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Motivation

 Graphs are everywhere.

…

Internet Map 
[cheswick.com]

Food Web 
[biologycorner.com]

Protein Interactions 
[bordalierinstitute.com]

Friendship Network 
[fmsag.com]
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Motivation

 Graphs are everywhere.

…

Internet Map 
[cheswick.com]

Food Web 
[biologycorner.com]

Protein Interactions 
[bordalierinstitute.com]

Goal 1: Find Patterns and Anomalies
Communities, diameter, important nodes, etc.
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Motivation

 The sizes of graphs are growing!  

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09][Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]

[processed]
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Motivation

 The sizes of graphs are growing!  

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09][Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]
Goal 2: Scale-up

For graphs with billions of nodes and edges
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Goal

 PEGASUS: Peta-Scale Graph Mining System
 Scalable algorithms for mining very large graphs
 Pagerank, Random Walk with Restart
 Connected Component
 Radius
 Belief Propagation
 Eigensolver
 …
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Data

 Real and synthetic graphs

Graph Nodes Edges File Size
YahooWeb 1.4 B 6.6 B 0.12 TB
Twitter 104 M 3.7 B 80 GB
LinkedIn 7.5 M 58 M 1 GB
U.S. Patent 6 M 16 M 264 MB
Wikipedia 3.5 M 42 M 600 MB
Kronecker 177 K 1,977 M 25 GB
Erdos-Renyi 177 K 1,977 M 25 GB
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Overview

Task Discoveries Algorithm

Structure of Large 
Graphs

Q1: What do large 
networks look like?

Q2: How to scale-
up structure 
analysis algorithm?

Eigensolver
Q3: How to spot 
strange behaviors in 
networks?

Q4: How to design 
a billion-scale 
eigensolver?

Tensor 
Decomposition

Q5: What are the 
important concepts 
and synonyms in a 
KB tensor?

Q6: How to 
decompose a 
billion-scale tensor?
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Tensor 
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important 
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decompose a 
billion-scale 
tensor?
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Problem Definition

 Q1: What do large networks look like?
 Q1.1: What is the structure of large networks?
 Q1.2: Node centrality: which node is the most 

central?
 Q1.3: How does the structure of networks change 

over time?

[Kang et al. SDM’10]
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Q1.1: Structure of Large Networks

Clique? Chain?

[Kang et al. SDM’10]

Q: Can we have a concise summary of 
the structure of networks?
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Q1.2: Node (closeness) centrality

B

C

A

[Kang et al. SDM’10]

Q: If you have to pick 1 person to advertise,
who do you want to choose?
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Q1.3: Evolution of networks

 How does the structure of networks change 
over time?

[Kang et al. SDM’10]
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Answer: Radius Plot!

 Radius of a node: the longest shortest distance to 
all other nodes

 Effective radius of a node: 90th-percentile of the 
radius

 Diameter of a graph: maximum radius
 Effective Diameter of a graph: the number of 

hops 90% of all pair of nodes can be reached
Diameter:4

Effective 
Diameter:3

[Kang et al. SDM’10]



U Kang (KAIST) 15KHU CE’14

Radius Plot

Clique

Star

[Kang et al. SDM’10]
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Radius Plot

Chain

Near-bipartite-core

[Kang et al. SDM’10]
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Q1.1: Structure of Large Networks

Clique? Chain?

[Kang et al. SDM’10]

Q: Can we have a concise summary of 
the structure of networks?
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Q1.1: Structure of Large Networks

Clique? Chain?

Q: Can we have a concise summary of 
the structure of networks?

A: Radius plot gives an answer

[Kang et al. SDM’10]
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Q1.2: Node (closeness) centrality

B

C

A

Q: If you have to pick 1 person to advertise,
who do you want to choose?

[Kang et al. SDM’10]
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Q1.2: Node (closeness) centrality

B

C

A

[Kang et al. SDM’10]

Q: If you have to pick 1 person to advertise,
who do you want to choose?

A: Choose the node with the 
minimum radius!
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Q1.3: Evolution of networks

 How does the structure of networks change 
over time?

A: Study Radius plot over time!

[Kang et al. SDM’10]
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A1.1: Radius plot of real graphs

 LinkedIn: |V|=7.5M, |E|=58M, 1GBytes
 U.S. Patent: |V|=6M, |E|=16M, 264 MBytes

[Kang et al. SDM’10]
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A1.1: Radius plot of real graphs

 LinkedIn: |V|=7.5M, |E|=58M, 1GBytes
 U.S. Patent: |V|=6M, |E|=16M, 264 MBytes

Q: What do the real graphs look like?

