Big Graph Data Processing

Wook-Shin Han POSTECH Apr. 11, 2014

- Big (Graph) Data
- Big Graph Processing Techniques
- Conclusion

Welcome to Graph World

Protein interactions

3

Big Graphs in Real World

	8.	the last	i.		
2	a de			1.	
• • •	and the				3.
• %					-
000	12		-		
o					

Facebook	
Twitter	
LinkedIn	
Last.FM	
LiveJournal	
del.icio.us	

1Billion 640 Million 60 Million 40 Million 25 Million 5.3 Million

of nodes (vertices)

of edges
140 Billion
10 Billion
0.9 Billion
2 Billion
2 Billion
0.7 Billion

Outline

- My Background
- Big (Graph) Data
- Big Graph Data Processing
- Conclusion

Big Graph Processing [VLDB10, SIGMOD11, VLDB13, SIGMOD13, KDD13, SIGMOD14]

iGraph vI.0

•<u>Han, W.</u>, Lee, J., Duc, P., and Yu, J., "iGraph: A Framework for Comparisons of Diskbased Graph Indexing Techniques," In *VLDB* 2010. (invited to the VLDB Journal as **best** of VLDB 2010 papers)

•<u>Han, W.</u>, Duc, P., Lee, J., Kasperovics, R., and Yu, J., "iGraph in Action: Performance Analysis of Disk-Based Graph Indexing Techniques," In *SIGMOD* 2011.

iGraph v2.0 + Turbo_{ISO}

•Lee, J., <u>Han, W.</u>, Kasperovics, R., and Lee, J., "An In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases," In *VLDB* 2013.

•<u>Han, W.</u>, Lee, J., and Lee, J., "Turbo_{ISO}: Towards Ultra-Fast Subgraph Isomorphism Search in Graph Databases," In SIGMOD 2013.

TurboGraph

<u>Han, W.</u> et al., "TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale Graphs in a Single PC," In KDD 2013. (oral presentation)
Kim, J., <u>Han, W.</u>, et al., "OPT: A New Framework for Overlapped and Parallel Triangulation in Large-scale Graphs," In SIGMOD 2014

Subgraph Isomorphism (Subgraph Matching)

- One of the most important graph queries
- Find all subgraphs that match a query graph

Many Important Applications

Social network search

RDF query processing

Motif search

Put	Chen Ibchei	n Sket m.ncb	tcher '	V2.4 · .nih.g	Chro ov/ed	me it2/in	dex.h	tml?si	miles:	-C1%	BDCC(%3DCC%3DC1)C(CC)C.C.C.C.C
Bro	adbar	nd 🔻]	SM	LES		•	C1(=CC(=CC=	C1)CC(C)CC(=O)O)[N+](=O)[O-]
N	BM	Udo	Cin	Sty	Del	Qry	÷	0	ŧ	*	
-	=	=	-	11		×	*	SIA	D/A	S/D	0, *****************
Δ		Ô	\bigcirc	\bigcirc	O	Ô		⊕	Θ	0	
	~	Y	~~	\sim	L	+	сно	со ₂ н	NO2	SO3H	
н		?	?	¥						He	
Li	Be				в	С	Ν	0	F	Ne	
Na	Mg				AI	Si	Ρ	s	CI	Ar	
К	Ca	Sc	Sc	•	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Y	•	In	Sn	Sb	Te	1	Xe	0 0
Cs	Ba	Lu	Lu	•	Π	Pb	Bi	Po	At	Rn	
Exp	ort	MD	L Mol	file	-				Do	me	
Hydr	ogen	Kee	p Asl	s		•			Help		
Imp	oort	[II]9	일 선택	목 선	[백된	파일	없음				

Chemical compound search

Problems in Existing Indexing Methods: Motivation for iGraph

- Serious problems in existing experiments
 - Compared indexes are implemented in different code bases
- Elapsed times reported can vary depending on implementation skills
- Number of disk I/Os not used.
- Small database (≤ 20 Mbytes)
 - All files are cached in the OS file system cache

iGraph vI.0 [VLDBI0, SIGMODII]

- First common framework for disk-based graph indexes
- Supports both mining-based and non-mining based indexes
- Selected as a best track paper in VLDB 2010
- Open source: http://www.igraph.or.kr
 - Has been used in 26 countries

Universities using iGraph vI.0

iGraph v2.0 [VLDBI3]

- Focuses on the subgraph isomorphism algorithm
- The first generic framework that allows implementation of any subgraph isomorphism algorithm by extending this framework
- Provides in-depth analysis and comparison of the state-of-the art algorithms

Turbo_{ISO} [SIGMODI3]

• A new subgraph isomorphism algorithm

Three things to remember

- Candidate region exploration
- Neighborhood equivalence class (NEC)
- Comb/Perm strategy

Review of Existing Subgraph Isomorphism Algorithm

- Backtracking algorithm
 - Find solutions by incrementing partial solutions or discarding them when they cannot be completed

matching order: $\langle u_1, u_2, u_3 \rangle$

Related Work

- Exact search
 - Non signature-based
 - Ullmann [JACM1976]

An In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases [VLDB2013]

- Signature-based
 - GraphQL [SIGMOD2008]
 - GADDI [EDBT2009]
 - Spath [VLDB2010]
- Similarity search
 - TALE [ICDE2008] NESS [SIGMOD2011], NEMA [VLDB2013], ...

