scale (e.g., 300-node) 

system
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 Semi-cold start

 A query is executed in the circumstance where the internal nodes of the IR indexes (which 

normally fit in main memory) are resident in main memory while the leaf nodes (which 

normally are larger than available main memory), posting lists, and the data (i.e., crawled 

Web pages) are resident in disk

 We use a buffer of  only 12 Mbytes sufficient for containing the internal nodes (occupying 

11.5 Mbytes) of the IR index for each slave

 Typical commercial search engines process queries at warm start by storing the entire (or a 

large part of) indexes and data in a massive-scale main memory. This helps significantly 

reduce the query response time

2013. 6  KAIST
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Validation of Performance Model

 Estimation: Using a reference system (1 master, 5 slaves), we build the  

performance estimation model

 Master and network (by an analytic queuing model)

 Measure the parameters of the model with a 1-slave (1 master, 1 slave) system at a slowest speed 

(< 1million queries/day)

 Slave (by an experimental model)

 Measure slave max time with the reference system

 1 master, 5 slaves (5 slaves ×60 times = 300 data points)

 Estimate slave max time for an 1 to 10-slave system by 

the partitioning method

 Experiments: Using a 1 to 10-slave system (1 master, 

1 to 10 slaves), we obtain experimental results and 

compare them with the estimated results

 Measure the total query response time: (a)

 Measure slave max time: (b)

 Calculate master and network time: (a) − (b)

2013. 6  KAIST
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Query Model

 We use three types of search conditions: single-keyword query, multiple-keyword 

query, and limited-search query

 We consider top-10, top-50, and top-1000 queries

 Query load normalization

 To simplify the queuing model, we normalize a query of a specific type into one 

equivalent query type: the single-keyword top-10 query (unit query)

 Example (for master CPU):

1 single-keyword top-1000 query = 1.79 single-keyword top-10 queries

2013. 6  KAIST
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 We calculate the weight for each type of queries for each system component C (i.e., 

master CPU, master memory bus, and network) from the measurement

 We obtain a weighted arrival rate (λ’) of queries for a system component C using a 

given query mix and the weights of query types

 Example: System component C = master CPU

< System component C time (ms) > < Weights of query types wc(k)>

< Query mix qmr(sct, k)>

k
Top-10 Top-50 Top-1000

All query types 25.014 25.536 44.740

k
Top-10 Top-50 Top-1000

All query types
1.0 

query
1.02 

queries
1.79

queries

search 

condition

search 

condition

k Top-10 
(45%)

Top-50 
(45%)

Top-1000 
(10%)

Single keyword 
(98%)

44.1% 44.1% 9.8%

Multiple 
keyword (1%)

0.45% 0.45% 0.1%

Limited search 
(1%)

0.45% 0.45% 0.1%

search 

condition

1.088     

 ),( )(

 types-top typescondition search 
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 Arrival rate (λ)

Queuing Model (Master + Network)

Master CPU
Master main 

memory bus
Hub (network)

nmncm

λ′

λ: the weighted arrival rate of queries

nm: the number of master nodes

ncm: the number of CPUs per master

nh: the number of network hubsλ
nh

ns
′

. . .
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Network1
λ

λ

. . .

. . .

Networknh
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ns
Slave

Slavens

. . .

Master1λ
nh
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. . .
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. . .

nm

λ′

λ

Masternm

nm



nm



Master1

CPU1
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Model Parameters Measured

 Parameters of the queuing model measured
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Parameters Values

Master CPU

Tparent-proc
1.516 ms

Tchild-proc 0.0081 ms

Tmaster-RPC(k)
0.01 ms, k = 10

0.011 ms, k = 50

0.031 ms, k = 1000

tcomparison 0.191 𝜇𝑠

tbase 0.28 𝜇𝑠

tper-context-switch 2.105 𝜇𝑠

ncsbase(k)
56.490, k = 10, 50

97.728, k = 1000

ncsper-slave(k)
1.917, k = 10, 50

3.316, k = 1000

Network STnetwork(k)
0.129 ms, k = 10

0.222 ms, k = 50

0.318 ms, k = 1000
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 Measurement of various components of master time

k: the number of records retrieved for a top-k query (10, 50, 1000)

ns: the number of slave nodes

† We measure the total time for a top-10 single keyword query in each module and subtract time consumed by other modules

