Big Graph Data Processing

Wook-Shin Han
POSTECH
Apr. 11,2014

Outline

* Big (Graph) Data

* Big Graph Processing Techniques

e Conclusion

Welcome to Graph World

The Internet

Internet map

waw.na.orgimtg

. -

m:homePage N
C a.l I G I"ap h . Cool Meeting p3p:policy
m:chair
g-location
. ; B
JaneDos m:attending ;:;csy
Cambridge
’ MA, USA
p:phoneNum g:postalCade

premail

g-longitude
g-latitude
jane@w3.org
42.4 deg

Protein interactions Semantic web 3

Big Graphs in Real World

Facebook
Twitter
LinkedIn
Last.FM
LiveJournal
del.icio.us

of nodes (vertices)

1Billion
640 Million
60 Million
40 Million
25 Million
5.3 Million

of edges
140 Billion
10 Billion
0.9 Billion
2 Billion
2 Billion
0.7 Billion

Outline

* Big Graph Data Processing

e Conclusion

Big Graph Processing

[VLDBI10, SIGMODI |, VLDBI3, SIGMODI3,
KDDI3, SIGMOD 4]

iGraph vl.0

*Han,W, Lee, J., Duc, P,and Yy, ., “iGraph: A Framework for Comparisons of Disk-
based Graph Indexing Techniques,” In VLDB 2010. (invited to the VLDB Journal as best
of VLDB 2010 papers)

*Han,W,, Duc, P, Lee, J., Kasperovics, R.,and Yu, J.,“iGraph in Action: Performance
Analysis of Disk-Based Graph Indexing Techniques,” In SIGMOD 201 1.

iGraph v2.0 + Turboso
*Lee, J., Han,W,, Kasperovics, R., and Lee, J.,“An In-depth Comparison of Subgraph
Isomorphism Algorithms in Graph Databases,” In VLDB 201 3.

*Han,W, Lee,].,and Lee, J.,“Turbo;5: Towards Ultra-Fast Subgraph Isomorphism
Search in Graph Databases,” In SIGMOD 201 3.

TurboGraph

*Han,W. et al., "TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale
Graphs in a Single PC," In KDD 2013. (oral presentation)

*Kim, J., Han,W,, et al.,“OPT:A New Framework for Overlapped and Parallel
Triangulation in Large-scale Graphs,” In SIGMOD 2014 6

Subgraph Isomorphism
(Subgraph Matching)

* One of the most important graph queries

* Find all subgraphs that match a query graph

e — R
B 5
B B ® @ ® ® & @ ® @—A—a
“ e U @ ‘t ‘{_‘
(B ® (B)
. Gl G2 G3 G4

Query graph Q Graph database D

Many Important Applications

:
age « 8 years
7 %A 4

4
7 WS

Y KNOWS 49"
O g
ama = ‘Cyphiert ‘name = “Agent Smith”

disciosure « public s
MR disclosure = secret
:20) 2ge « 6 months.
&
= disclosure = public
age « 12 years

Social network search

@ X11_ Acpiiations Ede_Wodow_tels Cmacanon =y 3 S e i Q
an

o
gy vy |

RDF query
processing

~ Malspec =7\

B

Malware
detection

)

Motif search

[(@ pubchem Sketcher V24 - Chrome el]
[pubchem.ncbi.nlm.nih.gov/ecit2/index htmismiles=C15%3 DCC(%3DCCRDCLICICOIC.C.CC.C.CC(CC
Broadband [=] [SMILES [+] |/G1(=CC(=CC=C1ICG(CICC(=0)0)N+](=0)10]
New | udo| cin | sy | pel | any 4-}» Q| £ |+
— [= [= [| -t | e [5 [o~ | 508 [02 | 50 O\gﬁo
NERECeEEBEE
~ |~ L A | - [0 feor{sozfsoas
H 2 (2 [=] He
|| Gi[Be B|c|N|[ofF[ne =
Na [Mg Allsi|p|s|c|ar
I k|ca|sc|sclv] |Ga|ce|as]|se|Br|Kkr
0 0
Ro[Sr| Y |Y [=] [in|sn|so|Te| I |xe
Cs|Ba|Lu|Lu[=] [T |Pb|Bi|Po|At|Rn
Export | MDL Molfile Done
Hydragen | Keep Asls | Help
Import || TS MY | SNE W QLS o
< i 1 v