Clique? Star? Chain? Bipartite
Core?

[Kang et al. SDM’10]
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A1.1: Radius plot of real graphs
A: Bi-modal!

[Kang et al. SDM’10]
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A1.1: Radius plot of real graphs

Q: What is the reason for this bi-modality?

[Kang et al. SDM’10]

A: Bi-modal!
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A1.1: Radius plot of real graphs

Core

Whiskers
Outsiders

[Kang et al. SDM’10]
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A1.1: Radius plot of YahooWeb

 YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: How about the radius plot of a much
larger graph? Also bi-modal?

[Kang et al. SDM’10]
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A1.1: Radius plot of YahooWeb

 Multi-modality possibly from mixture of cores

A: Multi-modality!

[Kang et al. SDM’10]
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A1.1: Radius plot of YahooWeb

 YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: What is the diameter of the Web?

[Kang et al. SDM’10]
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A1.1: Radius plot of YahooWeb

 Multi-modality possibly from mixture of cores
 Effective diameter: surprisingly small

[Kang et al. SDM’10]

A: 7 degrees of separation!
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A1.2: Node (closeness) centrality

 YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: What is the most central node 
in the Web?

[Kang et al. SDM’10]
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A1.2: Node Centrality
[Kang et al. SDM’10]
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A1.2: Node Centrality
[Kang et al. SDM’10]
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A1.3: Radius plots over time

At time T T+1 T+2

? ?

Q: How the radius plots change over time?

[Kang et al. SDM’10]
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A1.3: Radius plots over time
[Kang et al. SDM’10]

1976 ~ 1978
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A1.3: Radius plots over time

A: Expansion-Contraction!

[Kang et al. SDM’10]

1976 ~ 1978 1978 ~ 1999
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A1.3: Radius plots over time
[Kang et al. SDM’10]

1976 ~ 1978 1978 ~ 1999
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Problem Definition

 Q2: How to scale-up structure analysis 
algorithm?
 Q2.1: How to unify many structure analysis 

algorithms (connected components, PageRank, 
diameter/radius)?

 Q2.2: How to design a scalable algorithm for the 
structure analysis?

[Kang et al. ICDM’09]
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Q2.1: Unifying Algorithms

 Given a graph, can we compute
- connected components,
- PageRank,
- Random Walk with Restart,
- diameter/radius
with one algorithm?

[Kang et al. ICDM’09]
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Q2.1: Unifying Algorithms

Yes!
How ?

[Kang et al. ICDM’09]

 Given a graph, can we compute
- connected components,
- PageRank,
- Random Walk with Restart,
- diameter/radius
with one algorithm?
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Main Idea

 GIM-V
 Generalized Iterative Matrix-Vector Multiplication
 Extension of plain matrix-vector multiplication
 includes
 Connected Components
 PageRank
 RWR (Random Walk With Restart)
 Diameter Estimation

[Kang et al. ICDM’09]
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Main Idea: Intuition

 Plain M-V multiplication

1

1

0.1
• Weighted Combination 

of Colors
• ~ Message Passing

[Kang et al. ICDM’09]

A B

C

D
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Main Idea: Intuition

 Plain M-V multiplication

1

1

0.1
• Weighted Combination 

of Colors
• ~ Message Passing

1 1 0.1
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[Kang et al. ICDM’09]
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Main Idea: Intuition

 Plain M-V multiplication

'vvM 

[Kang et al. ICDM’09]
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Main Idea: Intuition

 Plain M-V multiplication

Three Implicit Operations here:

combine2
combineAll

assign

multiply       and    jim iv
sum n multiplication results
update 'jv

'vvM 

Message sending
Message combination

[Kang et al. ICDM’09]
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Main Idea

 GIM-V

Assign

Sum

Multiply

assign

combineAll

combine2

Con. Cmpt. DiameterRWRPageRankStandard MVOperations

MIN

MIN

Multiply

Assign

Sum with rj 
prob.

Multiply 
with c

Assign

Sum with 
restart prob

Multiply 
with c

BIT-OR()

BIT-OR()

Multiply 
bit-vector

(approx.)

[Kang et al. ICDM’09]
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Q2.2: Scalable Algorithm

 The sizes of graphs are growing!  

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09][Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]

[Kang et al. ICDM’09]
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Q2.2: Scalable Algorithm

 The sizes of graphs are growing!  

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09][Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]

Q: How can we handle large graphs
which don’t fit into the memory, 
or disks of a single machine?

