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Web Search Engines

m A representative large-scale system, which handles billions of queries per day for a
petabyte-scale database of tens of billions of Web pages [Dea09, Kun13, Niel0]

m Commercial Web Search engines (e.g., Google, Yahoo!)
e Being implemented based on a scalable distributed file system (DFS such as GFS, HDFS)
using a large number of commodity PCs

Go ogle“‘ YaEHoO!

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al.



Functionality of NoSQL Systems

m Distributed file systems (DFS), key-value stores (so-called “NoSQL” systems)
= They have very simple and primitive functionality
= They do not provide database functionality such as SQL, schemas, indexes, or query
optimization
= Developers need to implement high-level functionality by using low-level primitive
functions

m Parallel processing frameworks such as MapReduce and Hadoop
= They are known to be suitable for performing extract-transform-load (ETL) tasks or
complex data analysis
= But, they are not suitable for query processing on large-scale data because they are
designed for batch processing and scanning of the whole data [Sto10]

= Commercial search engines use them primarily for data loading or indexing instead of
query processing
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High-level Functionality

m High-level functionality such as SQL, schemas, or indexes that are provided by the
DBMS allows developers to implement queries that are used in search engines
easily

= providing a higher expressive power than primitive functions in key-value stores
= facilitating easy (and much less error-prone) application development and maintenance

=>» Thus, there have been a lot of research efforts to support SQL even in NoSQL systems (e.g.,
Pig[Ols08], Hive[Thu09])
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Advantage of High-Level Functionality in a
Search Engine

= Typical Queries:
Query (b): Find the Web pages that contain the word “Obama”

Query (c) (d): Find the Web pages that contain the word “Obama” from the site having sitelD = 6000

m Example schemas and SQL statements

N | o | [SESCT
pageld integer Page identifier WHERE MATCH(p.content, “Obama”)>0;
siteld integer Site identifier (b) SQL statement for keyword search
siteldText text Site identifier SELECT p.pageld
title text Page title FROM pagelnfo p
URL varchar Page URL WHERE MATCH(p.content, “Obama’)>0
content text Page content AND p.siteld = 6000;
(a) pagelnfo relation. (c) SQL statement for site-limited search.
SELECT p.pageld
FROM pagelnfo p
WHERE MATCH(p.content, “Obama”)>0 AND MATCH(p.siteldText, “6000)>0;

(d) An optimized version of SQL statement for site-limited search.

Note: Queries (c) and (d), which are a site-limited search, represent a DB-IR integrated query
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» Advanced search with multiple search fields — an on-line discussion board

Advanced Search Community—l':mited search
SELECT p.pageld

Limited search:[Search only within Linux community] FROM pagemfo P

Title: Contents WHERE MATCH(p.title, “database”) > 0

LULE 8  |database AND AND MATCH(p.content, “index”) > 0

content 8- Lindex ANDY | AND MATCH(p.communityldtext, “3”) > 0

Z)Vattes fm e - AND p.reg_date>=“2001-01-01";

(ex: from 2002-01-25 to 2002-01-30)

ol e ﬁ (b) An SQL statement for an advanced
(a) Advanced search with multiple fields. search using attribute embedding.

Note: Query (b) represents a DB-IR integrated query
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Site-limited Search

m Limiting the scope of a query to the set of web pages collected from a specific site

Site 1

server

Site 2 ™S

1\%

Site n /

m Requiring DB-IR integration
" Having both keyword and attribute conditions

a keyword cond1t10n an attribute condltlon
on text data on structured data
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m Nave Implementation

= To find the record of the web page containing the word “Obama”
= To access the records and select those whose siteld = 6000

= Very bad in performance
(Records are scattered all over the database causing excessive random accesses)

m Solutions
= DB-IR tight integration
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Parallel DBMSs

m Parallel DBMSs could be considered an alternative to a large-scale search engine
» having rich functionality such as SQL, schemas, indexes, and query optimization
= providing parallel processing capability
= having higher scalability and performance than traditional single node DBMSs

m Stonebreaker et al.[Sto10] argue that parallel DBMSs
= are (linearly) scalable to handle large-scale data and query loads
= can easily service multiple users for database systems with multi-petabytes of data

m However, parallel DBMSs have been considered as not having enough performance
and scalability to be used as a large-scale search engine [Abo09, Dea04], one
outstanding reason being the lack of efficient information retrieval (IR)
functionality
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Our Contributions

m \We show that we can construct a commercial-level massively-parallel search engine
using a parallel DBMS, which to date has not be considered practical

= Shared-nothing architecture with masters and slaves

= Commercial-level scalability and efficiency by using a DB-IR tight-integrated DBMS
= Higher-level functionality including SQL, schemas, and indexes

= Each slave (DBMS) being capable of indexing 1 million Web pages

m \We propose an analytic and experimental performance model (simply, a hybrid
model) that estimates the performance of the proposed architecture and validate the
accuracy of the model

= Analytic (queuing) model : for estimating the master and network time (3.57 ~ 7.72%)
= Experimental model : for estimating the slave max time (92.28 ~ 96.43%)

=>» We argue that this model can accurately estimate the performance of a massively-parallel
search engine using the experimental results obtained from a small-scale one

=>» The hybrid model is helpful in realistically estimating the performance of a system by
using limited resources without actually building a large-scale system