Tparent-proc = A – B

Tchild-proc   = B – C

Tmaster-RPC  = master-CPU time of C ‡

‡ See master-CPU time (M) of page 30 for the measurement

†‡   Comparison time

‡‡   Initial cost to merge (read stream, copy the result, etc. )

†‡‡ Initial number of context switches

‡‡‡ Number of context switches per slave

†
516.1 msT

procparent


-

†

-
0081.0 msT

procchild


















1000 k  0.031ms,

50 k  0.011ms,

10 k  ms, 0.01

)(
-

kT
RPCmaster

‡

  

stst

ttnsknskT

basencomparisio

basencomparisiomerge

 28.0,191.0

)(log),(
‡‡‡†
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module Slave

...CBA
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)(
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105.2

))(()(),(
‡‡‡‡‡†

k

k
kncs

k

k
kncs

st

kncsnskncstnskT

slaveperbase

switchcontextper

slaveperbaseswitchcontextperswitchcontext



2013. 6  KAIST



42Copyright ©  2013 Kyu-Young Whang et al.

 Measurement of the network transfer time of query results

Master node

Slave node

Master-CPU time 

excluding data transfer time

Slave-CPU time

excluding data transfer time

CPU time of OS

CPU time of OS

We assume

1. Network and OS work in parallel

2. CPU time of OS is the same in the master and in the slave, i.e.,

Network time = (C – M – S) + 2O

- C  is obtained as (end time – start time) of the RPC call at the master.

- M, S are measured at the master, slave, respectively while the program 

that connects and transfers data to the slave is running on the master.

- M – O is obtained by removing data transfer part from the program.

(M, S, M – O are measured using the ‘time’ facility, which can measure 

the total CPU time that a process spent in the kernel mode or user mode.) 

Master-CPU

time

Slave-CPU

time

C

S

O

M

the total time of 

a socket-based 

RPC call

O

Network

Network transfer time

Communication Model
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Service Time of System Component

ST : service time (we assume that the each module’s service time for a query is fixed)

ns: the number of slave nodes

α: the proportion of the master CPU time in the master time (α ≤ 1)

† See the network transfer time in p.45 for the measurement

),(+),(+×))(+(+=),(
----

nskTnskTnskTTTnskST
switchcontextmergeRPCmasterprocchildprocparentmaster

†

1000,318.0

50,222.0

10,129.0

)(

















kms

kms

kms

kST
network




 ),(),( nskSTnskST
masterCPUmaster

)1( ),(),( 


nskSTnskST
masterbusmemorymaster

(4)

(5)

(6)

(7)
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Average Number of Customers in the System

L: average number of customers in the system

λ: the arrival rate of queries              λ’: the weighted arrival rate of queries

nm: the number of master nodes       ncm: the number of CPUs per master

ns: the number of slave nodes nh: the number of network hubs

][E
])[E 1(2

][E 
) ,(

22

ST
ST

ST
STL 




 




  ),10(),,(),,( nskSTnmLnsnmL
busmemorymasterbusmemorymasterbusmemorymaster






 )10(),,,(),,(  kSTnhnsLnhnsL
networknetworknetwork



  ),10(),,,(),,,(
---

nskSTncmnmLnsncmnmL
CPUmasterCPUmasterCPUmaster

  (8)

(9)

(10)
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Expected Total Query Response Time

sct: search condition type (single keyword, multiple keyword, limited search)

k: the number of records retrieved for a top-k query (10, 50, 1000)

λ: the arrival rate of queries

nm: the number of master nodes      ncm: the number of CPUs per master

ns: the number of slave nodes          nh: the number of network hubs 
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)(
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),,(

),( 
) ,(

), ,(
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max                       

),,,,,,(

max

‡

†
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XE 

† We assume that a master’s I/O bus speed is fast enough to handle multiple LAN cards and each LAN card has a receive buffer

X: sojourn time in the system, i.e., the total 

time a customer spends in the system

(waiting time + service time)

λ: the arrival rate

L: average number of customers in the system

(12)

Measure of the Accuracy for the Performance Model
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𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑞𝑢𝑒𝑟𝑦

−
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑞𝑢𝑒𝑟𝑦

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑞𝑢𝑒𝑟𝑦
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‡ Max of master time and network transfer time since the two are processed in parallel

Master

Slave1

Slavens

. . .

