#### Influence Maximization in Social Networks and Big Data Programming Principles

Hwanjo Yu POSTECH <u>http://dm.postech.ac.kr</u>



#### **Over 1 Billion SNS users !!**



# Linked in





#### **Abstracting Social Networks**











#### **Quantifying Influence**



#### The expected number of entities influenced by a node set S

#### **Influence Maximization**

 GOAL : finding the k most influential individuals in social networks





## The expected number of entities influenced by *S* DEPENDS ON

#### how influence is propagated through a graph



#### **Influence Diffusion Model**

*IC and LT model (Kempe 2003 KDD) IC-N model (Chen 2011 SDM) CT-IC model (Lee 2012 ICDM)* 

#### Independent Cascade (IC) model



#### Independent Cascade (IC) model



#### Independent Cascade (IC) model



#### **Micro Level**



## Evaluating $\sigma(S)$ with IC model

- #P-hard
- Heuristics
  - Monte-Carlo Simulation (KKT 03)  $\rightarrow$  [1]
  - Shortest path between two nodes (KS 06)  $\rightarrow$  [2]
  - Simultaneous simulation (CWY 09)  $\rightarrow$  [1]
  - Breaking down a graph into communities (WCS 10)  $\rightarrow$  [1]
  - PMIA: Local arborescence based on the most probable path (CWW 10) → [2] (the state-of-the-art algorithm)
  - [1] : too long processing time due to influence diffusion simulations
  - [2] : can be applied to only IC model
  - IPA [ICDE 2013] : 10x times faster, accurate, extendible to other ICbased models, easily parallelized... (will be discussed later)

#### **Macro Level**



## **Greedy Algorithm (KDD 03)**

• Repeatedly select the node which gives the most marginal gain of  $\sigma(S)$ 

Algorithm 1 Greedy(G, k)1:  $S = \phi$ 2: for i = 1 to k do3:  $u = \arg \max_{v \in V \setminus S} \sigma(S \cup \{v\}) - \sigma(S)$ 4:  $S = S \cup \{u\}$ 5: end for6: return S

It guarantees approximation ratio 1 - 1/e, if  $\sigma(S)$  satisfies *non-negativity, monotonicity, and submodularity* 



IC (Independent Cascade) Model

## Existing Models Ignore ...

An individual can affect others multiple times..



## Existing Models Ignore ...

Marketing usually has a deadline..



#### CT-IC: Continuously Activated and Time-Restricted Independent Cascade Model for Viral Marketing [ICDM 2012]

- 1.<u>Propose a new influence spread model</u>, *CT-IC*, for viral marketing, which generalizes previous models such that
  - An individual can affect others multiple times.
  - Marketing can have a deadline.
- 2.<u>Prove CT-IC model satisfies *non-negativity, monotonicity, and* <u>submodularity</u> and thus guarantees 1 – 1/e approximation ratio.</u>
- 3.Harder to evaluate  $\sigma(S)$  in CT-IC => PMIA does not work! => <u>CT-IPA</u> (an extension of IPA [ICDE 2013])

#### Three conditions for applying Greedy algorithm

- Non-negativity
- Monotonicity
- Submodularity
- **CT-IC** satisfies all three conditions



#### For $S \subseteq T, \sigma(S) \leq \sigma(T)$

For 
$$S \subseteq T$$
,  
 $\sigma(S \cup \{v\}) - \sigma(S) \ge$   
 $\sigma(T \cup \{v\}) - \sigma(T)$ 

Theorem 1: The influence spread function  $\sigma(\cdot, t)$  is monotone and submodular for all  $t \ge 0$ .