2013.6 KAIST Copyright © 2013 Kyu-Young Whang et al. 10



m By using the performance model, we demonstrate that the proposed architecture is
capable of handling commercial-level data and query loads with a rather small
number of machines

= The proposed architecture is expected to handle 1 billion queries/day (81 queries/sec) for
30 billion Web pages with an average query response time of

— 194 ms with 43,472 nodes
— 148 ms with 86,944 nodes
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DB-IR Integration

m Integration of DBMS with IR features has been studied actively as the need of

handling unstructured data (e.g., text) as well as structured data is rapidly increasing

m DB and IR have been parallel universes [Cha05][Wei07]

Database Systems

Information Retrieval

Canonical application

business/accounting

libraries

results

Data type structured data unstructured data
(numbers, short strings) (text documents)

Foundation algebra / logic probability / statistics

Search paradigm exact queries, sets/bags of vague queries, (ranked) lists

of results

m But, many recent applications require integration of structured data and text data

(e.g., CRM, E-commerce, etc.) [WeiQ7]

m Itis preferable to support new data types (e.g., text) as the “first-class citizens” within the

DBMS architecture [Lowell Report 2003]

2013. 6 KAIST
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An Example: Digital Library

®m Find papers about “spatial join” that are published after “1995”

Papers
title authors abstract publication_year
Spatial Join Song, J., Spatial join finds pairs of spatial objects 1999
Processing Using | Whang, K,, having a specific spatial relationship in
Corner Lee, Y., and spatial database systems. ...
Transformation Kim, S.
SELECT *
FROM Papers

WHERE ( Match(title, “spatial join”)>0OR ™
o .. query on text data
Match(abstract, “spatial join”) > 0) AND
publication_year > 1995; L. query on structured data
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Possible Approaches [Wha05]

m Loose-Coupling Architecture
— Provides IR features as user defined types and functions outside of the DBMS engine
(e.g., Oracle Cartridge and IBM Extender)
— Poor performance: access paths are long; concurrency control and recovery in fine
granularity are hard to perform;

m Tight-Coupling Architecture «<— our approach
— IR features are implemented directly into the core of the DBMS engine (e.g.,
Odysseus [Wha02, Wha05, Whal3] and MySQL[Len04])
— Good performance: access paths are short; concurrency control and recovery can be
done in fine granularity; no extra inter-process communication overhead is incurred

=>» Tight coupling method is appropriate for a large-scale system to efficiently handle a
large amount of data and high query loads

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al.
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Structure of the IR Index
(U.S. Patented, 2002) [Wha02]

m IR index is (automatically) constructed for a column having the text type, consisting of
= B+-tree index: for keywords, each keyword pointing to a posting list
= Posting list: # of postings + postings for the keyword
= Posting: document identifier (docID) + location information where the keyword appears (offset)

=  Sub-index
=B+®ex

data record text SRS integer

(a) IR index embedding.

a posting Sub-index (for each posting list)

A

—»  # postings docID,, offsets docID,, offsets

a posting list

keyword B+-tree

® Sub-index (b) Structure of the IR index.

— To index postings in each posting list

— To allow quick finding of the location of a specific posting having a given docID within a
posting list

— To allow posting skipping and fast query processing
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Implementation of the IR Index

m IR index: created as a relation for each attribute of the TEXT type
(the relation’s name is “<table name>_<attr name> Inverted”)

B'-tree B'-tree pagelnfo_content_Inverted
keyword | reverseKeyword | nPostings postingList
] m
Reversed strings : -
need not be stored. large object -
This field does not
contain a value. ubinde
Example: pagelnfo relation IR index is created
siteld title URL content
(integer) | (text) |(varchar)| ™" | (text)

pagelnfo title Inverted

2013. 6 KAIST
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Compression of the IR Iindex

m Compression: done primarily on the posting lists of the IR index

m Compression ratio: approximately 60%

= The posting lists are compressed to 44% of their original size, but the subindexes are not
compressed; thus, the overall compression ratio is 60%

m Query performance: improved by approximately 20%

= Reduced disk I/O’s due to compressed IR index

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al.
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DB-IR Query Processing Using the IR Index

m IR Index Join [Wha03][Guo03][Hal03][Wha05]
= Supporting fast query processing for multiple-keyword queries
= Nontext attributes are redundantly stored as text attributes as well
= Posting Skipping: an optimization technique for IR Index Join
— Using subindexes, the exact parts of posting lists that need to be merged can be

identified
Subindex
Keyword
“Obama”
S ex > docl0 docl4 docl)5 S doc30 doc35 doc49 doc50
ndex for | _ _ _
attribute \
“content” Posting list
Keyword / . . .
6000 » docl0 docll docl4 docl5 doc30 doc32 doc38 < doc49
Index for
attribute
siteldText Subindex
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m Attribute Embedding [Wha03][Wha05]
= Attribute Embedding: other attribute values of the record are embedded in the postings of
another attribute
= DB-IR integrated queries can be efficiently processed by embedding attribute values of the
structured data in the postings of a text attribute
= Attribute embedding can be specified through schema definition

— Example: Create Table pagelnfo (sitelD integer, content text(embedded_attributes(sitelD)), ...);
Note: sitelD (of type integer) is embedded in the postings of the attribute content (of type text)

