Kyung Hee University

Visual Interaction for Intelligent System

Lee, Chilwoo

School of Electronics and Computer Engineering, Chonnam National University, Kwangju, Korea

Intelligent Image Media Lab.

Intelligent Image Media Lab.

Intelligent Image Media Lab.

Intelligent Image Media & Interface Lab.

Interaction and Real World

Intelligent Image Media & Interface Lab.

The Real World

Intelligent Image Media & Interface Lab.

Problems

 Human body is a very Complex 3D articulated object with High DOF

- non-dominant features
- occlusion among limbs
- Human body is a freely moving object with various clothes
 - high speedy motion
 - segmentation difficulty

How can we extract the features?

Content

- Gesture recognition algorithms and systems
 - Definition for related terminologies
 - Template based gesture recognition: Interactive Gesture Game
 - APM(Active Plane Model) pose recognition
 - Articulated Pose Estimation with Pictorial Structure
- Tabletop Display and Interactive Content

Conclusion

Interaction: definition

- A kind of <u>action</u> that occurs as two or more objects have an <u>effect</u> upon one another. The idea of a twoway effect is essential in the concept of interaction, as opposed to a one-way <u>causal</u> effect.
- Control
- Operation/Manipulation
- Synchronization
- Indication
- Selection/Mining/Retrieval
- Stimulation/Encourage
- Communication

Gesture-like Key Terms: comparison

- Behavior/Behavior(행위/행동/습성)
 - unconscious/conscious actions or reactions of an object or organism, usually in relation to the environment
- Conduct(행위/품행)
 - personal behavior; a way of costumed acting
 - using hand gesture to direct
- Action(행동/동작)
 - Human bodily movement in intention
- Motion(동작/운동/몸짓/움직임)
- Gesture(제스처)
 - bodily motion which has some meanings for non-verbal communication: body language

Gesture Recognition

• Gesture:

expressive, meaningful body motions involving physical movements of the fingers, hands, arms, head, face, or body with intent of

- conveying meaningful information
- interacting with the environment
- Importance of gesture recognition
 - non-linguistic information with gesture for humanlike communication
 - more natural human-computer interaction
 - gesture recognition is a core technology for various applications

Template Based Gesture Recognition: feature & modeling

(a) Left arm maskable template models.

(b) Detailed left arm maskable template models.

gesture	pose Arms(L)	Legs(L)	code	operation
Î.	4 <n<6< td=""><td>_</td><td>10</td><td>punch</td></n<6<>	_	10	punch
Ķ		3≤N≤5	11	kick
ř	5.5≤N≤8 2≤N≤4.5	-	1	special(1)
i	8 <n≤9< td=""><td>-</td><td>3</td><td>special(2)</td></n≤9<>	-	3	special(2)

Table 1: Sample of operation code table for fighting game

Intelligent Image Media & Interface Lab.

Game Action : recognition

Fig.4: Pose interpolation. Estimation of pose of : is done by comparing distance between a minimum tance model and two neighboring models

(c) Result of arm pose estimation using template(b) in Fig.3

Intelligent Image Media & Interface Lab.

Real-time H/w System

Intelligent Image Media & Interface Lab.

Gesture Game : demo

Intelligent Image Media & Interface Lab.

Humanoid Control: feature & modeling

Deformed APM(Active Plane Model) Examples for several gestures

Intelligent Image Media & Interface Lab.

Humanoid Control: process

Intelligent Image Media & Interface Lab.

Gesture Recognition By Attention Control Method for Intelligent Humanoid Robot

Chonnam National University Intelligent Image Media Lab.

Intelligent Image Media & Interface Lab.

Upper Body Pose Estimation

Problems

- Articulated Pose Estimation is one of the difficult issues in Computer Vision
 - Many problems arise due to the human body deformability.
 - The possibility of Occlusion among limbs.
 - Illumination change
 - Computational cost is often too expensive.
 - Automatic initialization is dependent on environment.

$$nHypotheses = l(w)l(h) \prod l(p_i)$$

1.5 million (w320,h240)

Intelligent Image Media & Interface Lab.