Chemical
compound search

Problems in Existing Indexing
Methods: Motivation for iGraph

Serious problems in existing experiments

* Compared indexes are implemented in different code
bases

Elapsed times reported can vary depending on
implementation skills

Number of disk I1/Os not used.
Small database (< 20 Mbytes)

* All files are cached in the OS file system cache

iGraph vi.0 [VLDBI10, SIGMODI I]

* First common framework for disk-based graph
indexes

* Supports both mining-based and non-mining
based indexes

* Selected as a best track paper in VLDB 2010

* Open source: http://www.igraph.or.kr

* Has been used in 26 countries

Universities using iGraph v|.0

Norwegian University of
Science and Technology

(Carleton

UNIVERSITY

LI
~ o
s

AUSTRALIA

07 ¢

At441

GUANGDONG
UNIVERSITY OF BUSINESS STUDIES

THE L

5\@&{ OF Sy,

~ KAIST

URUA7Ie
4

SINCE 1971

%
&
A

@ UNIVERSITY OF
CAMBRIDGE

UNIVERSITE MONTPELLIER 2

ERHE TS gagaty
o'e’

@\\\LA RDVA -‘,‘(‘50
19 &
om0

GeorgiaState lﬁ%" e N US Grenobl °)\'N'F)‘
Ulfl\'vml}' @ HadorlUnversty / l

UNIVERSITAT = [ty F=]
DUISBURG W.?%Tﬂ{ﬁj'ﬁ
ESSEN naliluti ol Sciens & Techaalogy

E TR e

MELBOURNE

OF

Stockholm
University

University of

Strathclyde

Glasgow

NANYANG

TECHNOLOGICAL
UNIVERSITY

o

JUNIVERSITY OFj
TECHNOLOGY

SYDNEY

DEPAUW
UNIVERSITY

Est. 1837

lll‘jll

“!;LL“A»‘
L
h

=5 Semao

METCEMNTRIC INTELLIGENCE®*

iGraph v2.0 [VLDBI3]

* Focuses on the subgraph isomorphism algorithm

* The first generic framework that allows
implementation of any subgraph isomorphism
algorithm by extending this framework

* Provides in-depth analysis and comparison of the
state-of-the art algorithms

Turbo,s, [SIGMOD13]

* A new subgraph isomorphism algorithm

Three things to remember
* Candidate region exploration
* Neighborhood equivalence class (NEC)

 Comb/Perm strategy

Review of Existing Subgraph
Isomorphism Algorithm

* Backtracking algorithm
* Find solutions by incrementing partial solutions or
discarding them when they cannot be completed

matching order: <u,, u,, u;>

u: v vy
T

U.ZZ V, V, V5
I |

us: % ¥ @

call tree T

data graph: g

Related Work

 Exact search

* Non signature-based
e Ullmann [JACMI1976]

An In-depth Comparison of Subgraph Isomorphism
Algorithms 1in Graph Databases [VLDB2013]

* Signature-based
* GraphQL [SIGMOD2008]
« GADDI [EDBT2009]
 Spath [VLDB2010]

* Similarity search

- TALE [ICDE2008] NESS [SIGMOD201 1], NEMA
[VLDB2013], ...

16

Importance of matching order

matching order O,: <u,, u;, u, , u,>

Importance of matching order

matching order O,: <u,, u;, u, , u,>

Importance of matching order

matching order O,: <uy, u,,w, , u;>

All subgraph isomorphism methods suffer
from the notorious matching order

problem!
Y} \ v J _Y_}

Good matching order O,: needs only 51 matches

9

Motivation |I: One good matching
order is not enough!

O,(=<u;,u3,u, uy >): 500,001 matches for g, + 51 matches for g,
0,(=<uy, uy, u,, u;>): 51 matches for g,

+ 500,001 matches for g,

Y
10Xs 10,000Y's 57Zs

|
5Ys 10,000Zs 10Xs

O,: 500,001 matches

O,: 51 matches

0O,: 51 matches

0,: 500,001 matches

Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

Y
10,000Ys 57s 5Ys
(o8

Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

Y
10,000Ys 57s 5Ys
(o8

Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

(A) A A

X X Y)....\ Y Z ... Z\Y Y Z)....| 7 X X
1
V4 V4 X XHX). X Y Y
(J _Y_} (J

| | | |
10Xs 10,000Y's 5Zs 5Ys) 10,000Zs 10Xs

g1 \ 5 23

Key Idea |: Candidate Region
Exploration

* Solves the notorious matching order problem in
graph databases

(&) A A

u, u u - /-
2 3 4 X X Y ... Y 7 ZYY..lY Z / Z) (X X
i P
7 V4 X XHX). {X Y Y
\ ' — \ ' I '
10Xs 10,000Ys 57s 5Ys 10,000Zs 10Xs

