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Big Graphs in Real World

Facebook
Twitter
LinkedIn
Last.FM
LiveJournal
del.icio.us

# of nodes (vertices)

1Billion
640 Million
60 Million
40 Million
25 Million
5.3 Million

# of edges
140 Billion
10 Billion
0.9 Billion
2 Billion
2 Billion
0.7 Billion
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Big Graph Processing

[VLDBI10, SIGMODI |, VLDBI3, SIGMODI3,
KDDI3, SIGMOD 4]

iGraph vl.0

*Han,W, Lee, J., Duc, P,and Yy, ., “iGraph: A Framework for Comparisons of Disk-
based Graph Indexing Techniques,” In VLDB 2010. (invited to the VLDB Journal as best
of VLDB 2010 papers)

*Han,W,, Duc, P, Lee, J., Kasperovics, R.,and Yu, J.,“iGraph in Action: Performance
Analysis of Disk-Based Graph Indexing Techniques,” In SIGMOD 201 1.

iGraph v2.0 + Turboso
*Lee, J., Han,W,, Kasperovics, R., and Lee, J.,“An In-depth Comparison of Subgraph
Isomorphism Algorithms in Graph Databases,” In VLDB 201 3.

*Han,W, Lee, ].,and Lee, J.,“Turbo;5: Towards Ultra-Fast Subgraph Isomorphism
Search in Graph Databases,” In SIGMOD 201 3.

TurboGraph

*Han,W. et al., "TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale
Graphs in a Single PC," In KDD 2013. (oral presentation)

*Kim, J., Han,W,, et al.,“OPT:A New Framework for Overlapped and Parallel
Triangulation in Large-scale Graphs,” In SIGMOD 2014 6




Subgraph Isomorphism
(Subgraph Matching)

* One of the most important graph queries

* Find all subgraphs that match a query graph
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Many Important Applications
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Problems in Existing Indexing
Methods: Motivation for iGraph

Serious problems in existing experiments

* Compared indexes are implemented in different code
bases

Elapsed times reported can vary depending on
implementation skills

Number of disk I1/Os not used.
Small database (< 20 Mbytes)

* All files are cached in the OS file system cache



iGraph vi.0 [VLDBI10, SIGMODI I]

* First common framework for disk-based graph
indexes

* Supports both mining-based and non-mining
based indexes

* Selected as a best track paper in VLDB 2010

* Open source: http://www.igraph.or.kr

* Has been used in 26 countries



Universities using iGraph v|.0
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Science and Technology
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iGraph v2.0 [VLDBI3]

* Focuses on the subgraph isomorphism algorithm

* The first generic framework that allows
implementation of any subgraph isomorphism
algorithm by extending this framework

* Provides in-depth analysis and comparison of the
state-of-the art algorithms



Turbo,s, [SIGMOD13]

* A new subgraph isomorphism algorithm



Three things to remember
* Candidate region exploration
* Neighborhood equivalence class (NEC)

 Comb/Perm strategy



Review of Existing Subgraph
Isomorphism Algorithm

* Backtracking algorithm
* Find solutions by incrementing partial solutions or
discarding them when they cannot be completed

matching order: <u,, u,, u;>

u: v vy
T

U.ZZ V, V, V5
I |

us: % ¥ @

call tree T

data graph: g



Related Work

 Exact search

* Non signature-based
e Ullmann [JACMI1976]

An In-depth Comparison of Subgraph Isomorphism
Algorithms 1in Graph Databases [VLDB2013]

* Signature-based
* GraphQL [SIGMOD2008]
« GADDI [EDBT2009]
 Spath [VLDB2010]

* Similarity search

- TALE [ICDE2008] NESS [SIGMOD201 1], NEMA
[VLDB2013], ...
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Importance of matching order

matching order O,: <u,, u;, u, , u,>




Importance of matching order

matching order O,: <u,, u;, u, , u,>




Importance of matching order

matching order O,: <uy, u,,w, , u;>

All subgraph isomorphism methods suffer
from the notorious matching order

problem!
\_Y_} \ v J \_Y_}

Good matching order O,: needs only 51 matches

9




Motivation |I: One good matching
order is not enough!