#### Dataset

| Dataset                       | HEP   | PHY   | EPINION | AMAZON |
|-------------------------------|-------|-------|---------|--------|
| Directedness                  | Undir | Undir | Dir     | Dir    |
| # of Nodes                    | 15K   | 37K   | 76K     | 262K   |
| # of Edges                    | 59K   | 232K  | 509K    | 1235K  |
| # of Connected<br>Components  | 1781  | 3883  | 2       | 1      |
| Average Size of<br>Components | 8.6   | 9.6   | 38K     | 262K   |
| $\theta$ for CT-IPA           | 1/32  | 1/64  | 1/64    | 1/16   |

#### Model Comparison : IC vs. CT-IC

Table II TOP-20 SEED NODES OF IC MODEL AND CT-IC MODEL SOLUTION.

|                      |                      |        |       | (a) On I | РНҮ    |        |        |  |  |  |
|----------------------|----------------------|--------|-------|----------|--------|--------|--------|--|--|--|
|                      | IC model             |        | 4840  | 1568     | 5192   | 5120   | 7387   |  |  |  |
| IC                   |                      |        | 12081 | 2356     | 10653  | 4115   | 23571  |  |  |  |
| solution             |                      | 3460   | 3808  | 969      | 809    | 5567   |        |  |  |  |
|                      |                      |        | 2443  | 3566     | 5312   | 6342   | 3673   |  |  |  |
|                      | CT-IC model solution |        | 4840  | 5192     | 5120   | 1568   | 809    |  |  |  |
| CT-I                 |                      |        | 4115  | 2356     | 3460   | 23571  | 12081  |  |  |  |
| so                   |                      |        | 7132  | 3842     | 10653  | 4109   | 3673   |  |  |  |
|                      |                      |        | 6342  | 3712     | 2928   | 3982   | 2289   |  |  |  |
| (b) On AMAZON        |                      |        |       |          |        |        |        |  |  |  |
| IC model solution    |                      | 1      | 7747  | 222839   | 25699  | 18076  | 168039 |  |  |  |
|                      |                      | 1      | 8337  | 232448   | 7266   | 11129  | 45391  |  |  |  |
|                      |                      | 17     | 6067  | 9657     | 64815  | 183084 | 27562  |  |  |  |
|                      |                      |        | 9541  | 14461    | 238375 | 114241 | 1385   |  |  |  |
| CT-IC model solution |                      | 1      | 7747  | 176067   | 56415  | 51234  | 200657 |  |  |  |
|                      |                      | 238375 |       | 18076    | 236670 | 259011 | 222839 |  |  |  |
|                      |                      | 6290 2 |       | 205434   | 143531 | 199539 | 59541  |  |  |  |
|                      |                      | 2      | 5699  | 178335   | 82533  | 114241 | 95315  |  |  |  |

#### 

#### Model Comparison : IC vs. CT-IC



Figure 2. Comparison between IC and CT-IC models.

#### **Effect of Marketing time Constraint**



Figure 3. The change of influence spread with respect to T.

#### **Influence Spread**



Figure 4. Influence spread of various algorithms.

#### **Processing Time**



Figure 5. Processing time of various algorithms.

Finding most influential individuals in SNS => Influence maximization => NP-hard in Macro & #P-hard in Micro



The state-of-the-art algorithms for IC-based models => **PMIA** [KDD 2010] and **MIA-N** [SDM 2011].



IPA:

Scalable and Parallelizable Processing of Influence Maximization for Large-Scale Social Network [ICDE 2013]

#### *IPA:* Scalable and Parallelizable Processing of Influence Maximization for Large-Scale Social Network [ICDE 2013]

- 1. 10x times faster than PMIA (the state-of-the-art algorithm)
- 2. Uses much less memory than PMIA;
  - IPA successfully produces results on graphs of millions of nodes using 4GB memory where PMIA fails with 24GB memory.
- 3. Accurately approximates influence spread;
  - IPA's accuracy is close to that of Greedy solutions with 20k times MC simulation and is higher than that of PMIA overall.
- 4. Can be applied to all IC-based models;
  - PMIA cannot be applied to CT-IC model.

#### 5. **Easily parallelized**;

• The parallel IPA speeds up as # of CPU cores increases, and more speed-up is achieved for larger data sets.