/
9 N 2 o

Motivation 2: Useless Permutations

A
> data graph g

matching order: <u,, u,, ..., u>

Vi
|
V2
Vs \2 Vs
N S
Vo Vs V3 Vs V3 Vg
| | | | | |
Ve V4 Vs V3V, V3
I | | |
% ¥ X X X ¥
call tree T 25

Neighborhood Equivalence Class
(NEC)

* Each query vertex in the same NEC has
* the same label

* the same adjacent query vertices

B) INEC,

“query graph ¢

26

Key Ildea 2: Comb/Perm strategy with
NEC

* Avoid useless permutations

matching order: <u,, u,, {u;,u,,us},u,, u>

|
Us,Uy,Us: { }
e
Ug X
uy:

V4 candidate vertices for NEC,

Ve 27
" data graph g

Contributions of Turbo,,

Up to four orders of magnitude performance
improvement over the state of the art method*

Candidate region exploration
* Provides good and robust matching order

* Completely solves the notorious matching order problem

Neighborhood equivalence class and Comb/Perm
strategy

* Avoid useless permutations

28

Comparison with STW

* Comparison with STW*
* Graph: WordNet

10*

sTw{voraneyy - 8 machines
TurboigofVordNet) -@-: 1 machine

Avg. elapsed time (msec.)
8—L

3 4 5 6 7 8 9 10
Query size(# of vertices)

Del_ of the art!

g
28,096 times faster than the state

~

/

DB 2012.

Best Characteristics of Turbo,

Ultrafast and Robust performance

* Online analytics is possible!
Parameter-free

Little index maintenance cost

* Supports very large evolving graphs!

Easily parallelizable

30

TurboGraph: A Fast Parallel Graph
Engine Handling Billion-scale
Graphs in a Single PC [KDD 3]

31

Motivation

g 8 ,
System Graphlab [VLDB’12]

approach RN Hedliee; Pregel [SIGMOD’10]

Distributed Gbase [KDD’11,VLDBJ’12]

Single machine

approach GraphChi [OSDI’12]

DBMS approach VERY SLOW for mining???

Can we exploit nice concepts in DBMSs without losing performance?

32

Comparison with other engines

Input graph
Pagerank Twiter 41M/1.468 | Spark[11(50 machines), 8.1 mn | 19.35 min | 27amin |
(5 fterations) ' —_— ' '
Pagerank Twitter 41M/1.468 Gbase[2](100 machines), 13.5 min B.42 i 0.62 min
(1 iteration)
Pagerank vapooweb 1.418/6.638 | Gbese[21(100 machines), 13.0 mn| 20.90 min | 371 mn |
(1 iteration)

[1] I. Stanton and G. Kliot, "Streaming Graph Partitioning for Large Distributed Graphs,” KDD 2012. 33
[2] U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos, "GBASE: An Efficient Analysis Platform for Large Graphs," VLDB Journal, 2012.
[3] A. Kyrola, G. Blelloch, C. Guestrin, "GraphChi: Large-Scale Graph Computation on Just a PC," OSDI 2012.

Why is TurboGraph Ultra-fast?

* Fast Graph Storage Engine
* Full parallelism

* Multi-core parallelism

* Flash SSD IO parallelism
* Reading 400~500 Mbytes/sec from commodity SSDs
* 97K IOPS (High-performance Random Read)

* Full overlap
» CPU processing and I/O processin; 7
* 1/O latency can be hidden! S

Three things to remember

* Efficient disk/in-memory graph storage

* Pin-and-slide model

* Handling general vectors (see the
paper)

35

Challenges for Graph Storage
* Adjacency list vs. adjacency matrix

* Two types of graph operations in disk-based graphs
* Graph traversal (unique in graphs)

* Bitmap operations during computation

36

Disk-based representation in
TurboGraph

* Slotted page of | Mbyte size
* Page contains records corresponding to adjacency lists

* RID consists of a page ID and a slot number

* Vertex IDs or RIDs in adjacency list
* Vertex |ID approach
* Good for bitmap operation

* Bad for graph traversal
— requires a potentially LARGE mapping table!