Importance of matching order

matching order O_1 : $\langle \mathbf{u}_1, \mathbf{u}_3, \mathbf{u}_2, \mathbf{u}_4 \rangle$

Importance of matching order

matching order O_1 : $\langle \mathbf{u}_1, \mathbf{u}_3, \mathbf{u}_2, \mathbf{u}_4 \rangle$

Bad matching order O_1 : needs **500,001** matches

Importance of matching order

matching order O_2 : $\langle \mathbf{u}_1, \mathbf{u}_4, \mathbf{u}_2, \mathbf{u}_3 \rangle$

Motivation I: One good matching order is not enough!

 $O_1 (= \langle u_1, u_3, u_2, u_4 \rangle)$:500,001 matches for $g_1 + 51$ matches for g_2 $O_2 (= \langle u_1, u_4, u_2, u_3 \rangle)$:51 matches for $g_1 + 500,001$ matches for g_2

Motivation 2: Useless Permutations

matching order: $\langle u_1, u_2, ..., u_7 \rangle$

call tree T 25

Neighborhood Equivalence Class (NEC)

- Each query vertex in the same NEC has
 - the same label
 - the same *adjacent* query vertices

Key Idea 2: Comb/Perm strategy with NEC

Avoid useless permutations

Contributions of TurboISO

- Up to four orders of magnitude performance improvement over the state of the art method*
- Candidate region exploration
 - Provides good and robust matching order
 - Completely solves the notorious matching order problem
- Neighborhood equivalence class and Comb/Perm strategy
 - Avoid useless permutations

Comparison with STW

- Comparison with STW*
- Graph: WordNet

*Su

De

ÞB_2012.

Best Characteristics of TurboISO

- Ultrafast and Robust performance
 - Online analytics is possible!
- Parameter-free
- Little index maintenance cost
 - Supports very large evolving graphs!
- Easily parallelizable

TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale Graphs in a Single PC [KDD13]

Motivation

Distributed System approach

Single machine approach

GraphChi [OSDI'12]

DBMS approach VERY SLOW for mining???

Can we exploit nice concepts in DBMSs without losing performance?

Comparison with other engines

Query	Input graph	Vertices/Edges	Representative perfomance result	GraphChi [3] on a single PC	TurboGraph on a single PC
Pagerank (5 iterations)	Twitter	41M/1.46B	Spark[1](50 machines), 8.1 min	19.35 min	2.74 min
Pagerank (1 iteration)	Twitter	41M/1.46B	Gbase[2](100 machines), 13.5 min	6.42 min	0.62 min
Pagerank (1 iteration)	YahooWeb	1.41B/6.63B	Gbase[2](100 machines), 13.0 min	20.90 min	3.71 min

Why is TurboGraph Ultra-fast?

- Fast Graph Storage Engine
- Full parallelism
 - Multi-core parallelism
 - Flash SSD IO parallelism
 - Reading 400~500 Mbytes/sec from commodity SSDs
 - 97K IOPS (High-performance Random Read)
- Full overlap
 - CPU processing and I/O processing
 - I/O latency can be hidden!

Three things to remember

• Efficient disk/in-memory graph storage

• Pin-and-slide model

Handling general vectors (see the paper)

Challenges for Graph Storage

- Adjacency list vs. adjacency matrix
- Two types of graph operations in disk-based graphs
 - Graph traversal (unique in graphs)
 - Bitmap operations during computation

Disk-based representation in TurboGraph

- Slotted page of I Mbyte size
 - Page contains records corresponding to adjacency lists
 - RID consists of a page ID and a slot number
- Vertex IDs or RIDs in adjacency list
 - Vertex ID approach
 - Good for bitmap operation
 - Bad for graph traversal
 - requires a potentially LARGE mapping table!
 - RID approach
 - Good for graph traversal
 - Seems to be bad for bitmap operation??

