
Big Graph Data Processing

1

Wook-Shin Han

POSTECH

Apr. 11, 2014



Outline

• Big (Graph) Data

• Big Graph Processing Techniques

• Conclusion

2



Welcome to Graph World

3

Friendship network

Protein interactions

Internet map

Semantic web

Call Graph



Big Graphs in Real World

4

# of nodes (vertices) # of edges

Facebook 1Billion 140  Billion

Twitter 640 Million 10 Billion

LinkedIn 60 Million 0.9 Billion

Last.FM 40 Million 2 Billion

LiveJournal 25 Million 2 Billion

del.icio.us 5.3 Million 0.7 Billion



Outline

• My Background

• Big (Graph) Data

• Big Graph Data Processing

• Conclusion

5



Big Graph Processing 
[VLDB10, SIGMOD11, VLDB13,  SIGMOD13, 

KDD13, SIGMOD14]

iGraph v1.0

•Han, W., Lee, J., Duc, P., and Yu, J., “iGraph: A Framework for Comparisons of Disk-

based Graph Indexing Techniques,” In VLDB 2010. (invited to the VLDB Journal as best 

of VLDB 2010 papers)

•Han, W., Duc, P., Lee, J., Kasperovics, R., and Yu, J., “iGraph in Action: Performance 

Analysis of Disk-Based Graph Indexing Techniques,” In SIGMOD 2011.

iGraph v2.0 + TurboISO

•Lee, J., Han, W., Kasperovics, R., and Lee, J., “An In-depth Comparison of Subgraph 

Isomorphism Algorithms in Graph Databases,” In VLDB 2013.

•Han, W., Lee, J., and Lee, J., “TurboISO: Towards Ultra-Fast Subgraph Isomorphism 

Search in Graph Databases,” In SIGMOD 2013.

TurboGraph

•Han, W. et al., "TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale 

Graphs in a Single PC," In KDD 2013. (oral presentation)

•Kim, J., Han, W., et al., “OPT: A New Framework for Overlapped and Parallel

Triangulation in Large-scale Graphs,” In SIGMOD 2014 6



Subgraph Isomorphism 

(Subgraph Matching)

• One of the most important graph queries

• Find all subgraphs that match a query graph

7

A A

B

Query graph Q Graph database D

G2 G3 G4

A B

A

A A A

B

B

A

B

A

B

B B

G1

B BAA

Answer



Many Important Applications

8

Chemical 

compound search

RDF query 

processing

Motif search

Malware 

detection

Malspec

Social network search



Problems in Existing Indexing 

Methods: Motivation for iGraph

• Serious problems in existing experiments

• Compared indexes are implemented in different code 
bases

• Elapsed times reported can vary depending on
implementation skills

• Number of disk I/Os not used.

• Small database ( 20 Mbytes)

• All files are cached in the OS file system cache

9



iGraph v1.0 [VLDB10, SIGMOD11]

• First common framework for disk-based graph 

indexes

• Supports both mining-based and non-mining 

based indexes

• Selected as a best track paper in VLDB 2010

• Open source: http://www.igraph.or.kr

• Has been used in 26 countries

10



Universities using iGraph v1.0

11



iGraph v2.0 [VLDB13]

• Focuses on the subgraph isomorphism algorithm

• The first generic framework that allows 

implementation of any subgraph isomorphism 

algorithm by extending this framework

• Provides in-depth analysis and comparison of the 

state-of-the art algorithms

12



TurboISO [SIGMOD13]

• A new subgraph isomorphism algorithm

13



Three things to remember

• Candidate region exploration

• Neighborhood equivalence class (NEC)

• Comb/Perm strategy

14



v6

Review of Existing Subgraph 

Isomorphism Algorithm

• Backtracking algorithm

• Find solutions by incrementing partial solutions or 

discarding them when they cannot be completed

15

data graph: g

A

B C

A

B C

v1

v2 v3

v4

v5 v6

matching order: <u1, u2, u3>

u1:

u2:

u3:

v1

v2

v4



v2 v5

v6

query graph: q

u1 A

B C

u2 u3u2

Av1

Bv2

Av4

B

v5

C

v6

Au1

C

u3

B

u2

C v3



call tree T

v3



Related Work

• Exact search

• Non signature-based

• Ullmann [JACM1976]

• VF2 [PAMI2004]

• QuickSI [VLDB2008]

• Signature-based

• GraphQL [SIGMOD2008]

• GADDI [EDBT2009]

• Spath [VLDB2010]

• Similarity search

• TALE [ICDE2008] NESS [SIGMOD2011], NEMA 

[VLDB2013], …
16

An In-depth Comparison of Subgraph Isomorphism 

Algorithms in Graph Databases [VLDB2013]



Importance of matching order

1717

matching order O1: <u1, u3, u2 , u4 >

Data graph: g1

query graph: q

u3

X

u2

Y

Au1

u3

Z

u4
YX Y

v1 A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

u1 A v1 A

Y

u4

Z

Z

X

Z
u3 u4u2

u1 u2

XX Y

Z Z X X




. . . . . .