Keyword a posting Posting list
“Obama” e /
docl | 5000 |- -] docl0 | 6000 | docl3 | 2300 | doc22 |[4200 |- - -] doc25 | 9000
Index for Y )
attribute
“content” docID sitelD
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Odysseus Object-Relational DBMS [WLL+05]

m Being developed at KAIST for over 23 years

m An earlier version of this technology played a vital role in starting up NaverCom Co.
(currently, NHN Co.) (Founding CEO: Haejin Lee) in 1997-2000, which is the number one
portal in Korea

m  Winning the Best Demonstration Award at the IEEE 21st Int’l Conf. on Data Engineering
(ICDE), Tokyo, Japan, Apr. 5-8, 2005

m Tightly coupling IR (U.S. patented) features as well as spatial database features

m Being a DBMS and, at the same time, a search engine

Providing concurrency control and recovery (coarse granularity and fine granularity)
Providing IR performance comparable to or better than those of commercial search engines
Indexing up to 100 million web pages per node

Allowing immediate updates

m Being a DBMS and, at the same time, a GIS engine
m Having many commercial applications

m Consisting of approximately 450,000 lines of C/C++ (high precision) codes

2013.6 KAIST Copyright © 2013 Kyu-Young Whang et al. 20
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Examplel: A DBMS and, at the same time, a search engine

2} AlTrc Web Search Engine - Microsoft Internet Explorer
oIEE) HIE) 2N SHFNA =MD EZSEH

Q- © ¥ [ b Lzu desnzn @uin @ - = )G B

(D) |ﬁj http://acacia, kaist, ac k7779

nternet Explorer
JH}%(E) HEE) BN (&) =T ESEH)

| +52 -+ - @@ 4 Qaw mEawn Fes=20 B S = -

| F0) [& http:/Aibrary. kaist.ac, kr/Ko/main/apac, him

=] @os ||@

@, HEIR)aATYE
© Aavonced imamaion Sechnalogy Fesecch Cerve

oDYS

Tightty-Coupled Web Search Engine Odysseus
oped

Search Help
Register your site
A Directory
Reaister URL i1 More... 2 (O - [UF-T') »

- L5 OS5 SHOIE

EPEENED

ENGLISH S2% JeIEE =200 gSearch Browsing

Services About the Library

Site Help

IGE 19 ©

© Books € Joumals C articles © Theses
© Reports © Non-book materials & Al

5
F = =

[FD=]| FIASET]

[#= =

[AND =] FIS=E

A= =

[FO =] FIBsED

gmas [ [ ]

Search
Availabile ~ . EI2IIED e o
S\fgrjles o D“:“'Fi‘)lE‘J = Korea Herald SHI0IAl  « LlGHARD[=H
r— 5 = Korea Times SH0[A] - LGE4T
= B i == =] I
- =T = CHN ZH 0T c igé}g
¥
g = ® DEY

<ODYS, a Large-Scale Parallel Search
Engine, powered by ODYSSEUS>

a9 HzE

Simple Search

GES

R EEE

<KAIST Digital Library Search Engine

(1998 ~ 2004) >
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Example2: A DBMS and, at the same time, a GIS engine (a spatial DBMS)

£, City Management St £, City Management St
File Mode Query Help Eile Mode Query Help

ystem: ODYSSEUS/Ge03SQL Demo EER hagement System: ODYSSEUS/Ge03SOL Demo
D Al a
I

el 2: FoiZl A2 90| LE HEO W 1Y OE
uE ¥

(193783, 328633, 446324.458521) Zoom 1.00%

(133596.553919, 446275, 656241) Zoom 1.00%

- ] £, City Management System: ODYSSEUS/Ge03SQL Demo
ile Jot juer felp
.................................................. ® (O
|

Aol 3: Foiz X|shH Mo XL b WHFA (SR §)
371

FESNIES

iﬂj ad!
”

/sl

-ﬂ ff( ll\

=
(202074,815968, 442747, 083106) Zoom 33,04 %

Y322
(197522, 535654,

<A Geographical Information System(GIS) Implemented Using ODYSSEUS>
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m Architecture of Odysseus Odysseus client

I Network
]

= Client/server architecture

= The Odysseus server consists of Odysseus/00SQL
Odysseus/COSMOS : a storage system Odysseus/O0SQL User Interface
Odysseus/OOSQL : a query processor Query Analyzer

Query Plan Generator and Optimizer

Query Plan Executor

Odysseus/COSMOS
Odysseus/COSMOS User Interface

Spatial DB Text IR Search

Cursor Manager Engine Engine

Recovery | | small Object Large Object Index Manager Transaction
Manager Manager Manager (B*-Tree, MLGF, Text IR) Manager

Disk Manager

T ]

\—/
Database
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Performance Comparisons with DBMSs

m Setting: a SUN Blade 2000 workstation (900MHz CPU), a T3+ disk array

m DBMSs: Odysseus (tight-coupling architecture),
DBMS A: a widely-used DBMS (loose-coupling architecture)

m Data: 15 million web pages (approximately 60 GBytes)

m Schema: siteldText, title, content?) attributes are of type ‘text’;
other attributes are of type integer or varchar

D The size of content is limited to 8 KBytes.
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Results for Single-Keyword Queries