RID (mapping) table

- Each entry corresponds to a page (not a single RID)
 - Size is very small
- Each entry stores the starting vertex ID in the page
- Translation of RID (pageID, slotNo) to vertex ID
 - RIDTable[pageID].startVertex + slotNo
 - Can be done in O(I)

In-memory Data structures

- Buffer pool
- Mapping table from page ID to frame ID
 - Hash-table based mapping incurs significant performance overhead for graph traversal!
 - TurboGraph uses a page table approach!
- A data structure for handling large adjacency list (see paper)

Example

Core operations in buffer pool

- PINPAGE(pid)/UNPINPAGE(pid)
 - support large adjacency lists
- PINCOMPUTEUNPIN(pid, RIDList, uo)
 - Prepins an available frame
 - Issues an asynchronous I/O request to the FlashSSD
 - On completion of the I/O, a callback thread processes the vertices in the RIDList by invoking the user-defined function uo.Compute
 - After processing all vertices in RIDList, unpin the page

Supported Query Power: Matrix-vector multiplication

- G = (V,E), X (column vector)
- M(G)_i: *i*-th column vector of G
- Column view: $Y = \sum_{i=1}^{|V|} M(G)_i \times X_i$
 - Applications can define their own multiplication and summation semantics (the user-defined function Compute can generalize both)
 - $M(G)_i$ is represented as the adjacency list of v_i
- We can restrict the computation to just a subset of vertices $v_{I[1]} \sim v_{I[k]}$

Column-view of matrix-vector multiplication in TurboGraph

Algorithm 1 Matrix-Vector-Multiplication(G = (V, E), X, I, Y)

- 1: for i = 1 to |I| do
- 2: $Compute(v_{I[i]}.adj, X_{I[i]}, Y)$
- 3: end for

Pin-and-Slide Model

- New computing model for efficiently processing the generalized matrix-vector multiplication in the column view
- Utilizing execution thread pool and callback thread pool

Pin-and-Slide Model (cont'd)

- Given a set V of vertices of interest,
 - Identify the corresponding pages for V
 - **Pin** the pages in the buffer pool
 - Issue parallel asynchronous I/O requests for pages which are not in the buffer
 - Without waiting for the I/O completion, execution threads concurrently process vertices in V that are in the pages pinned
 - Slide the processing window one page at a time as soon as either an execution thread or a callback thread finishes the processing of a page

Example

I = (0, 1, 1, 1, 0, 1, 1)

- identify pages $(p_0, p_1, p_2, p_3, p_4)$ for I
- Pin p_1 and p_2 2.
- 3. Issue asynchronous I/O request for p_0
- Execution threads process v_2 , v_3 , and v_5 concurrently 4.
- 5. On completion of I/O request for p_0 , callback threads process v_1
- After processing any page, unpin the page and slide execution window 6. i.e., process p_3 and finally process p_4 46

 v_6

 p_4

Processing Graph Queries

- We support graph queries based on matrixvector multiplication
 - Targeted queries processing only part of a graph
 - Global queries processing the whole graph
- Targeted queries
 - BFS, K-step neighbors, Induced subgraph, K-step egonet, K-core, cross-edges etc.
- Global queries
 - PageRank, connected component

Experimental setup

- Datasets
 - LiveJournal (4.8M vertices), Twitter (42M vertices), YahooWeb (1.4B vertices)
- Intel i7 6-core PC with 12 GB RAM
- 512GB SSD (Samsung 840 series)
- Bypass OS cache to guarantee real I/Os
- Main competitor
 - GraphChi

Targeted Queries

TurboGraph outperforms GraphChi by up to four orders of magnitude.

Global Queries

TurboGraph outperforms GraphChi by up to

27.69 times for PageRank.144.11 times for Connected Component⁺.

⁺upcoming paper for details and much faster performance

OPT: A New Framework for Overlapped and Parallel Triangulation in Large-scale Graphs [SIGMOD14]

Highlights of OPT

- an overlapped and parallel disk-based triangulation framework for billion-scale graphs
- At the macro level, overlaps the internal triangulation and the external triangulation
- At the micro level, overlaps the CPU and I/O operations
- Achieves almost ideal performance

Internal triangles vs external triangles

Running example

 \mathbf{p}_1

54

Load p_1 and p_2

p₂ p₃

 p_1

55

 p_4

Load p₃

p₂ p₃

 p_1

 p_4

Load p₄

MEMORY

57

Effective disk access order of OPT

Scan direction

Comparison with GraphChi

	LJ	ORKUT T	WITTER	UK
OPT	6.39	18.51	469.40	480.918
GraphChi-Tri	85.87	196.95	1850.26	4046.77
GraphChi-Tri/OPT	13.44	10.64	3.94	8.41

For the Yahoo dataset, OPT outperforms GraphChi by 31 times!

Conclusions

- We have presented a series of graph processing frameworks for large-scale graphs
 - iGraph 1.0 for graph indexing
 - iGraph 2.0 + Turbo_{ISO} for subgraph isomorphism
 - TurboGraph for graph analytics

Handling general vectors

- Indicator vector can be implemented as a bitmap
- However, what if we want to use general vectors instead?
 - Consider PageRank where we need random accesses to pagerank values and out-degrees in two general vectors

Main idea of handling general vectors

- Adopt the concept of block-based nested loop join
- a general vector is partitioned into multiple
 chunks such that each chunk fits in memory
- Regard the pages pinned in the current buffer as a block
- Join a block with a chunk of each random vector in-memory until we consume all chunks
- Hide this mechanism as much as possible from users! (see paper)

Example

