Big Graph Mining: Theory, Engineering, and Discoveries

U Kang
Dept. of Computer Science
KAIST

KAIST

Motivation

- Graphs are everywhere.

facebook.
twitter

Friendship Network [fmsag.com]

Protein Interactions
[bordalierinstitute.com]

KAIST

Motivation

- Graphs are everywhere.

facebook
twitter

Goal 1: Find Patterns and Anomalies

Communities, diameter, important nodes, etc.

Motivation

- The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day
15 PBytes/total
[Thusoo+ '10]

YAHOO!

1.4 billion web pages 6.6 billion edges
[Broder+ '04]
bing
ClickStream Data
0.26 PBytes

1 billion query-URL
[Liu+ '09]
Google
$20 \mathrm{PBytes} /$ day [processed]
[Dean+ '08]

Motivation

- The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day
15 PBytes/total
[Thusoo+ ' 10]

YAHOO!

Goal 2: Scale-up

For graphs with billions of nodes and edges

Goal

- PEGASUS: Peta-Scale Graph Mining System

- Scalable algorithms for mining very large graphs
- Pagerank, Random Walk with Restart
- Connected Component
- Radius
- Belief Propagation
- Eigensolver

U Kang (KAIST)

Data

- Real and synthetic graphs

Graph	Nodes	Edges	File Size
YahooWeb	1.4 B	6.6 B	0.12 TB
Twitter	104 M	3.7 B	80 GB
LinkedIn	7.5 M	58 M	1 GB
U.S. Patent	6 M	16 M	264 MB
Wikipedia	3.5 M	42 M	600 MB
Kronecker	177 K	$1,977 \mathrm{M}$	25 GB
Erdos-Renyi	177 K	$1,977 \mathrm{M}$	25 GB

Overview

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion-scale eigensolver?
Tensor	Q5: What are the important concepts Decomposition and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Outline

B Motivation

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

\square Structure of Large Graphs \Rightarrow D1. Radius Plots

A1. GIM-V

\square Eigensolver

\square Tensor Decomposition
\square Conclusions

Problem Definition

- Q1: What do large networks look like?

Q Q1.1: What is the structure of large networks?
\square Q1.2: Node centrality: which node is the most central?
\square Q1.3: How does the structure of networks change over time?

Q1.1: Structure of Large Networks

Clique?
Chain?

Q: Can we have a concise summary of

 the structure of networks?
Q1.2: Node (closeness) centrality

Q: If you have to pick 1 person to advertise, who do you want to choose?

Q1.3: Evolution of networks

- How does the structure of networks change over time?

Answer: Radius Plot!

- Radius of a node: the longest shortest distance to all other nodes
- Effective radius of a node: $90^{\text {th }}$-percentile of the radius
- Diameter of a graph: maximum radius
- Effective Diameter of a graph: the number of hops 90% of all pair of nodes can be reached

Radius Plot

Radius Plot

Chain

Q1.1: Structure of Large Networks

Clique?
Chain?

Q: Can we have a concise summary of the structure of networks?

Q1.1: Structure of Large Networks

A: Radius plot gives an answer

Q: Can we have a concise summary of the structure of networks?

Q1.2: Node (closeness) centrality

Q: If you have to pick 1 person to advertise, who do you want to choose?

Q1.2: Node (closeness) centrality

Q: If you have to pick 1 person to advertise, who do you want to choose?

Q1.3: Evolution of networks

- How does the structure of networks change over time?

A: Study Radius plot over time!

A1.1: Radius plot of real graphs

■ LinkedIn: $|\mathrm{V}|=7.5 \mathrm{M},|\mathrm{E}|=58 \mathrm{M}, 1 \mathrm{GBytes}$
■ U.S. Patent: $|\mathrm{V}|=6 \mathrm{M},|\mathrm{E}|=16 \mathrm{M}, 264$ MBytes

A1.1: Radius plot of real graphs

■ LinkedIn: $|\mathrm{V}|=7.5 \mathrm{M},|\mathrm{E}|=58 \mathrm{M}, 1 \mathrm{GBytes}$
■ U.S. Patent: $|\mathrm{V}|=6 \mathrm{M},|\mathrm{E}|=16 \mathrm{M}, 264$ MBytes

Q: What do the real graphs look like?