Importance of matching order

1818

matching order O1: <u1, u3, u2 , u4 >

Data graph: g1

query graph: q

u3

X

u2

Y

Au1

u3

Z

u4
YX Y

v1 A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

u1 A v1 A

Y

u4

Z

Z

X

Z
u3 u4u2

u1 u2

XX Y

Z Z X X






10,000 Ys  10 Xs  5 Zs matchesBad matching order O1: needs 500,001 matches

. . . . . .



Importance of matching order

1919

matching order O2: <u1, u4, u2 , u3 >

Data graph: g1

query graph: q

X

u2

Y

Au1

u3

Z

u4
YX Y

v1 A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

u1 A v1 A

u4

Z

Z

X

Zu4u2

u1 u2

XX

Z Z X X






All subgraph isomorphism methods suffer 

from the notorious matching order 

problem!

10 Xs  5 Zs matchesGood matching order O2: needs only 51 matches  

. . . . . .



Motivation 1: One good matching 

order is not enough!

X

O1(= <u1, u3, u2, u4, >):

500,001 matches for g251 matches for g1 +O2(= <u1, u4, u2, u3 >):

51 matches for g2
500,001 matches for g1 +

O1: 51 matches  O1: 500,001 matches  

O2: 51 matches  O2: 500,001 matches  

10Xs 10,000Ys 5Zs 5Ys 10,000Zs 10Xs

.  .  .
g1

YY

A

X. . . . . . ZZ . . .. . .

X

u2

Y

A

u1

u3

Z

u4
ZY Z

A

Y. . . . . . XX . . .. . .

g2

Z Z. . . XX . . . X X. . . YY . . .



Key Idea 1: Candidate Region 

Exploration

• Solves the notorious matching order problem in 

graph databases

21

.  .  .

g1

YX Y

A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

X

u2

Y

A

u1

u3

Z

u4
ZY Z

A

Y. . . . . . XX . . .. . .

5Ys 10,000Zs 10Xs

g2

Z Z. . . XX . . . X X. . . . . . YY



Key Idea 1: Candidate Region 

Exploration

• Solves the notorious matching order problem in 

graph databases

22

.  .  .

g1

YX Y

A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

X

u2

Y

A

u1

u3

Z

u4
ZY Z

A

Y. . . . . . XX . . .. . .

5Ys 10,000Zs 10Xs

g2

Z Z. . . XX . . . X X. . . . . . YY



Key Idea 1: Candidate Region 

Exploration

• Solves the notorious matching order problem in 

graph databases

23

O1=<u1, u4, u2, u3 >

.  .  .

g1

YX Y

A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

X

u2

Y

A

u1

u3

Z

u4
ZY Z

A

Y. . . . . . XX . . .. . .

5Ys 10,000Zs 10Xs

g2

Z Z. . . XX . . . X X. . . . . . YY



Key Idea 1: Candidate Region 

Exploration

• Solves the notorious matching order problem in 

graph databases

24

O1=<u1, u4, u2, u3 > O2=<u1, u3 , u2, u4>

.  .  .

g1

YX Y

A

X. . . . . . ZZ . . .. . .

10Xs 10,000Ys 5Zs

X

u2

Y

A

u1

u3

Z

u4
ZY Z

A

Y. . . . . . XX . . .. . .

5Ys 10,000Zs 10Xs

g2

Z Z. . . XX . . . X X. . . . . . YY



C

B

B
B

A D D E

v1

v2

v3

v4

v5

v6 v7 v8

data graph g

C

B

B
B

A D E

u1

u2

u3

u4

u5

u6 u7

query graph q

Motivation 2: Useless Permutations

25

matching order: <u1, u2, ..., u7>

u1:

u2:

u3:

u4:

u5:

u6:

u7:

v1

v2

v3

v5

v6

v4

v6

v5

v6

v3

v6

v4

v6

v3

v6

v4 v5

u1

u2

u3

u5

u6 u7

call tree T

v5v3 v3 v4

v5v4

v1

v2

v3

v4

v5

v6 v7

u4

     