#### *IPA:* Scalable and Parallelizable Processing of Influence Maximization for Large-Scale Social Network [ICDE 2013]

- Key Ideas
  - Extremely localizing influence: evaluating influence based on path between two nodes
  - "Path" includes all meaningful(?) paths, not only the shortest paths => Use more memory initially but extremely simplify marginal influence computation => memory-efficient computation of CELF greedy
- Result
  - Fast
  - Accurate
  - Memory efficient
  - Flexible
  - Parallelizable

#### Intuition of IPA

- Extremely localizing influence
  - Influence path between two nodes as influence evaluation unit
  - Considering all path is not tractable (#P-hard)
  - Considering all meaningful path
    - Computing margin is simple
    - Save memory by holding the meaning paths of only top 3k nodes in the priority queue
  - PMIA considers only the shortest paths
    - Computing margin is complicated
    - Need to hold all pair shortest paths

# Meaningful Influence Path in IC model

$$p = \langle v_1, v_2, \cdots, v_m \rangle$$

$$ipp(p) = \left\{ egin{array}{cc} 0 & , p = \langle 
angle \ \prod_{i=1}^{m-1} w_{(v_i,v_{i+1})} & , p = \langle v_1, \cdots, v_m 
angle 
ight.$$



#### Gathering influence paths



Easily obtained by graph traversal

### Approximating $\sigma(\{v\})$

$$\hat{\sigma}(\{v\}) = 1 + \sum_{u \in O_v} \hat{\sigma}_u(\{v\})$$

$$\hat{\sigma}_u(\{v\}) = 1 - \prod_{p \in P_{v \to u}} (1 - ipp(p))$$



$$\hat{\sigma}_e(\{\mathbf{a}\}) = 1 - \{(1 - 0.0001)(1 - 0.001)(1 - 0.001)\} = 0.0021$$

Approximating  $\sigma(S \cup \{v\}) - \sigma(S)$ 

•  $\sigma(\{v\}) \neq \sigma(S \cup \{v\}) - \sigma(S)$ • influence blocking!!!!



•We should detect blocked(invalid) paths

#### Detecting influence blocking

• Current seed set : S



•New seed node : v

 $\forall u \in S.(\langle v, \cdots, u, \cdots \rangle \in P_{v \to V})$ 

• Valid Paths

$$P_{S \to u}^{valid} = \{ p | p \in P_{S \to u}, | p \cap S | = 1 \}$$

#### Approximating $\sigma(S \cup \{v\}) - \sigma(S)$

## $\hat{\sigma}(S \cup \{v\}) - \hat{\sigma}(S) = 1 + \sum_{u \in O_v \cup \{v\}} \{\hat{\sigma}_u(S \cup \{v\}) - \hat{\sigma}_u(S)\}$

$$\hat{\sigma}_u(S) = 1 - \prod_{p \in P_{S \to u}^{valid}} (1 - ipp(p))$$

## CT-IPA : an extension of IPA

• All we need is redefining *ipp(p)!!* 

$$p = \langle u = u_0, u_1, \cdots, u_{l-1}, u_l = v \rangle$$

$$ap(v,t) = \sum_{i=0}^{t-1} c_{uv}^{(t-i)} ap(u,i)$$

$$= \begin{bmatrix} ap(u,0) \\ ap(u,1) \\ \vdots \\ ap(u,t-1) \end{bmatrix}^{\mathrm{Tr}} \begin{bmatrix} c_{uv}^{(t)} \\ c_{uv}^{(t-1)} \\ \vdots \\ c_{uv}^{(1)} \end{bmatrix},$$

$$c_{uv}^{(t-i)} = pp_{t-i-1}(u,v) \prod_{j=0}^{t-i-2} (1 - pp_j(u,v)).$$

## CT-IPA : an extension of IPA

#### • In a matrix form


# CT-IPA : an extension of IPA

• Finally

Lemma 3: The probability that  $u \in S$  activates  $v \in V \setminus S$ only through a path  $p = \langle u = u_0, u_1, \cdots, u_{l-1}, u_l = v \rangle$  is  $ipp(p) = [1 \ 0 \ \cdots \ 0] \left( \prod_{i=0}^{l-1} \mathbf{C}_{u_i u_{i+1}} \right) [1 \ 1 \ \cdots \ 1]^{\mathrm{Tr}},$  (2) where  $u_i \in V \setminus S$  for all  $i = 1, \cdots, l$ , and the order of matrix multiplication is from i = 0 to l - 1.