* RID approach
* Good for graph traversal

* Seems to be bad for bitmap operation?? 3

RID (mapping) table

* Each entry corresponds to a page (not a single RID)

* Size is very small
* Each entry stores the starting vertex ID in the page

* Translation of RID (pagelD, slotNo) to vertex ID
* RIDTable[pagelD].startVertex + slotNo
* Can be done in O(I)

38

In-memory Data structures
* Buffer pool

* Mapping table from page ID to frame ID

* Hash-table based mapping incurs significant performance
overhead for graph traversal!

* TurboGraph uses a page table approach!

* A data structure for handling large adjacency list
(see paper)

39

Example

Logi Memory table RIDTable LOPL
.Eﬂ.l W'iEw l}agf_'.' dae dlE
buffer pool Dol 1 Volil1] 0[ps
! ! ! P11 Va|-11-1] 1| ps
: : | P2 P1 P2l 0 Val-1[1
i ; i P3| -1 V(0|2
i : | U I 2 P4 -1 Vg |-1|-1
i Disk slotted page list

40

Core operations in buffer pool

- PINPAGE(pid)/UNPINPAGE(pid)

* support large adjacency lists

 PINCOMPUTEUNPIN(pid, RIDList, uo)

Prepins an available frame
Issues an asynchronous I/O request to the FlashSSD

On completion of the I/O, a callback thread processes
the vertices in the RIDList by invoking the user-defined

function uo.Compute
After processing all vertices in RIDList, unpin the page

41

Supported Query Power:
Matrix-vector multiplication

G = (V,E), X (column vector)
M(G);: i-th column vector of G

Column view: y =Vl r1(@), x X,

* Applications can define their own multiplication and
summation semantics (the user-defined function
Compute can generalize both)

* M(G), is represented as the adjacency list of v,

We can restrict the computation to just a subset
of vertices V1] ~ VI[k]

42

Column-view of matrix-vector
multiplication in TurboGraph

Algorithm 1 Matrix-Vector-Multiplication(G = (V, F), X, . Y)

I: fori =1to|I|do
2: Compute(vyp-adj, X1, Y)
3: end for

43

Pin-and-Slide Model

* New computing model for efficiently processing the
generalized matrix-vector multiplication in the

column view

* Utilizing execution thread pool and callback
thread pool

44

Pin-and-Slide Model (cont’d)

e Given a set V of vertices of interest,

|dentify the corresponding pages for V
Pin the pages in the buffer pool

Issue parallel asynchronous I/O requests for pages
which are not in the buffer

Without waiting for the I/O completion, execution
threads concurrently process vertices in V that are in
the pages pinned

Slide the processing window one page at a time as
soon as either an execution thread or a callback thread
finishes the processing of a page

45

Example

Memory table RID Table LOPL
page table aole
buffer pool Po[-1 Vo[1[-1] ©[ps
P11 V2]-1]-1 1| p4
P2 P1 P2l 0 V4]-1]-1
P3| -1 Ve 0|2
0 1 2 P4l -1 Vg |-1]-1
Disk slotted page lhist
2 I | Is 2 Iy | Is 2 Is | Is 7 Ip I | T5 | Is
p'ﬂ' . pl . p:'_" . pﬂr p4 2 Ip | s 2 Ia | Ig 2 Ty [T | T2 | I3 | T4

V| v
1=(0,1,1,1,0,,1)

|. identify pages (py, P|» P2» P3» P4) for |

2. Pinp,andp,

3. lIssue asynchronous I/O request for p,

4. Execution threads process v,, v;,and vy concurrently

5. On completion of I/O request for p, callback threads process v,

6. After processing any page, unpin the page and slide execution window
i.e., process p; and finally process p, 46

Processing Graph Queries

* We support graph queries based on matrix-
vector multiplication

* Targeted queries processing only part of a graph

* Global queries processing the whole graph

* Targeted queries

* BFS, K-step neighbors, Induced subgraph, K-step
egonet, K-core, cross-edges etc.