E

D v6

v5

v4

v3

v6

v4

v5



Neighborhood Equivalence Class 

(NEC)

• Each query vertex in the same NEC has

• the same label

• the same adjacent query vertices

26

C

B

B
B

A D E

u1

u2

u3

u4

u5

u6 u7

query graph q

NEC1



Key Idea 2: Comb/Perm strategy with 

NEC

• Avoid useless permutations

C

B

B
B

A D D E

v1

v2

v3

v4

v5

v6 v7 v8

data graph g

C

B

B
B

A D E

u1

u2

u3

u4

u5

u6 u7

query graph q

matching order: <u1, u2, {u3,u4,u5},u6, u7>

u1:

u2:

u3,u4,u5:

u6:

u7:

v1

v2

{v3,v4,v5}

v6

NEC1

candidate vertices for NEC1
27



Contributions of TurboISO

• Up to four orders of magnitude performance 

improvement over the state of the art method*

• Candidate region exploration

• Provides good and robust matching order

• Completely solves the notorious matching order problem

• Neighborhood equivalence class and Comb/Perm

strategy

• Avoid useless permutations

28



Comparison with STW

• Comparison with STW*

• Graph: WordNet

29
*Sun, Z. et al., “Efficient subgraph matching on billion node graphs,” In VLDB 2012.
Developed by MSRA

: 8 machines
: 1 machine

28,096 times faster than the state 

of the art!



Best Characteristics of TurboISO

• Ultrafast and Robust performance

• Online analytics is possible!

• Parameter-free

• Little index maintenance cost

• Supports very large evolving graphs!

• Easily parallelizable

30



TurboGraph: A Fast Parallel Graph 

Engine Handling Billion-scale 

Graphs in a Single PC [KDD13]

31



Motivation

32

Gbase [KDD’11,VLDBJ’12]

Pregel [SIGMOD’10]

[VLDB’12]

GraphChi [OSDI’12]

Distributed 

System 

approach

Single machine

approach

DBMS approach VERY SLOW for mining???

Can we exploit nice concepts in DBMSs without losing performance?



Comparison with other engines

33[1] I. Stanton and G. Kliot, "Streaming Graph Partitioning for Large Distributed Graphs," KDD 2012.

[2] U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos, "GBASE: An Efficient Analysis Platform for Large Graphs," VLDB Journal, 2012.

[3] A. Kyrola, G. Blelloch, C. Guestrin, "GraphChi: Large-Scale Graph Computation on Just a PC," OSDI 2012.



Why is TurboGraph Ultra-fast?

• Fast Graph Storage Engine

• Full parallelism

• Multi-core parallelism

• Flash SSD IO parallelism

• Reading 400~500 Mbytes/sec from commodity SSDs

• 97K IOPS (High-performance Random Read)

• Full overlap

• CPU processing and I/O processing

• I/O latency can be hidden!

34



Three things to remember

• Efficient disk/in-memory graph storage

• Pin-and-slide model

• Handling general vectors (see the 

paper)

35



Challenges for Graph Storage

• Adjacency list vs. adjacency matrix

• Two types of graph operations in disk-based graphs

• Graph traversal (unique in graphs)

• Bitmap operations during computation 

36



Disk-based representation in 

TurboGraph

• Slotted page of 1 Mbyte size

• Page contains records corresponding to adjacency lists

• RID consists of a page ID and a slot number

• Vertex IDs or RIDs in adjacency list

• Vertex ID approach 

• Good for bitmap operation

• Bad for graph traversal

– requires a potentially LARGE mapping table!

• RID approach 

• Good for graph traversal

• Seems to be bad for bitmap operation?? 37



RID (mapping) table

• Each entry corresponds to a page (not a single RID)

• Size is very small

• Each entry stores the starting vertex ID in the page

• Translation of RID (pageID, slotNo) to vertex ID

• RIDTable[pageID].startVertex + slotNo

• Can be done in O(1)

38



In-memory Data structures

• Buffer pool

• Mapping table from page ID to frame ID

• Hash-table based mapping incurs significant performance 

overhead for graph traversal!

• TurboGraph uses a page table approach!