0O DBMS A

B Odysseus

100000

10000 _I
1000 —_l

100 |
1 1 1

Small Medium Large Huge

Wall Clock Time (ms)

Keyword Set

(@) Cold Start

Wall Clock Time (ms)

10000

1000 ]

100 — _|

‘Ll

Small Medium Large Huge

Keyword Set

(b) Warm Start

m Odysseus outperforms DBMS A by 47.3~133.6 times at cold start and by 4.0~21.6 times at

warm start

m This result demonstrates the superiority of the tight-coupling architecture over the loose-

coupling architecture
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Results for Multiple-Keyword Queries

O DBMS A B Odysseus
100000 100
E 10000 E
£ £
= 1000 =
3 ¥ 105
= 100 o
§) @)
= 10 H =
= =
1 : : 1
2 3 4 2 3 4
Number of Keywords Number of Keywords
(@) Cold Start (b) Warm Start

m Odysseus outperforms DBMS A by 13.2~24.8 times at cold start and by 1.4~2.1
times at warm start
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Results for Site-limited Search

@ DBMSA-Join 0O DBMSA-BTree B Odysseus-Join 0O Odysseus-Embedding

100000 10000
‘@ ‘@
E 10000 I T £ S
@ 1 @ 1000 -
= 1000 [= 1
x x 100
o 100 B =]
° S 10
T 10 § B T
= =

1 | | 1 1 1 1 1 1 1 N 1
SS MS LS HS SL ML LL HL SS MS LS HS SL ML LL HL
Keyword and Site Sets Keyword and Site Sets
(@) Cold Start (b) Warm Start

m Odysseus-Join (IR index join) and Odysseus-Embedding (attribute embedding)
m Both methods significantly outperform DBMS A
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ODYS Search Engine

m A massively-parallel search engine using a DB-IR tightly-integrated parallel DBMS

m Efficiency
= DB-IR tight integration

m Scalability
= Shared-nothing architecture

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al.
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m High-level functionality
= SQL (especially, DB-IR integrated queries)
— Easy implementation of query interfaces by translating keyword queries into SQL
queries
— Selection, aggregation, limited join (where only one table is partitioned), etc.

= Schemas
— Activation of advanced query processing methods (i.e., attribute embedding or IR
index join) by controlling the schema

= |ndexes
— B+-tree indexes for structured data and IR indexes for unstructured data (i.e., text)

= Limited transactions/consistency
— Updates in a single machine with ACIDity
— Good enough for large-scale applications such as on-line discussion (bulletin) boards
or other SNS applications
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Architecture

ODYS Parallel-IR Master

|| machine
> process
1 disk array

— LAN card,

Parent

Child
(async. calls)

Hub,

Slavel /\Slavens

Odysseus Odysseus
DBMS DBMS

Shared buffer

Disk; - Disk,

nh

LAN card,,—

Hub,,

,4‘%(nh FLES Slave,
n
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m Masters (ODYS Parallel-IR Master)
= Storing metadata(catalogs) such as global database schema, slaves’ IP addresses, and
slaves’ database paths (i.e., the location of the disk device storing each slave database)

m Slaves (Odysseus Object-Relational DBMS) #
= Shared-nothing architecture
= Storing crawled Web pages and their IR indexes in a disk array
— Entire set of Web pages is partitioned horizontally (i.e., by documents)

m Network T
= The master and the slaves are connected by a gigabit network hub, and they communicate
by using an asynchronous remote procedure call (RPC)

TThe ODYS Parallel-IR Master consists of 58,000 lines of C and C++ code
tThe Odysseus DBMS (slave) consists of 450,000 lines of C and C++ code
1 We use socket-based RPC consisting of 17,000 lines of C, C++, and Python code developed by the authors
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Language
layer

Parallel
execution
layer

Key-value
store or
table layer

Storage
layer

Map of ODYS and
Other Parallel Processing Systems

SQL-like SQL-like

SQL-like

" Tobe
extended
P

PNUTS

oDbYS/
Parallel-IR

DBMS

Local
disk

~
Pig Hive | Dryad .
Sl (Yahoo!)| (Facebook) M Hive
- = T
Map S
Reduce ~ Hadoop Dryad Hadoop
\_ %
4 N O N/ N/ N . N
- 5 Cassandra Postgre
Bigtable ~= HbaseIFacebook) Azure SQ?_ OclysseLs
\ L AN J -
Dynamo I
4 N O N/ N\
GFS |-= HDFS Cosmos S3 Ld?;il HDFS
N\ NG AN AN N /AN
Google Apache MS Amazon Yale & KAIST Yahoo! KAIST

Brown (Odysseus

(HadoopDB) /DFS)

J

(ODYS)

DFS-based sys?ems

ParaIIeIYDBMSs
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Performance Model — an Outline

m Hybrid (i.e., analytic and experimental) performance model
= Analytic: master and network (Master CPUs, master memory buses, and network hubs)
— We estimate the processing time of each component by using a queuing model
— Even if the estimation error were sizable, it could not affect the overall performance in
a significant way since the overall performance largely depends on the performance of
the slave time (i.e., 92.28% ~ 96.43%)
= Experimental : slave (slave CPUs, slave memory buses, and slave disk 1/0)
— They work in parallel, and the overall slave time is bounded by the maximum slave
time
— We estimate the processing time of the slaves by using an experimental (quasi
measured) method; we call it the partitioning method
— We measure the processing time of slaves at semi-cold start to obtain a lower-
bounding performance
— We can be assured that the estimated performance of slaves is very close to the actual
measurement since the estimation is directly derived from the measurement