| Dataset           | Epinion   | Stanford  | DBLP       | Patent   | LiveJournal |
|-------------------|-----------|-----------|------------|----------|-------------|
| # of Nodes        | 75.8K     | 281K      | 655K       | 3.77M    | 4.85M       |
| # of Edges        | 509K      | 2.31M     | 3.98M      | 16.5M    | 69.0M       |
| Average Degree    | 6.71      | 8.20      | 6.10       | 4.38     | 14.2        |
| Max In/Out Degree | 3032/1798 | 38606/255 | 588/588    | 779/770  | 13906/20293 |
| Direction         | directed  | directed  | undirected | directed | directed    |



Processing Time

## Progressiveness



Fig. 5. Processing time as the number of seed nodes increases (X axis : number of seed nodes, Y axis : processing time in seconds)

# Memory Handling

#### TABLE III

PRIORITY QUEUE SIZE VS. INFLUENCE SPREAD (k = 50)

| priority queue size | Epinion | Stanford | DBLP | Patent | LiveJournal |
|---------------------|---------|----------|------|--------|-------------|
| k                   | 12496   | 21172    | 7533 | 10551  | 106745      |
| 2k                  | 12486   | 25505    | 7549 | 10899  | 107469      |
| 3k                  | 12476   | 25509    | 7550 | 10902  | 107482      |
| 4k                  | 12482   | 25509    | 7553 | 10900  | 107451      |

#### TABLE IV

Memory Usage of IPA (k = 50)

| priority queue size | Epinion | Stanford | DBLP  | Patent            | LiveJournal       |
|---------------------|---------|----------|-------|-------------------|-------------------|
| IPA V )             | 1.6GB   | 9.2GB    | 17GB  | $\times (> 24GB)$ | $\times (> 24GB)$ |
| IPA(3k)             | 207MB   | 597MB    | 419MB | 1.6GB             | 3.6GB             |
| PMIA( V )           | 418MB   | 1.6GB    | 5.5GB | 16GB              | $\times (> 24GB)$ |

# Influence



Figure 5: Influence Spread in Epinion and Stanford (X axis : number of seed nodes, Y axis : influence spread)

# Influence



Figure 6: Influence Spread in DBLP (X axis : number of seed nodes, Y axis : influence spread)

# Influence



Figure 7: Influence Spread in Patent and LiveJournal (X axis : number of seed nodes, Y axis : influence spread)

# Parallelization Effect



Scaling up to Billion-Nodes Network using Map-Reduce?

Very Hard !

Something is easily parallelized does NOT mean it can be easily "mapreduced".

Big data processing ≠ Parallel data processing

How different?



#### **Big Data Analysis System**





# Storage Trend

# Centralized storage: SAN, NAS Distributed storage servers Network, RAID Fig data => Network, RAID Fig data => Need scalability Fig data => Need scalability

- Proprietary, Highly reliable HW
  Scale-up: Expensive
- => Fast data transfer

- Commodity HW
- => Scale-out: Inexpensive
- => Slow data transfer
- => Need new programming model !



# MapReduce Principles

- Run operation on data nodes: Move operations to Data
- Minimize data transfer

## **Programming is Hard!!!**

A straightforward extension of parallel IPA algorithm produce <u>too</u> <u>many iterations</u> and <u>heavy data</u> <u>transfer from map to reduce</u>

# **Design Tips**

- Lower the work of reduce
  - Use combine if possible
- Compression of map's output helps decreasing network overhead
- Minimize iterations and broadcasting
  - Sharing information is minimized
- Use bulk reading
  - Too many invocation of map may incur too many function calls
- Design algorithm to have enough reduce functions
  - Having only a single reduce will not speed up

# Big Data Subprojects

- Big data programming framework
  - MapReduce (Batch): HDFS & Hadoop, Dryad
  - MapReduce (Iterative): HaLoop, Twister
  - MapReduce (Streaming): Storm (Twitter), S4 (Yahoo), InfoSphere Streams (IBM), HStreaming
- NoSQL DB
  - HBase (Master, slaves), Cassandra (P2P, "Gossip", no master server), Dynamo (Amazon), MongoDB (for text), ...
- Graph processing engine
  - Pregel, Giraph, Trinity, Neo4J