O,(=<u;,u3,u, uy >): 500,001 matches for g, + 51 matches for g,
0,(=<uy, uy, u,, u;>): 51 matches for g,

+ 500,001 matches for g,

Y
10Xs 10,000Y's 57Zs

|
5Ys 10,000Zs 10Xs

O,: 500,001 matches

O,: 51 matches

0O,: 51 matches

0,: 500,001 matches




Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

Y
10,000Ys 57s 5Ys
(o8



Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases
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Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

(A) A A

X X Y)....\ Y Z ... Z\Y Y Z )....| 7 X X
1
V4 V4 X XHX). X Y Y
( J \_Y_} ( J

| | | |
10Xs 10,000Y's 5Zs 5Ys ) 10,000Zs 10Xs

g1 \ 5 23



Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

(&) A A

u, u u - /-
2 3 4 X X Y ... Y 7 ZYY..lY Z ...... / Z) (X X
i P
7 V4 X XHX ). {X Y Y
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Motivation 2: Useless Permutations

A
> data graph g

matching order: <u,, u,, ..., u>

Vi
|
V2
Vs \2 Vs
N S
Vo Vs V3 Vs V3 Vg
| | | | | |
Ve V4 Vs V3V, V3
I | | |
% ¥ X X X ¥
call tree T 25



Neighborhood Equivalence Class
(NEC)

* Each query vertex in the same NEC has
* the same label

* the same adjacent query vertices

B ) INEC,

“query graph ¢

26



Key Ildea 2: Comb/Perm strategy with
NEC

* Avoid useless permutations

matching order: <u,, u,, {u;,u,,us},u,, u>

|
Us,Uy,Us: { }
e
Ug X
uy:

V4 candidate vertices for NEC,

Ve 27
" data graph g



Contributions of Turbo,,

Up to four orders of magnitude performance
improvement over the state of the art method*

Candidate region exploration
* Provides good and robust matching order

* Completely solves the notorious matching order problem

Neighborhood equivalence class and Comb/Perm
strategy

* Avoid useless permutations

28



Comparison with STW

* Comparison with STW*
* Graph: WordNet

10*

sTw{voraneyy - 8 machines
TurboigofVordNet) -@-: 1 machine

Avg. elapsed time (msec.)
8—L

3 4 5 6 7 8 9 10
Query size(# of vertices)

Del_ of the art!

g
28,096 times faster than the state

~

/

DB 2012.



Best Characteristics of Turbo,

Ultrafast and Robust performance

* Online analytics is possible!
Parameter-free

Little index maintenance cost

* Supports very large evolving graphs!

Easily parallelizable

30



TurboGraph: A Fast Parallel Graph
Engine Handling Billion-scale
Graphs in a Single PC [KDD 3]

31



Motivation

g 8 ,
System Graphlab [VLDB’12]

approach RN Hedliee; Pregel [SIGMOD’10]

Distributed Gbase [KDD’11,VLDBJ’12]

Single machine

approach GraphChi [OSDI’12]

DBMS approach VERY SLOW for mining???

Can we exploit nice concepts in DBMSs without losing performance?

32



Comparison with other engines

Input graph
Pagerank Twiter  41M/1.468 | Spark[11(50 machines), 8.1 mn | 19.35 min | 27amin |
(5 fterations) ' —_— ' '
Pagerank Twitter 41M/1.468 Gbase[2](100 machines), 13.5 min B.42 i 0.62 min
(1 iteration)
Pagerank  vapooweb  1.418/6.638 | Gbese[21(100 machines), 13.0 mn|  20.90 min | 371 mn |
(1 iteration)

[1] I. Stanton and G. Kliot, "Streaming Graph Partitioning for Large Distributed Graphs,” KDD 2012. 33
[2] U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos, "GBASE: An Efficient Analysis Platform for Large Graphs," VLDB Journal, 2012.
[3] A. Kyrola, G. Blelloch, C. Guestrin, "GraphChi: Large-Scale Graph Computation on Just a PC," OSDI 2012.



Why is TurboGraph Ultra-fast?

* Fast Graph Storage Engine
* Full parallelism

* Multi-core parallelism

* Flash SSD IO parallelism
* Reading 400~500 Mbytes/sec from commodity SSDs
* 97K IOPS (High-performance Random Read)

* Full overlap
» CPU processing and I/O processin; 7
* 1/O latency can be hidden! S




Three things to remember

* Efficient disk/in-memory graph storage

* Pin-and-slide model

* Handling general vectors (see the
paper)

35



Challenges for Graph Storage
* Adjacency list vs. adjacency matrix

* Two types of graph operations in disk-based graphs
* Graph traversal (unique in graphs)

* Bitmap operations during computation

36



Disk-based representation in
TurboGraph

* Slotted page of | Mbyte size
* Page contains records corresponding to adjacency lists

* RID consists of a page ID and a slot number

* Vertex IDs or RIDs in adjacency list
* Vertex |ID approach
* Good for bitmap operation

* Bad for graph traversal
— requires a potentially LARGE mapping table!