=» Our performance model using a small-scale (e.g., 5-node) reference system is
expected to quite accurately predict the performance of a large-scale (e.g., 300-node)
system

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al. 34



m Semi-cold start

= A query is executed in the circumstance where the internal nodes of the IR indexes (which
normally fit in main memory) are resident in main memory while the leaf nodes (which
normally are larger than available main memory), posting lists, and the data (i.e., crawled
Web pages) are resident in disk

= \We use a buffer of only 12 Mbytes sufficient for containing the internal nodes (occupying
11.5 Mbytes) of the IR index for each slave

= Typical commercial search engines process queries at warm start by storing the entire (or a
large part of) indexes and data in a massive-scale main memory. This helps significantly
reduce the query response time

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al. 35



Validation of Performance Model

m Estimation: Using a reference system (1 master, 5 slaves), we build the

performance estimation model
= Master and network (by an analytic queuing model)

— Measure the parameters of the model with a 1-slave (1 master, 1 slave) system at a slowest speed

(< 1million queries/day)
= Slave (by an experimental model)
— Measure slave max time with the reference system
— 1 master, 5 slaves (5 slaves %60 times = 300 data points)
— Estimate slave max time for an 1 to 10-slave system by
the partitioning method

m Experiments: Using a 1 to 10-slave system (1 master,
1 to 10 slaves), we obtain experimental results and

compare them with the estimated results
= Measure the total query response time: (a)
= Measure slave max time: (b)
= Calculate master and network time: (a) — (b)

Total query
response time

(@)

Master and
network time

Slave max
time

(b)

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al.
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Query Model

m \We use three types of search conditions: single-keyword query, multiple-keyword
query, and limited-search query

m \We consider top-10, top-50, and top-1000 queries

m Query load normalization

= To simplify the queuing model, we normalize a query of a specific type into one
equivalent query type: the single-keyword top-10 query (unit query)

= Example (for master CPU):
1 single-keyword top-1000 query = 1.79 single-keyword top-10 queries

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al. 37



m \We calculate the weight for each type of queries for each system component C (i.e.,
master CPU, master memory bus, and network) from the measurement

m \We obtain a weighted arrival rate (1°) of queries for a system component C using a
given query mix and the weights of query types

m Example: System component C = master CPU

< System component C time (ms) >

searc K Top-10 Top-50 Top-1000
condition
All query types | 25.014 25.536 44.740
< Query mix gmr(sct, k)>
e k Top;lO Top;50 Top-"l)OOO
condition (45%) (45%) (10%)
Single keyword 0 0 0
(98%) 44.1% 44.1% 9.8%
Multiple o o o
keyword (1%) 0.45% 0.45% 0.1%
Limited search o o o
(1%) 0.45% 0.45% 0.1%

< Weights of query types w,(k)>

sear K Top-10 Top-50 Top-1000
|:> condition
1.0 1.02 1.79
£l gty (s query queries queries

!
Ae=Ac D)
k e top -k types

= 1, x1.088

o

w (k) > amr (sct , k)
sct esearch condition  types
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Queuing Model (Master + Network)

m Arrival rate (1)

A: the weighted arrival rate of queries
nm: the number of master nodes
ncm: the number of CPUs per master
nh: the number of network hubs

Network,

Master main
Master CPU Hub (network)
memory bus
A i ns
_/1/
ncm nm nm nh
Master, Slave,
- CPU,
ncm -nm
4 i
E‘ o nm
CIDUn“I“I
ﬂ, Ll
ncm - nm
—®P
Master,,

A
nm

Network,,
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Model Parameters Measured

m Parameters of the queuing model measured

Parameters Values
Tparent—proc 1.516 ms
Tehitd-proc 0.0081 ms
0.01ms, k=10
Tmaster-RPC(k) 0011 mS, k = 50
0.031 ms, k =1000
Master CPU tcomparison 0.191 us
thase 0.28 us
tper-context—switch 2.105 us
ncs (k) 56.490, k =10, 50
base 97.728, k = 1000
1.917, k =10, 50
NCSper-siave(K) 3.316, k = 1000
0.129 ms, k=10
Network ST network(K) 0.222 ms, k =50

0.318 ms, k = 1000

2013. 6 KAIST

Copyright © 2013 Kyu-Young Whang et al.