A: Parallelism, with MapReduce!

[Kang et al. ICDM’09]
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Background: MapReduce
 MapReduce/Hadoop Framework

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

HDFS HDFS: fault tolerant, scalable, 
distributed storage system

Mapper: read data from HDFS, 
output (k,v) pair

Reducer: read output from 
mappers, output a new (k,v) pair 
to HDFS

Output sorted by the key
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Background: MapReduce
 MapReduce/Hadoop Framework

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

HDFS HDFS: fault tolerant, scalable, 
distributed storage system

Mapper: read data from HDFS, 
output (k,v) pair

Reducer: read output from 
mappers, output a new (k,v) pair 
to HDFS

Output sorted by the key

Programmers need to provide only 
map() and reduce() functions
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Two Restrictions on HDFS

 [R1] HDFS is location transparent
 Users don’t know which file is located in which 

machine
 [R2] A line is never split
 A large file is split into pieces of a size(e.g. 256 

MB)
 Users don’t know the point of the split

[Kang et al. ICDM’09]
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Fast Algorithms for GIM-V

 Given the two restrictions R1 and R2,
how can we make faster algorithms for 
GIM-V in Hadoop?
 Three main ideas:
 I1) Block Multiplication
 I2) Clustering
 I3) Compression

[Kang et al. ICDM’09]
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 I1) Block-Method

Fast Algorithms for GIM-V
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[Kang et al. ICDM’09]
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55

Fast Algorithms for GIM-V

 I2) Clustering

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1

1 1

1
1
1

Preprocess

A: preprocessing for clustering
(only green blocks are stored in HDFS)

[Kang et al. ICDM’09]
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Fast Algorithms for GIM-V

 I3) Compression

1
1

1
1

1
1

1
1

1
1

Compress

A: compress clustered blocks

1
1

1
1

1
1

1
1

1
1

ZIP

ZIP

[Kang et al. KDD’11]



U Kang (KAIST) 57KHU CE’14

Fast Algorithms for GIM-V

Block Encoding? Compression? Clustering?
RAW No No No
NNB Yes No No
NCB Yes Yes No
CCB Yes Yes Yes

43x smaller

9.2x faster

[Kang et al. VLDBJ’12]
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Fast Algorithms for GIM-V

Block Encoding? Compression? Clustering?

RAW No No No

NNB Yes No No

NCB Yes Yes No

CCB Yes Yes Yes

A: Proposed Method(CCB) provides
43x smaller storage, 9.2x faster running time

43x smaller

9.2x faster

[Kang et al. VLDBJ’12]
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Triangle Counting

 Q3: How to spot strange behaviors in networks?
 E.g.) Twitter who-follows-whom graph?

[Kang et al. PAKDD’11]
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 Triangle Counting
 Real social networks have a lot of triangles

 Friends of friends are friends 

 But, triangles are expensive to compute
 (3-way join; several approx. algos)

 Q: Can we do that quickly?
 A: Yes!
 #triangles = 
 (and, because of skewness in eigenvalues, 

we only need the top few eigenvalues!)

Triangle Counting
[Kang et al. PAKDD’11]
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Triangle Counting

[Twitter 2009; 
~ 60 million nodes
~ 3 billion edges]

• U.S. politicians: moderate number of triangles vs. degree

 Triangle counting in Twitter social network

[Kang et al. PAKDD’11]
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 Triangle counting in Twitter social network

Triangle Counting

[Twitter 2009; 
~ 60 million nodes
~ 3 billion edges]

• U.S. politicians: moderate number of triangles vs. degree
• Adult sites: very large number of triangles vs. degree

[Kang et al. PAKDD’11]
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Background: Eigensolver

 Eigensolver
 Given: (adjacency) matrix A,
 Compute: top k eigenvalues and eigenvectors of A
 Application:
 SVD

 triangle counting

 spectral clustering 
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Problem Definition

 Q4: How to design a billion-scale eigensolver?
 Existing eigensolver: can handle millions of nodes 

and edges

[Kang et al. PAKDD’11]
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Proposed Method

 HEigen algorithm (Hadoop Eigen-solver)
 Selectively parallelize ‘Lanczos-SO’ algorithm
 Block encoding
 Exploiting skewness in matrix-matrix mult.
 (m >> n > k)

[Kang et al. PAKDD’11]

x
≈ ≈ ≈ ≈

m x k m x n n x k
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Skewed Matrix-Matrix 
Mult.