* RID approach
* Good for graph traversal

* Seems to be bad for bitmap operation?? 3



RID (mapping) table

* Each entry corresponds to a page (not a single RID)

* Size is very small
* Each entry stores the starting vertex ID in the page

* Translation of RID (pagelD, slotNo) to vertex ID
* RIDTable[pagelD].startVertex + slotNo
* Can be done in O(I)

38



In-memory Data structures
* Buffer pool

* Mapping table from page ID to frame ID

* Hash-table based mapping incurs significant performance
overhead for graph traversal!

* TurboGraph uses a page table approach!

* A data structure for handling large adjacency list
(see paper)

39



Example

Logi Memory table RIDTable LOPL
.Eﬂ.l W'iEw l}agf_'.' dae dlE
buffer pool Dol 1 Volil1] 0[ps
! ! ! P11 Va|-11-1] 1| ps
: : | P2 P1 P2l 0 Val-1[1
i ; i P3| -1 V(0|2
i : | U I 2 P4 -1 Vg |-1|-1
i Disk slotted page list

40



Core operations in buffer pool

- PINPAGE(pid)/UNPINPAGE(pid)

* support large adjacency lists

 PINCOMPUTEUNPIN(pid, RIDList, uo)

Prepins an available frame
Issues an asynchronous I/O request to the FlashSSD

On completion of the I/O, a callback thread processes
the vertices in the RIDList by invoking the user-defined

function uo.Compute
After processing all vertices in RIDList, unpin the page

41



Supported Query Power:
Matrix-vector multiplication

G = (V,E), X (column vector)
M(G);: i-th column vector of G

Column view: y =Vl r1(@), x X,

* Applications can define their own multiplication and
summation semantics (the user-defined function
Compute can generalize both)

* M(G), is represented as the adjacency list of v,

We can restrict the computation to just a subset
of vertices V1] ~ VI[k]

42



Column-view of matrix-vector
multiplication in TurboGraph

Algorithm 1 Matrix-Vector-Multiplication(G = (V, F), X, . Y)

I: fori =1to|I|do
2: Compute(vyp-adj, X1, Y)
3: end for

43



Pin-and-Slide Model

* New computing model for efficiently processing the
generalized matrix-vector multiplication in the

column view

* Utilizing execution thread pool and callback
thread pool

44



Pin-and-Slide Model (cont’d)

e Given a set V of vertices of interest,

|dentify the corresponding pages for V
Pin the pages in the buffer pool

Issue parallel asynchronous I/O requests for pages
which are not in the buffer

Without waiting for the I/O completion, execution
threads concurrently process vertices in V that are in
the pages pinned

Slide the processing window one page at a time as
soon as either an execution thread or a callback thread
finishes the processing of a page

45



Example

Memory table RID Table LOPL
page table aole
buffer pool Po[ -1 Vo[1[-1] ©[ps
P11 V2]-1]-1 1| p4
P2 P1 P2l 0 V4]-1]-1
P3| -1 Ve 0|2
0 1 2 P4l -1 Vg |-1]-1
Disk slotted page lhist
2 I | Is 2 Iy | Is 2 Is | Is 7 Ip I | T5 | Is
p'ﬂ' . pl . p:'_" . pﬂr p4 2 Ip | s 2 Ia | Ig 2 Ty [T | T2 | I3 | T4

V| v
1=(0,1,1,1,0,,1)

|. identify pages (py, P|» P2» P3» P4) for |

2. Pinp,andp,

3. lIssue asynchronous I/O request for p,

4. Execution threads process v,, v;,and vy concurrently

5. On completion of I/O request for p, callback threads process v,

6. After processing any page, unpin the page and slide execution window
i.e., process p; and finally process p, 46



Processing Graph Queries

* We support graph queries based on matrix-
vector multiplication

* Targeted queries processing only part of a graph

* Global queries processing the whole graph

* Targeted queries

* BFS, K-step neighbors, Induced subgraph, K-step
egonet, K-core, cross-edges etc.