* Global queries

* PageRank, connected component

47

Experimental setup

Datasets

* LiveJournal (4.8M vertices), Twitter (42M vertices),
YahooWeb (1.4B vertices)

Intel i/ 6-core PC with 12 GB RAM
512GB SSD (Samsung 840 series)
Bypass OS cache to guarantee real I/Os

Main competitor
* GraphChi

48

Avg. elapsed time(sec,)

Targeted Queries

" GraphChi =3

TurboGraph

- — 10% ¢ - — 10°
GraphChi &3 . : GraphChi &3 _

TurboGraph mm] § 1% b TurboGraph mm] § 10¢ |
g 10?2}] T 10%}
E 10"} ;g 107

or 1

g 10° F % 10

= AL = S,

E 107 ¢ 3 10

1072 - 107"

1-Nhr 2-Nhr Egonet 1-Nhr 2-Nhr Egonet
(a) LiveJournal. (b) Twitter.

Figure 5: Average elapsed time (Targeted queries).

1-Nhr 2-Nhr Egonet

(c) YahooWeb.

TurboGraph outperforms GraphChi by up to four orders of magnitude.

49

Global Queries

200 . . 2500 . : 5 :
GraphChi 3 GraphChi — 10 GraphChi 3
TurboGraph — TurboGraph 4l TurboGraph -
é 150 |] %‘ 2000 | - gm [
T T 1500 | Z 1p?
S 100} = £
o B 1000 |] 102
T] &
w2 ‘ 1 1 500 | - i 10"
] — 0 . 10°
PageRank Connected PageRank Connected PageRank Connected
Comp Comp Comp
(a) LiveJournal. (b) Twitter. (c) YahooWeb.

TurboGraph outperforms GraphChi by up to
27.69 times for PageRank.
144.1 | times for Connected Component™.

50
*upcoming paper for details and much faster performance

OPT: A New Framework for
Overlapped and Parallel

Triangulation in Large-scale
Graphs [SIGMOD 1 4]

51

Highlights of OPT

an overlapped and parallel disk-based
triangulation framework for billion-scale graphs

At the macro level, overlaps the internal
triangulation and the external triangulation

At the micro level, overlaps the CPU and |/O
operations

Achieves almost ideal performance

52

Internal triangles vs external
triangles

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

&
iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Memory buffer

edges not in memory buffer

53

Running example

1n

MEMORY

>‘}<

DISK

Py

P2

P3

P4

54

Load p, and p,

MEMORY

DISK

Py

P4

55

——

MEMORY

o

DISK

Py

P4

56

MEMORY

DISK

Py

P4

57

Effective disk access order of OPT

—

Scan direction

Comparison with GraphChi

LJ ORKUT TWITTER UK

OPT 6.39 18.51 469.40 480918
GraphChi-Tri 8387 19695 1850.26 4046.77

GraphChi-Tri/OPT | 13.44 10.64 3.94 8.41

For the Yahoo dataset, OPT outperforms GraphChi by 31 times!

59

Conclusions

* We have presented a series of graph processing
frameworks for large-scale graphs
* iGraph 1.0 for graph indexing
* iGraph 2.0 + Turbo for subgraph isomorphism
* TurboGraph for graph analytics

60

Q/A

61

Handling general vectors
* Indicator vector can be implemented as a bitmap

* However, what if we want to use general vectors
instead!

* Consider PageRank where we need random accesses
to pagerank values and out-degrees in two general
vectors

62

Main idea of handling general
vectors

Adopt the concept of block-based nested loop join

a general vector is partitioned into multiple
chunks such that each chunk fits in memory

Regard the pages pinned in the current buffer as a
block

Join a block with a chunk of each random vector
in-memory until we consume all chunks

Hide this mechanism as much as possible from
users! (see paper)

63

chunkl chunk?
| output

outDegree || 2 | 2 | 2 |2 |2 | 2 T T .
| | 0 00%2| |oooo| |o0009| |o.090
PR i | 0 0082 |ooee| |ooeo| |o.009

prev. 110.143 [0.143 | 0.143 | 0.143 | 0.143 | 0.143}{ 0.143
! i 0 00%2| |oooo| |o0009| |o.090
- 0 0082 |oooo| |oo099| [0.000
0 0082 |oooo| |oo099| [0.000
. , . Ll o 0082 |oooo| |oo099| [0.000
buff: 1| | - | o 0 0 | [03ss| [0403

Bl K K| rowon el A I KRR
1z | sliding | v 1 b 55 @{4
blockl block?

uo.Compute(v;, Iterator(v;.adf)) = 0.85

¥ prevPR[j]

0.15

1=74%utDegree[j]

|V

64

chunkl

chunk2