. . . . . .

. . .
Network hub

Case 1: (m ≤ nt)

Network hub

Case 2: (m > nt)
. . .

m1 m2 mns

nt1 nt2 ntns

nt1 nt2 ntns

s1

s2

sns
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Experimenal Model (Slave Max Time)

Algorithm Partitioning_Method for estimating the Slave Max Time:

Input: (1) Q: the query set,

(2) r: the number of repetitions of the query set execution

(3) np: the number of slaves of the reference system

(4) ns: the number of slaves of the target system

Output: The estimated slave max time for each query in Q

Algorithm:

Step1.  Generate a sequence of slave sojourn times for each query:

1.1 Execute Q for r times at semi-cold start by using the np-node system and measure the slave sojourn times.

1.2 For the ith query in Q, make a sequence of the slave sojourn times as < ti,1,1, ti,1,2, …, ti,1,m, ti,2,1, …, ti,2,m, …, 

ti,r,1, …, ti,r,np >, where ti,p,q is the slave sojourn time for the ith query in the pth repetition at the qth slave.

Step2.  Estimate the average slave max time for ns slaves: 

For each sequence obtained in Step1,

2.1 Partition the sequence into segments of size ns.

2.2 Find the maximum value per segment and average those values.

(slave1-slave2-…-slave np)-(slave1-slave2-…-slave np)- … -(slave1-slave2-…-slave np)

1st repetition 2nd repetition rth repetition
……

segment 1 of size ns segment 2 of size ns

Step1(ref. sys):

Step2(target sys):
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Experiments

 Query Generation for Measurement

 Generating 10,000 random queries at a rate of  1~24 million queries/day/set according to 

the specified query mix

 Query generation: Poisson arrival

 Query sets

 Single top-10

 Query-mix
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 Experimental setting

 Master
 one Linux machine (one Quad-Core 3.0GHz CPUs, 6GB RAM)

 Slaves
 four Linux machines (two Dual-Core 3.0GHz CPUs, 4GB RAM)

 one Linux machine (one Quad-Core 2.5GHz CPU, 4GB RAM)

 five Linux machines (one Quad-Core 2.4GHz CPU, 8GB RAM)

 four disk arrays (AS-2400~AS-2500, 0.9TB~3.9TB, RAID5, 200MB/s bandwidth, 512MB~1GB 

cache, average 59.5 MB/s disk transfer rate, 13 disks (arms) + 1 parity disk + 1 hot spare )

 one disk array (TN-6416S, 13TB, RAID5, 4Gbit/s bandwidth, 512MB cache, average 83.3MB/s 

disk transfer rate, 13 disks (arms) + 1 parity disk) 

 five internal disk arrays (B110i, 5TB, 768MB/s bandwidth, 81.2MB/s disk transfer rate, 10 disk 

(arms) + 1 parity disk)

 Network
 eleven gigabit LAN cards(Intel 82574L dual-port(1), Intel 82541GI single-port(5), HP NC326i 

dual-port(5))

 a gigabit hub (HP 1410-24G, 1000Mbps, 24port)

 Data
 228 million web documents each of 16 KBytes

 Each slave indexes 22.8 million web documents (Note: A slave is capable of indexing 100 million 

documents)
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Accuracy of the Performance Model 

 The estimated and experimental results of the ten-node system (ns=10) as the query 

arrival rate is varied.

2013. 6  KAIST

 Maximum estimation error of the 

average total query response time

− SINGLE-10-ONLY: 1.77%

− QUERY-MIX: 2.13%

 The maximum estimation error of 

the average master and network 

time (i.e., the part modeled by the 

queuing model)

− SINGLE-10-ONLY: 6.29%

− QUERY-MIX: 10.15%†

† For sensitivity analysis, we have tested a different query mix having 20% of top-1000 queries obtaining a 

similar result where the maximum estimation error was 8.64%
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 The estimated and experimental results of the ten-node system (ns=10) as the 

number of slaves is varied

2013. 6  KAIST

 Maximum estimation error of the 

average total query response time is 

2.13% when the number of slaves ≥ 5

 Maximum estimation error of the 

average master and network time is 

10.15%
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Estimation of Slave Max Time