 Multiply Qn
mxn and Hnxk (m >> n > k)

 Naïve multiplication: too expensive
 Proposed:
 `cache’-based multiplication: broadcast the small 

matrix H to all the machines that contains Qn

x

A’s
Eigenvector

Qn H

Qn: O(100 Gbytes)
H: O(Kbytes)

[Kang et al. PAKDD’11]

≈ ≈ ≈ ≈

m x k m x n n x k
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Skewed Matrix-Matrix 
Mult.

 `cache’-based multiplication: broadcast the small 
matrix H to all the machines that contains Qn

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

Qn
(1/3) Qn

(2/3) Qn
(3/3)

H H H

[Kang et al. PAKDD’11]

x

A’s
Eigenvector

Qn H

≈ ≈ ≈ ≈

m x k m x n n x k
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Skewed Matrix-Matrix Mult.

Cache-based MM runs 76x faster

Which Matrix-Matrix multiplication 
algorithm runs the fastest?

MM: naïve mat-mat mult.
IMV: naïve iterative mat-vec mult.
CBMV: cache-based iterative mat-vec mult.
CBMM: cache-based mat-mat mult.

[Kang et al. PAKDD’11]

(100 machines used)

76x faster
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Background: Tensor

 Tensors (=multi-dimensional arrays) are 
everywhere
 Hyperlinks and anchor texts in Web graphs

URL 1

URL 2

Anchor 
Text

Java

C++

C#

1
1

1

1

1

1
1
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Background: Tensor

 Tensors (=multi-dimensional arrays) are 
everywhere
 Sensor stream (time, location, type)
 Predicates (subject, verb, object) in knowledge base

“Barrack Obama is
the president of U.S.” 

“Eric Clapton plays
guitar” 

(26M)

(26M)

(48M)
NELL (Never Ending 
Language Learner) data
Nonzeros =144M
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Problem Definition

 Q5: What are the important concepts and 
synonyms in a KB tensor?
 Q5.1: What are the dominant concepts in the 

knowledge base tensor?
 Q5.2: What are the synonyms to a given noun 

phrase?

(26M)

(26M)

(48M)
NELL (Never Ending 
Language Learner) data
Nonzeros =144M

[Kang et al. KDD’12]
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A5.1: Concept Discovery

 Concept Discovery in Knowledge Base

[Kang et al. KDD’12]
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A5.1: Concept Discovery
[Kang et al. KDD’12]
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A5.2: Synonym Discovery

 Synonym Discovery in Knowledge Base

a1a2 aR…

(Given) noun phrase

(Discovered) synonym 1

(Discovered) synonym 2

[Kang et al. KDD’12]
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A5.2: Synonym Discovery
[Kang et al. KDD’12]
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Problem Definition

 Q6: How to decompose a billion-scale tensor?
 Corresponds to SVD in 2D case

[Kang et al. KDD’12]
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Challenge

 Alternating Least Square (ALS) Algorithm

• •

: pseudo-inverse

How to design fast MapReduce algorithm for the ALS?

: Hadamard
: Khatri-Rao

(J=26M)

(I=26M)

(K=48M)

[Kang et al. KDD’12]
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Main Idea

 1. Ordering of Computation Our choice

FLOPS (NELL data)

FLOPS (NELL data)

[Kang et al. KDD’12]
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Main Idea

 2. Avoiding Intermediate Data Explosion

Size of Intermediate 
Data (NELL)
- Naïve: 100 PB

(J=26M)

(I=26M)

(K=48M)

[Kang et al. KDD’12]
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Main Idea

 2. Avoiding Intermediate Data Explosion

Size of Intermediate 
Data (NELL)
- Proposed: 1.5 GB

Size of Intermediate 
Data (NELL)
- Naïve: 100 PB

(Before) (After)

[Kang et al. KDD’12]
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Scalability

 GigaTensor solves 100x larger problem

Number of 
nonzero
= I / 50

(J)

(I)

(K)

GigaTensor

Out of
Memory

100x

[Kang et al. KDD’12]
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Outline

Motivation
Structure of Large Graphs
Eigensolver
Tensor Decomposition
Conclusions
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Conclusions

 Big graphs open big opportunities for
 Anomaly detection
 Scalable algorithms
 Real-world applications
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Conclusions

 PEGASUS: Peta-Scale Graph Mining System
 12.8 K lines of JAVA code (Hadoop on M45 cluster)
 Open source (Apache license)
 Outreach

 Downloaded ≥ 800 times from 83 countries
 2 U.S. patents, 2 best paper awards
 Microsoft : part of Hadoop distribution for Windows Azure
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Thank you !
web.kaist.ac.kr/~ukang