• A data structure for handling large adjacency list 

(see paper)

39



Example

40



Core operations in buffer pool

• PINPAGE(pid)/UNPINPAGE(pid)

• support large adjacency lists

• PINCOMPUTEUNPIN(pid, RIDList, uo)

• Prepins an available frame

• Issues an asynchronous I/O request to the FlashSSD

• On completion of the I/O, a callback thread processes 

the vertices in the RIDList by invoking the user-defined 

function uo.Compute

• After processing all vertices in RIDList, unpin the page

41



Supported Query Power: 

Matrix-vector multiplication

• G = (V,E), X (column vector)

• M(G)i: i-th column vector of G

• Column view:

• Applications can define their own multiplication and 

summation semantics (the user-defined function 

Compute can generalize both)

• M(G)i is represented as the adjacency list of vi

• We can restrict the computation to just a subset 

of vertices 

42



Column-view of matrix-vector 

multiplication in TurboGraph

43



Pin-and-Slide Model

• New computing model for efficiently processing the 

generalized matrix-vector multiplication in the 

column view

• Utilizing execution thread pool and callback 

thread pool

44



Pin-and-Slide Model (cont’d)

• Given a set V of vertices of interest,

• Identify the corresponding pages for V

• Pin the pages in the buffer pool

• Issue parallel asynchronous I/O requests for pages 

which are not in the buffer

• Without waiting for the I/O completion, execution 

threads concurrently process vertices in V that are in 

the pages pinned

• Slide the processing window one page at a time as 

soon as either an execution thread or a callback thread 

finishes the processing of a page

45



Example

46

I = (0,1,1,1,0,1,1)
v1 v5

1. identify pages (p0, p1, p2, p3, p4) for I

2. Pin p1 and p2

3. Issue asynchronous I/O request for p0

4. Execution threads process v2, v3, and v5 concurrently

5. On completion of I/O request for p0, callback threads process v1

6. After processing any page, unpin the page and slide execution window

i.e., process p3 and finally process p4



Processing Graph Queries

• We support graph queries based on matrix-

vector multiplication

• Targeted queries processing only part of a graph

• Global queries processing the whole graph

• Targeted queries

• BFS, K-step neighbors, Induced subgraph, K-step 

egonet, K-core, cross-edges etc.

• Global queries 

• PageRank, connected component

47



Experimental setup

• Datasets

• LiveJournal (4.8M vertices), Twitter (42M vertices), 

YahooWeb (1.4B vertices)

• Intel i7 6-core PC with 12 GB RAM

• 512GB SSD (Samsung 840 series)

• Bypass OS cache to guarantee real I/Os

• Main competitor

• GraphChi

48



Targeted Queries

49

TurboGraph outperforms GraphChi by up to four orders of magnitude.



Global Queries

50

TurboGraph outperforms GraphChi by up to 

27.69   times for PageRank.

144.11 times for Connected Component+.

+upcoming paper for details and much faster performance



OPT: A New Framework for 

Overlapped and Parallel

Triangulation in Large-scale 

Graphs [SIGMOD14]

51



Highlights of OPT

• an overlapped and parallel disk-based 

triangulation framework for billion-scale graphs

• At the macro level, overlaps the internal 

triangulation and the external triangulation

• At the micro level, overlaps the CPU and I/O 

operations

• Achieves almost ideal performance
52



Internal triangles vs external 

triangles

53



Running example

54

min mout

DISK

MEMORY

a

b
c

d e

f g

h

p1 p2 p3 p4



Load p1 and p2

55

min mout

DISK

MEMORY

a

b
c

d e

f g

h

a

b
c

d

p1 p2 p3 p4



Load p3

56

min mout

DISK

MEMORY

a

b
c

d e

f g

h

a

b
c

d

p1 p2 p3 p4

e

f



Load p4

57

min mout

DISK

MEMORY

a

b
c

d e

f g

h

a

b
c

d

p1 p2 p3 p4

g

h



Effective disk access order of OPT

58

min mout

Scan direction



Comparison with GraphChi

59

For the Yahoo dataset, OPT outperforms GraphChi by 31 times!



Conclusions

• We have presented a series of graph processing 

frameworks for large-scale graphs

• iGraph 1.0 for graph indexing

• iGraph 2.0 + TurboISO for subgraph isomorphism

• TurboGraph for graph analytics

60



Q/A

61



Handling general vectors

• Indicator vector can be implemented as a bitmap

• However, what if we want to use general vectors 

instead?

• Consider PageRank where we need random accesses 

to pagerank values and out-degrees in two general 

vectors

62



Main idea of handling general 

vectors

• Adopt the concept of block-based nested loop join

• a general vector is partitioned into multiple 

chunks such that each chunk fits in memory

• Regard the pages pinned in the current buffer as a 

block

• Join a block with a chunk of each random vector 

in-memory until we consume all chunks

• Hide this mechanism as much as possible from 

users! (see paper)

63



Example

64