40



m Measurement of various components of master time
k: the number of records retrieved for a top-k query (10, 50, 1000)

ns: the number of slave nodes (001 ms, k=10 i
parent - proc = 1516 ms ' Tchild - proc = 00081 ms ' Tmasler -RPC (k) = J OOllmS’ k = 50
" " [0.031ms, k =1000
Tmerge (k » NS ) = k x (|_|Og 2 (nS )-|>< tt:omparisio n + tbase )
= 0.191 us, toe = 0.28 us

comparisio  n

i

it i1t
Tcontext — switch (k’ nS) = tper —context — switch X (nCS base (k) + (nS x NCS per —slave (k) ))

per —context — switch = 2105 ,uS
(56 .490 , k =10, 50 (1.917 , k =10,50
ncs base (k) = % nes per —slave (k) = %
|97 .728 , k =1000 13.316 , k = 1000
T We measure the total time for a top-10 single keyword query in each module and subtract time consumed by other modules
Toarentoroc = A—B
parent-proc Master parent | | Master child | | Master RPC | | Slave I
Tchild-proc =B-C —
Traser-rpc = Master-CPU time of C » >
A B C‘{ _ :
¥ See master-CPU time (M) of page 30 for the-peeastrerment |

Tt Comparison time

i Initial cost to merge (read stream, copy the result, etc. )
¥ Initial number of context switches

4 Number of context switches per slave
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m Measurement of the network transfer time of query results

Communication Model

Master node

We assume ,
i M Master-CPU time
1. Network and OS work in parallel Master-CPU excluding data transfer time
. . : . : timg, T ¥O cpPu time of 0s
2. CPU time of OS is the same in the master and in the slave, i.e., c time o
Network time = (C-M -S) + 20 the tota| time of
Network
. . : . a sockgt-based .
- C is obtained as (end time — start time) of the RPC call at the master. Rp ’ Network transfer time
ca
- M, S are measured at the master, slave, respectively while the program T [ tO CPU time of OS
that connects and transfers data to the slave is running on the master. S
Slave-chbU Slave-CPU time
- M — O is obtained by removing data transfer part from the program. time excluding data transfer time
Slave node

(M, S, M — O are measured using the ‘time’ facility, which can measure
the total CPU time that a process spent in the kernel mode or user mode.)
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Service Time of System Component

ST : service time (we assume that the each module’s service time for a query is fixed)
ns: the number of slave nodes
a: the proportion of the master CPU time in the master time (a < 1)

(k))xns +T

master

ST (k,ns) = Tp (k,ns)+T_ o wien (K,NS)

+ +
arent - proc (T child - proc T master - RPC merge

ST (k,ns) = ST

master —CPU

(k,ns) x a

master

ST (k,ns) = ST

master —memory - bus

(k,ns)x (1-a)

master

(0.129 ms ,k =10
ST .. (k)= 40.222 ms , k = 50
t0.318 ms , k = 1000

T See the network transfer time in p.45 for the measurement
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Average Number of Customers in the System

L: average number of customers in the system : Crer ?
A: the arrival rate of queries A’: the weighted arrival rate of queries L(A,ST)= [5T ] + AE[ST ]
nm: the number of master nodes  ncm: the number of CPUs per master 2= A E[ST]
ns: the number of slave nodes nh: the number of network hubs
Lmaster -CPU (ﬂ“ ! nm ' ncm ! ns ) = L (ﬂ’r:waster -CPU (ﬂ” nm ! ncm )' ST master -CPU (k = 10 ' ns )) (8)
master —memory —bus (ﬂ’ nm., ns ) =L (ﬂ' r;aster —memory —bus (ﬂ’ nm )’ ST master —memory —bus (k =10 , NS )) (9)
Lnetwork (ﬁ’ ! ns ' nh ) = L(ﬂ’r:etwork (/l ! ns ! nh )’ ST network (k = 10 )) (10)
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Expected Total Query Response Time

sct: search condition type (single keyword, multiple keyword, limited search) X: sojourn time in the system, i.e., the total

k: the number of records retrieved for a top-k query (10, 50, 1000) L time a customer spends in the system
A: the arrival rate of queries E[X]=— (waiting time + service time)
nm: the number of master nodes  ncm: the number of CPUs per master A M. the arrival rate

ns: the number of slave nodes nh: the number of network hubs L: average number of customers in the system

(sct ,k,A,nm , ncm ,ns,nhT)

parallel —n-—nodes

i

( Lmaster - CPU (ﬂ’ , M, ncm , NS ) n master —memory -—bus (ﬂ’v nm, ns ) % Wmaster (k )’ )
| ﬂ’r:\aster -CPU (2‘ » M, ncm ) ﬂ’r;aster —memory —bus (;t’ nm ) | (12)
= max | |
ns L A,ns,nh
| e ( ) x Wnetwork (k) |
[0 2 (205, 0) |
+ tslave —max -time (SCt ' k ’ ﬂv ’ ns )

T We assume that a master’s I/O bus speed is fast enough to handle multiple LAN cards and each LAN card has a receive buffer

Measure of the Accuracy for the Performance Model

estimated average measured average
time of aquery  time of a query
measured average
time of a query

estimation error =
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i Max of master time and network transfer time since the two are processed in parallel

m, mp Mps
Master m m

.’
Slave, P T

| e
] | ] 5
Slave, — | =
Case 1: (m <nt) r’g:t1 nt, Nt
Network hub |
Case 2: (m> nt) int, int, Nt
Network hub {-1 ﬂ ﬂ r )
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Experimenal Model (Slave Max Time)

Algorithm Partitioning_Method for estimating the Slave Max Time:
Input: (1) Q: the query set,
(2) r: the number of repetitions of the query set execution
(3) np: the number of slaves of the reference system
(4) ns: the number of slaves of the target system
Output: The estimated slave max time for each query in Q
Algorithm:
Stepl. Generate a sequence of slave sojourn times for each query:
1.1 Execute Q for r times at semi-cold start by using the np-node system and measure the slave sojourn times.
1.2 For the ith query in Q, make a sequence of the slave sojourntimes as <t;; ¢, ti1 o, ..oo g tiog, oos G -
tirg - tirnp > Where t; ;  is the slave sojourn time for the ith query in the pth repetition at the gth slave.