* Global queries

* PageRank, connected component

47



Experimental setup

Datasets

* LiveJournal (4.8M vertices), Twitter (42M vertices),
YahooWeb (1.4B vertices)

Intel i/ 6-core PC with 12 GB RAM
512GB SSD (Samsung 840 series)
Bypass OS cache to guarantee real I/Os

Main competitor
* GraphChi

48



Avg. elapsed time(sec, )

Targeted Queries

" GraphChi =3

TurboGraph

- — 10% ¢ - — 10°
GraphChi &3 . : GraphChi &3 _

TurboGraph mm ] § 1% b TurboGraph mm ] § 10¢ |
g 10?2} ] T 10%}
E 10"} ;g 107

or 1

g 10° F % 10

= AL = S,

E 107 ¢ 3 10

1072 - 107"

1-Nhr  2-Nhr  Egonet 1-Nhr  2-Nhr  Egonet
(a) LiveJournal. (b) Twitter.

Figure 5: Average elapsed time (Targeted queries).

1-Nhr  2-Nhr Egonet

(c) YahooWeb.

TurboGraph outperforms GraphChi by up to four orders of magnitude.
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Global Queries

200 . . 2500 . : 5 :
GraphChi 3 GraphChi — 10 GraphChi 3
TurboGraph — TurboGraph 4l TurboGraph -
é 150 | ] %‘ 2000 | - gm [
T T 1500 | Z 1p?
S 100} = £
o B 1000 | ] 102
T ] &
w2 ‘ 1 1 500 | - i 10"
] — 0 . 10°
PageRank Connected PageRank Connected PageRank Connected
Comp Comp Comp
(a) LiveJournal. (b) Twitter. (c) YahooWeb.

TurboGraph outperforms GraphChi by up to
27.69 times for PageRank.
144.1 | times for Connected Component™.

50
*upcoming paper for details and much faster performance



OPT: A New Framework for
Overlapped and Parallel

Triangulation in Large-scale
Graphs [SIGMOD 1 4]

51



Highlights of OPT

an overlapped and parallel disk-based
triangulation framework for billion-scale graphs

At the macro level, overlaps the internal
triangulation and the external triangulation

At the micro level, overlaps the CPU and |/O
operations

Achieves almost ideal performance

52



Internal triangles vs external
triangles

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

&
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Memory buffer

edges not in memory buffer
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Running example

1n

MEMORY

>‘}<

DISK

Py

P2

P3

P4
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Load p, and p,

MEMORY

DISK

Py

P4
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——

MEMORY

o

DISK

Py

P4
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MEMORY

DISK

Py

P4
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Effective disk access order of OPT

—

Scan direction



Comparison with GraphChi

LJ ORKUT TWITTER UK

OPT 6.39 18.51 469.40 480918
GraphChi-Tri 8387 19695 1850.26 4046.77

GraphChi-Tri/OPT | 13.44  10.64 3.94 8.41

For the Yahoo dataset, OPT outperforms GraphChi by 31 times!
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Conclusions

* We have presented a series of graph processing
frameworks for large-scale graphs
* iGraph 1.0 for graph indexing
* iGraph 2.0 + Turbo for subgraph isomorphism
* TurboGraph for graph analytics

60



Q/A
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Handling general vectors
* Indicator vector can be implemented as a bitmap

* However, what if we want to use general vectors
instead!

* Consider PageRank where we need random accesses
to pagerank values and out-degrees in two general
vectors

62



Main idea of handling general
vectors

Adopt the concept of block-based nested loop join

a general vector is partitioned into multiple
chunks such that each chunk fits in memory

Regard the pages pinned in the current buffer as a
block

Join a block with a chunk of each random vector
in-memory until we consume all chunks

Hide this mechanism as much as possible from
users! (see paper)
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chunkl chunk?
| output

outDegree || 2 | 2 | 2 |2 |2 | 2 T T .
| | 0 00%2| |oooo| |o0009| |o.090
PR i | 0 0082 |ooee| |ooeo| |o.009

prev. 110.143 [0.143 | 0.143 | 0.143 | 0.143 | 0.143}{ 0.143
! i 0 00%2| |oooo| |o0009| |o.090
- 0 0082 |oooo| |oo099| [0.000
0 0082 |oooo| |oo099| [0.000
. , . Ll o 0082 |oooo| |oo099| [0.000
buff: 1| | - | o 0 0 | [03ss| [0403

Bl K K| rowon el A I KRR
1z | sliding | v 1 b 55 @{4
blockl block?

uo.Compute(v;, Iterator(v;.adf)) = 0.85

¥ prevPR[j]

0.15

1=74%utDegree[j]

|V
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