# **Big Data Solutions**

- Open source solutions >> Closed solutions
  - Commercial systems such as EMC and Oracle also use open sources like Hadoop and Hbase.
- Big data systems are composed of *Hadoop* and many related *subprojects*
- Each subproject has its own *characteristics* and *functions* => require much *experience* and *know-how* to understand and efficiently handle them to develop a Big data processing system





#### Teragen: HDD (7200 RPM) vs SSD (eMLC) (16 nodes, 160 mappers)



#### Terasort: HDD (7200 RPM) vs SSD (eMLC) (16 nodes, 160 mappers)



#### Total Time (sec) ■ HDD(32 node) SSD(eMLC)

#### Teragen: HDD (32 nodes) vs SSD (16 nodes)

Data size (GB)

#### Terasort: HDD (32 nodes) vs SSD (16 nodes)



# SSD where?

- Replacement model
  - Replace HDD with SSD
  - Throw out HDD?
  - Big data => Expensive scale-out?
- Caching model
  - Use SSD as cache between memory and HDD
  - Ratio of SSD and HDD?
  - Data duplication?
- Tiering model
  - Put hot data to SSD and cold data to HDD
  - Data migration?
- Distributed model
  - Don't care migration, don't care ratio, no duplication, no need to throw out HDDs
  - Load balancing by Hadoop



Storage

Cache



Tier-0 (Hot data)

Tier-1 (Cold data)





# Reality

- Linkedin
  - Develop NoSQL database "Voldemort" which uses SSDs
  - Twitter
    - Optimize MySQL for SSDs (e.g., page-flushing behavior, reduction in writes to disk)
- Amazon
  - Develop SSD-based NoSQL database "DynamoDB" as a new service in AWS
- EBay
  - Replace its internal virtual storage layer with 100TB SSDs (2011)
  - Saw 50% reduction in rackspace, 78% drop in power consumption and a 5 times boost in I/O performance.
- Microsoft
  - Replace Bing Search runtime filesystem with Intel SSD (2011)
  - Uses Intel SSDs in their KeyValue storage for Bing social search
  - Microsoft Research is working on Flash Server Farm Called CORFU (Cluster Of Raw Flash Units)
- Facebook
  - Improve MySQL performance by adding Fusion-io as caching layer



### Replacement models > Caching models >> Distributed Model

Develop own solutions > Use Big data subprojects

# SSD and Hadoop

Most companies use the replacement or caching models.

# **Distributed model** is promising but No SW platform are yet developed for it.

# SSD Research for Big Data Processing

Data transfer between nodes is expensive.

Hadoop: Move operations from server to data nodes (Macro-level trend)

Data transfer between CPU and SSD is expensive.

SSD: Move operations from CPU to SSD? (Micro-level trend ?)





# POSTECH Cluster for big data analytics











## POSTECH Cluster System (150 nodes)

- Hardware
  - DELL PowerEdge R610
  - 150 nodes (100 for data mining research, 50 for others)
  - 2 G NET (2 \* 1 G)
- Each node
  - 12 cores (2 \* six-core CPU: Intel Xeon X5650 2.66GHz)
  - 24 Gb memory (6 \* 4Gb: 1333Mhz Dual Ranked RDIMMs)
  - 3 Tb HD (6 \* 500Gb 7200k rpm SATA)
- Software
  - CentOS 5.5 (x86\_64)
  - Intel Compiler, MPI, SGE, Hadoop
- Purchased another 150 SSD nodes, each 16 cores, 36G mem, 4T HDD, 200G SSD!

# DM lab. at POSTECH

- Projects
  - Big Data Mining (with 교과부)
  - Mobile Data Mining and Search (with 교과부)
  - Energy Efficient Mining for Mobile Devices (with 지경부)
  - Big Data Mining with SSD (with ...)
  - Open Data Market (with ...)
  - Mining for Online Advertisers (with ...)
- Recent Publications
  - Recommendation [ICDM 2011]
  - Mining for Online Advertisers [CIKM 2011]
  - Location Privacy on Mobile Devices [KDD 2011]
  - Social Network Mining [ICDM 2012, ICDE 2012]
  - Mobile Multimedia Search [KDD 2012]
  - Relevance Feedback Search [SIGMOD 2011, KDD 2012]