Step2. Estimate the average slave max time for ns slaves:
For each sequence obtained in Stepl,
2.1 Partition the sequence into segments of size ns.
2.2 Find the maximum value per segment and average those values.

St¢

St¢

01 (ref. sys): (slavel-slave2-...-slave np)-(slavel-slave2-...-slave np)- ... -(slavel-slave2-...-slave np)
\ v J \ v J \ N J
15t repetition 2nd repetition rh repetition
pp2(target syé): : | : I
segment 1 of size ns segment 2 of size ns
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Experiments

m Query Generation for Measurement

= Generating 10,000 random queries at a rate of 1~24 million queries/day/set according to
the specified query mix

= Query generation: Poisson arrival
= Query sets

— Single top-10
— Query-mix
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m Experimental setting

= Master
— one Linux machine (one Quad-Core 3.0GHz CPUs, 6GB RAM)

= Slaves

— four Linux machines (two Dual-Core 3.0GHz CPUs, 4GB RAM)

— one Linux machine (one Quad-Core 2.5GHz CPU, 4GB RAM)

— five Linux machines (one Quad-Core 2.4GHz CPU, 8GB RAM)

— four disk arrays (AS-2400~AS-2500, 0.9TB~3.9TB, RAID5, 200MB/s bandwidth, 512MB~1GB
cache, average 59.5 MB/s disk transfer rate, 13 disks (arms) + 1 parity disk + 1 hot spare )

— one disk array (TN-6416S, 13TB, RAIDS5, 4Gbit/s bandwidth, 512MB cache, average 83.3MB/s
disk transfer rate, 13 disks (arms) + 1 parity disk)

— five internal disk arrays (B110i, 5TB, 768MB/s bandwidth, 81.2MB/s disk transfer rate, 10 disk
(arms) + 1 parity disk)

= Network
— eleven gigabit LAN cards(Intel 82574L dual-port(1), Intel 82541GI single-port(5), HP NC326i
dual-port(5))
— agigabit hub (HP 1410-24G, 1000Mbps, 24port)

= Data
— 228 million web documents each of 16 KBytes
— Each slave indexes 22.8 million web documents (Note: A slave is capable of indexing 100 million
documents)
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Accuracy of the Performance Model

m The estimated and experimental results of the ten-node system (ns=10) as the query
arrival rate is varied.

L
(=3
<

220

S0 | [ & TOTAL-EST-10 1 [ e~ TOTAL-EST-10 ® . . .
2~ 1gp | L& TOTAL-EXP-10 ® - —& TOTAL-EXP-10 | | e Maximum estimation error of the
S £ 160 £ g% [
- = -
= ‘E’ 140 -:ano average total query response time
£ 0 ] 2
E" 2 %] g 200 . 0
52 60 £2 — SINGLE-10-ONLY: 1.77%
Z 5 40 A S z100
<= 50 <= — QUERY-MIX: 2.13%
0 T T T T 1 0 T T T 1
0 5 10 15 20 25 0 5 10 15 20
Arrival rate (million queries/day/set) Arrival rate (million queries/day/set)
(a) Total, SINGLE-10-ONLY. (b) Total, QUERY-MIX.
54 5 -
—&—MN-EST-10 —&— MN-EST-10
T, LMD T | MR e The maximum estimation error of
=] s wn
§§ ; §§ 5 the average master and network
g E 22 . .
S £E time (i.e., the part modeled by the
SE 2 eE 21 @,—;@;®i—@:@
52 tz | queuing model)
=& -
0 T T T T 1 0 T T T 1
0 5 10 15 20 25 0 5 10 15 20 — SINGLE-10-ONLY: 6.29%
Arrival rate (million queries/day/set Arrival rate (million queries/day/set)
(c) Master and network only, (d) Master and network only, — QUERY-MIX: 10.15%
SINGLE-10-ONLY . QUERY-MIX .

TFor sensitivity analysis, we have tested a different query mix having 20% of top-1000 queries obtaining a
similar result where the maximum estimation error was 8.64%
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m The estimated and experimental results of the ten-node system (ns=10) as the

number of slaves is varied

2007 r="FsT5  —<—EXP-S
180 1 | —A—EST-17 ——EXP-17
—EEST-23 —%—EXP-23

—_

[=)

[==)
1

Average total query
response time (ms)

0 2 4 6 8 10
Number of slaves

(a) Total, SINGLE-10-ONLY.

\ —& EST-17 —a—EXP-17

Average master and
network time (ms)

0 T T T T T 1
0 2 4 6 8 10 12
Number of slaves

(c) Master and network only,
SINGLE-10-ONLY.