 The estimated slave max time as the segment size is varied (QUERY-MIX, r=60, 

ns=5).
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 The results show that the expected slave 

max time increases up to 1.5∼2 times of 

the minimum value as the segment size 

increases

 Interestingly, the slave max time gradually 

converges to a value less than twice the 

minimum instead of increasing 

indefinitely
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Performance Projection of a Real-World-Scale

(300-Node) ODYS

 In the estimation, one ODYS set consists of 4 masters, 300 slaves, and 11 Gbit

network hubs

 Each Master: one quad-core 3.06 GHz CPU

 Each Slave: two dual-core 3.0 GHz CPU, 4 Gbytes of main memory, and 13×300 Gbytes

SATA hard disks

 We select the number of masters (4) and network hubs (11) to make the queue 

lengths of master memory and network hubs similar to each other to avoid 

bottlenecks

 The experiments show that our approach is capable of providing a commercial-level 

service with a rather small number of nodes
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 The projected average response time of ODYS for real-world-scale service 

(a 300-node system)
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− Query load: 1 billion queries/day

− Web pages indexed: 30 billion

(100 million Web pages/slave)

− Nodes required: 43,472 

(for 194ms/query)

− Node required: 86,944 

(for 148ms/query)

3.5 7

Requires 143 sets of 304 nodes = 43,472 nodes

Requires 286 sets of 304 nodes = 86,944 nodes

194ms

148ms
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Performance Comparisons 

 Search engines

 ODYS

 Search engine A

 Search engine B

 Search engine C

 Measures

 For ODYS, we estimate the query processing time for a 300-node parallel 

configuration using the performance model

 For the search engine B, we measure the query processing time that is printed on the 

result page

 For the search engines A and C, we measure the query processing time † using the 

API call since the search time is not printed on the result page

† We subtract the round-trip (ping) time (170ms for the search engine A, and 315ms for the search engine 

C [Han]) as the network cost.
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Query Processing Time for Single-Keyword 

Queries

Copyright ©  2013 Kyu-Young Whang et al.

ODYS 300-node system

(λ = 7.0million queries/day )
Search engine A

10 50 1,000 10 50 1000

keyword flower

the first query (sec) 0.190 0.189 0.207 0.767 0.689 0.861 

next 4 queries avg‘d (sec) 0.455 0.475 0.596 

web search engine

Search engine B Search engine C

10 50 1,000 10 50 1,000

keyword flower

the first query (sec) 0.350 0.600 1.690 0.435 0.935 0.966 

next 4 queries avg‘d (sec) 0.155 0.255 1.383 0.142 0.601 0.536 

web search engine
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Conclusions

 We have shown that a massively parallel search engine capable of processing real-

world scale data and query loads can be implemented using a DB-IR tightly 

integrated parallel DBMS— providing higher functionality

 We have presented a detailed implementation (a ten-node system).

 Masters: ODYS Parallel-IR Master

 Slaves: Odysseus Object-Relational DBMS equipped with DB-IR tight integration
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 We have proposed a performance model and validated it through extensive 

experiments

 Hybrid model

 Analytic: estimate the master and network time by using a queuing model

 Experimental: estimate the slave max time through actual measurement with a     

small-scale reference system

 The hybrid model is helpful in realistically estimating the performance of a system by 

using limited resources without actually building a large-scale system

 Model validation

 The estimation by the model with a five-node reference system vs. the results 

measured by the one-to-ten node system

 The estimation error of the total query response time of the ten-node system is less 

than 2.13%

 We argue that the model is accurate since the bulk of the total query response time is 

spent at the slave and we derive the slave max time by measurement from the 

reference system
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 We have estimated the performance of ODYS for real-world-scale data and query 

loads

 ODYS is capable of handling 1 billion queries/day for 30 billion Web pages with an 

average query response time of

 194 ms with 43,472 nodes 

 148 ms with 86,944 nodes 

 This result clearly demonstrates the scalability and efficiency of the proposed architecture 

 The result is even more marked since these are conservative results from a semi-cold start 

reflecting a lower-bound performance (The warm-start performance is approximately five 

times faster than semi-cold start performance)
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