- Pose Modeling
 - Appearance Model
 - Heuristic model [Haritaoglu,ICPR98]
 It is real-time but needs a precise background subtraction.
 - Geometric(Graphical) Model
 - 2D Cardboard model [Ju,ICAFGR96] Easy to model but can't express whole pose space.
 - 3D Volumetric model [Demirdjian,ICCV05] Express all poses but no real-time and difficult to be initialized and manipulated

- Pictorial Structures
 - [Felzenszwalb, Pictorial structures for object recognition, IJCV05]
- It is a kind of 2D cardboard model
- It is a framework how to model deformable object and to start tracking objects effectively

M. Andriluka et al. "Pictorial Structures Revisited: People detection and Articulated Pose Estimation" CVPR09

- A generic approach based on the pictorial structures framework
- The Adaboost classifiers are trained by appearance of body parts
- BP(Belief Propagation) to infer the posterior of each part
 - Limitation
 - BP is very slow
 - Pose estimation is dependent on part detection

- Pose Estimation
 - Sampling : Particle Filtering [Deutscher, CVPR00] It is robust in high speed of motion. But usually needs large number of particles.
 - Belief propagation by Brutal force search [Pearl, CVPR03] Very powerful algorithm. But it needs huge computational cost of CPU time.
 - Non-parametric belief propagation [Sigal, CVPR04]

Improved version of BP. But it needs very slow Gibbs sampler.

- Initial Positioning
 - Automatic Initialization for starting pose estimation
 - Pedestrian Detector, Part Detector or Head(Face) Detector is used to set the initial configuration of a defined pose model.

Intelligent Image Media & Interface Lab.

Our Approaches

- Pose Modeling with Pictorial Structures
 - Easy to use

Heuristic knowledge for hierarchical appearance of upper body is modeled by Pictorial Structure

• Real-time

It could be used in real-time because it has reasonably enough small size of Pose Space.

- It has enough deformability of upper body motion.
- Pose Estimation with Sampling (Particle Filtering)
 - Free from textures and colors We use Chamfer matching which is robust in various environment.
 - Independent of trained data All process are not related with the learning result.
 - Fast sampling

Hierarchical Key Pose is effective in sampling calculation

Pictorial Structured Filtering

- General Particle Filter [Yang, ICCV05]
 - A Bayesian sequential importance sampling technique which recursively approximates the posterior distribution using a finite set of weighted samples.
 - Consists of two steps : Prediction, Update.

Prediction

The probabilistic transition model $p(x_t|x_{t-1})$ is used to predict the posterior at time t.

$$p(\mathbf{x}_{t}|\mathbf{z}_{1:t-1}) = \int p(\mathbf{x}_{t}|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{z}_{1:t-1}) d\mathbf{x}_{t-1}$$

Update

At timet , the state can be updated with the observation $p(z_t|x_t)$.

$$p(x_t|z_{1:t}) = \frac{p(z_t|x_t)p(x_t|z_{1:t-1})}{p(z_t|z_{1:t-1})}$$

Intelligent Image Media & Interface Lab.

Procedure for Pose Estimation

Upper Body Modeling with Pictorial Structures

Intelligent Image Media & Interface Lab.

Pictorial Structured Model

$$X_{i} = \{x, y, dx, dy, w, h\}$$
(1) (2) (3)

Part location given by its parents
 Spring-like displacement
 Rectangular size of part

Intelligent Image Media & Interface Lab.

Key Pose Library

- Building KPL.
 - Two exemplar visual features

Intelligent Image Media & Interface Lab.

Automatic Initialization

- Training
 - Feature vector of a key pose

 $f = [d_i]^T \ 1 \le i \le 12$

$$d_i = m(kp_i, kp_edge_i)$$

Where

m() : chamfer distancekp : key posekp_edge : edge image of key pose image

Intelligent Image Media & Interface Lab.

Automatic Initialization

- Key Pose Detection
 - Feature vector for Input Silhouette Image

 $q = [d_i]^T$ $1 \le i \le 12$ $d_i = m(kp_i, Silouette_edge)$

Determine Key Pose with Diffusion Distance

 $kp = arg \min dd(q, f_i)$ Where dd(): Diffusion Distance $dd(h_1, h_2) = T(h_1) - T(h_2)$ $T(h) = \int_1^{12} \prod_{1}^t g * h dx$ q() : Gaussian Function Where

Intelligent Image Media & Interface Lab.