Average total query

Average master and

B0 r—5—EsT5 < EXPS
_ 400 | | —A—EST-13 ——EXP-13
Zasn | | -B-EST-15  —% EXP-15
£ 350
T 300
.E 250 4
§ 200 9
=] i
g 150
50 ¥
0 : : : : :
0 2 4 6 g 10
Number of slaves
(b) Total, QUERY-MIX.
5 -
\ —&FEST-13 —~—EXP-13
z 4
g
p—_
@ 34
g
=
£ 24 @/@f—@ﬁ@jﬂ
£
2 17

2 4

6 8

Number of slaves
(d) Master and network only,

QUERY-MIX.

Maximum estimation error of the
average total query response time is
2.13% when the number of slaves >5

Maximum estimation error of the
average master and network time is
10.15%
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Estimation of Slave Max Time

m The estimated slave max time as the segment size is varied (QUERY-MIX, r=60,
ns=>5).

800 -

700 -

Estimated slave max time (ms)
N
o
=

—&—1 million/day
—< 9 million/day
—£-15 million/day

55 million/day e The results show that the expected slave
—=—13 million/day

A 15.5 million/day max time increases up to 1.5 ~2 times of

the minimum value as the segment size
increases

e Interestingly, the slave max time gradually

converges to a value less than twice the
minimum instead of increasing
indefinitely

0 50 100

150 200 250 300 350

Segment size (=number of nodes)
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Performance Projection of a Real-World-Scale
(300-Node) ODYS

m [n the estimation, one ODYS set consists of 4 masters, 300 slaves, and 11 Gbit

network hubs
= Each Master: one quad-core 3.06 GHz CPU
= Each Slave: two dual-core 3.0 GHz CPU, 4 Ghytes of main memory, and 13 X300 Ghytes
SATA hard disks

m \We select the number of masters (4) and network hubs (11) to make the queue
lengths of master memory and network hubs similar to each other to avoid
bottlenecks

m The experiments show that our approach is capable of providing a commercial-level
service with a rather small number of nodes
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m The projected average response time of ODY'S for real-world-scale service
(a 300-node system)

800 1 " TOTAL-EST-300
5700 - -A-SLAVE-MAX-EST-300
£
g 600 - — Query load: 1 billion queries/day
E 500 - — Web pages indexed: 30 billion
S (100 million Web pages/slave)
%400 1
;300 | —  Nodes required: 43,472
o 194ms (for 194ms/query)
S 200 Yo _
=2 - — Node required: 86,944
@ 100 j\ ! : (for 148ms/query)
Z 148ms | |

O I I ; I I I 1
0 2 12 14 16

Arrival ra{e (m|II|on querles/day/set)

v

Requires 143 sets of 304 nodes = 43,472 nodes

v

Requires 286 sets of 304 nodes = 86,944 nodes
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Performance Comparisons

® Search engines
= ODYS
= Search engine A
= Search engine B
= Search engine C

® Measures
= For ODYS, we estimate the query processing time for a 300-node parallel
configuration using the performance model
= For the search engine B, we measure the query processing time that is printed on the
result page
= For the search engines A and C, we measure the query processing time T using the
API call since the search time is not printed on the result page

"We subtract the round-trip (ping) time (170ms for the search engine A, and 315ms for the search engine
C [Han]) as the network cost.
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Query Processing Time for Single-Keyword
Queries

web search engine
he € Numper

ODYS 300-node system
(4 = 7.0million queries/day )

Search engine A

(0 retrigy eSUIs

10 50 1,000 10 50 1000

keyword flower
the first query (sec) 0.190 0.189 0.207 0.767 0.689 0.861
next 4 queries avg‘d (sec) 0.455 0.475 0.596

f;’ver?uset?:h::]gsine Search engine B Search engine C
retrigy e Sults

10 50 1,000 10 50 1,000

keyword flower
the first query (sec) 0.350 0.600 1.690 0.435 0.935 0.966
next 4 queries avg‘d (sec) 0.155 0.255 1.383 0.142 0.601 0.536
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Conclusions

m \We have shown that a massively parallel search engine capable of processing real-
world scale data and query loads can be implemented using a DB-IR tightly
Integrated parallel DBMS— providing higher functionality

m \We have presented a detailed implementation (a ten-node system).
= Masters: ODYS Parallel-IR Master
= Slaves: Odysseus Object-Relational DBMS equipped with DB-IR tight integration
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m \We have proposed a performance model and validated it through extensive
experiments

= Hybrid model
— Analytic: estimate the master and network time by using a queuing model
— Experimental: estimate the slave max time through actual measurement with a
small-scale reference system
— The hybrid model is helpful in realistically estimating the performance of a system by
using limited resources without actually building a large-scale system

= Model validation

— The estimation by the model with a five-node reference system vs. the results
measured by the one-to-ten node system

— The estimation error of the total query response time of the ten-node system is less
than 2.13%

— We argue that the model is accurate since the bulk of the total query response time is
spent at the slave and we derive the slave max time by measurement from the
reference system

2013. 6 KAIST Copyright © 2013 Kyu-Young Whang et al. 58



m \We have estimated the performance of ODYS for real-world-scale data and query
loads

= ODYS is capable of handling 1 billion queries/day for 30 billion Web pages with an
average query response time of
— 194 ms with 43,472 nodes
— 148 ms with 86,944 nodes

= This result clearly demonstrates the scalability and efficiency of the proposed architecture

= The result is even more marked since these are conservative results from a semi-cold start
reflecting a lower-bound performance (The warm-start performance is approximately five
times faster than semi-cold start performance)
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