Automatic Initialization

Initialize Particle Filter

- Particle (Sample) $s_i = [X_{i,t}, X_{i,t-1}, X_{i,t-2}, w]^T$, $0 \le i \le 5$
- $kp_t = [l_{i,t}]^T$, $0 \le i \le 5$ • Key Pose
- Initialization $X_{i,t} = I_{i,t}, X_{i,t-1} = I_{i,t}, X_{i,t-2} = I_{i,t}, 0 \le i \le 5$ (for all particles)
- Transition (in pose estimation process)

 $X_{t+1} = A(X_{t-1} - X_t) + B(X_{t-2} - X_t) + C GaussRand() + X_t$

Similarity Measurement

• Best Configuration of Pictorial Structures

$$C^* = \operatorname{argmin}(\sum_{i=1}^{n} m_i(l_{i,t}) + \sum_{(v_i,v_j)} d_{i,j}(l_{i,t}, l_{j,t}))$$

- m() : Part Matching Score Where (Chamfer Distance)
 - d() : Link Score (Euclidian Distance)

Similarity Measurement

Part Matching Score

$$m_{i}(l_{i,t}) = \frac{1}{n \times max(dist)} \sum_{(x,y) \in l_{i,t}} dist(x,y)$$

Chamfer Distances of Part edges

Chamfer Matching

Intelligent Image Media & Interface Lab.

Similarity Measurement

Link Score

Pictorial Structured Filtering

• Our Particle Filter

- General Particle Filter is used in our tracking frame work with our sampling technique.
- Consists of three steps : Sampling, Prediction and Update
 - Sampling Number
 - Particle Set (at the start point, t=0) [100%] = [Key Poses]
 - Particle Set (in the processing time, t>0) [n1: n2: n3] = [Best Weighted Particle : Best 5 Particles : Key Poses]
 # of Particle (N) = n1+n2+n2 = 2,000

Pictorial Structured Filtering

Sampling with Key Poses

- The diffusion distances of key poses are transformed as weights.
- Weights are used to calculate how many particles of each key pose are need to be sampled.
 - Normalized diffusion distances

$$d_i = dd(q, f_i)$$
, $1 \le i \le 12$ $n_d_i = \frac{d_i}{\sum d_i}$

Normalized weights

$$w_i = 1.0 - n_d_i$$

Sample numbers of key pages $n_w_i = \frac{w_i}{\sum w_i}$

Sample numbers of key poses

$$n_i = w_i \times N$$

where N: The number of particles

Intelligent Image Media & Interface Lab.

Chonnam National University

1

Algorithm Overview

Intelligent Image Media & Interface Lab.

Experimental Results

Intelligent Image Media & Interface Lab.

Tracking Results

Intelligent Image Media & Interface Lab.

Game Interaction with Pose Recognition

- Pose Recognition using HoG and SVM
- Periodic queue matching for robust analysis
- HMM with previously trained state transition probability

Intelligent Image Media & Interface Lab.

Game System

Intelligent Image Media & Interface Lab.

Gesture Game: demo(1)

Intelligent Image Media & Interface Lab.

Gesture Game: demo(2)

Intelligent Image Media & Interface Lab.

Tabletop Display: Architecture

Tabletop Display: examples

[1997] Ullmer, B.

Rear projection Tangible User Interface Multi touch based IR Augment using LC screen

Intelligent Image Media & Interface Lab.

TouchFace-I & II

TouchFace-III & IV

Intelligent Image Media & Interface Lab.

FTIR: Frustrated Total Internal Reflection

DigiPet: Abstract

Content Interaction

Intelligent Image Media & Interface Lab.

TouchFace-V

tangible-book :: RealBook

size : 40cm(w) x 50cm(l) x 70cm(h)

weight : 6.2kg

Intelligent Image Media & Interface Lab.

Algorithm: Abstract

A Compact Interactive Tabletop Projection-Vision Interface

Intelligent Image Media & Interface Lab.

HAND GESTURE

Precise Finger Touch Recognition

• To extract unique patterns from multiple depth section

 \rightarrow Multi-depth layer : slice pattern

Pattern Analysis

Intelligent Image Media & Interface Lab.

Intelligent Image Media & Interface Lab.

Intelligent Image Media & Interface Lab.

Conclusion

- Research paradigm of simple approach with real-time processing is presented
- Some visual recognition algorithms are presented for interactive systems
- Pose estimation algorithm for game interaction is presented
- A hierarchical pose estimation algorithm of upper body based on pictorial structures is proposed
- Real-time interaction on tabletop display is presented for content interaction

Thank You !!

leecw@jnu.ac.kr

Intelligent Image Media & Interface Lab.