Clique?

Star?

Chain?

Bipartite Core?

A1.1: Radius plot of real graphs

A: Bi-modal!

A1.1: Radius plot of real graphs

A: Bi-modal!

Q: What is the reason for this bi-modality?

A1.1: Radius plot of real graphs

A1.1: Radius plot of YahooWeb

- YahooWeb: $|\mathrm{V}|=1.4 \mathrm{~B},|\mathrm{E}|=6.6 \mathrm{~B}, 120 \mathrm{GBytes}$

Q: How about the radius plot of a much larger graph? Also bi-modal?

A1.1: Radius plot of YahooWeb

A: Multi-modality!

- Multi-modality possibly from mixture of cores

A1.1: Radius plot of YahooWeb

- YahooWeb: $|\mathrm{V}|=1.4 \mathrm{~B},|\mathrm{E}|=6.6 \mathrm{~B}, 120 \mathrm{GBytes}$

Q: What is the diameter of the Web?

A1.1: Radius plot of YahooWeb

A: 7 degrees of separation!

- Multi-modality possibly from mixture of cores
- Effective diameter: surprisingly small

A1.2: Node (closeness) centrality

- YahooWeb: $|\mathrm{V}|=1.4 \mathrm{~B},|\mathrm{E}|=6.6 \mathrm{~B}, 120 \mathrm{GBytes}$

Q : What is the most central node in the Web?

A1.2: Node Centrality

A1.2: Node Centrality

A1.3: Radius plots over time

At time T
T+2

Q: How the radius plots change over time?

A1.3: Radius plots over time

A1.3: Radius plots over time

A: Expansion-Contraction!

A1.3: Radius plots over time

Outline

B Motivation

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

\square Structure of Large Graphs
D1. Radius Plots
\Rightarrow A1. GIM-V
\square Eigensolver
\square Tensor Decomposition
\square Conclusions

Problem Definition

- Q2: How to scale-up structure analysis algorithm?
- Q2.1: How to unify many structure analysis algorithms (connected components, PageRank, diameter/radius)?
\square Q2.2: How to design a scalable algorithm for the structure analysis?

Q2.1: Unifying Algorithms

- Given a graph, can we compute
- connected components,
- PageRank,
- Random Walk with Restart,
- diameter/radius with one algorithm?

Q2.1: Unifying Algorithms

- Given a graph, can we compute
- connected components,
- PageRank,
- Random Walk with Restart,
- diameter/radius with one algorithm?

$$
\begin{aligned}
& \text { Yes! } \\
& \text { How? }
\end{aligned}
$$

Main Idea

- GIM-V
- Generalized Iterative Matrix-Vector Multiplication
\square Extension of plain matrix-vector multiplication
- includes
- Connected Components
- PageRank
- RWR (Random Walk With Restart)
- Diameter Estimation

Main Idea: Intuition

- Plain M-V multiplication

- Weighted Combination of Colors
- ~ Message Passing

Main Idea: Intuition

- Plain M-V multiplication

- Weighted Combination of Colors
- ~ Message Passing

Main Idea: Intuition

- Plain M-V multiplication

Main Idea: Intuition

- Plain M-V multiplication

Three Implicit Operations here:
multiply $m_{j i}$ and v_{i}
sum n multiplication results update $v_{j}{ }^{\prime}$

Main Idea

- GIM-V

| (approx.) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operations | Standard MV | Con. Cmpt. | PageRank | RWR | Diameter |
| combine2 | Multiply | Multiply | Multiply
 with c | Multiply
 with c | Multiply
 bit-vector |
| combineAll | Sum | MIN | Sum with rj
 prob. | Sum with
 restart prob | BIT-OR() |
| assign | Assign | MIN | Assign | Assign | BIT-OR() |

Q2.2: Scalable Algorithm

- The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day
15 PBytes/total
[Thusoo+ ' 10]

YAHOO!

1.4 billion web pages 6.6 billion edges
[Broder+ '04]

ClickStream Data
0.26 PBytes

1 billion query-URL
[Liu+ '09]
Google
20 PBytes/day
[Dean+ '08]

Q2.2: Scalable Algorithm

- The sizes of graphs are growing!

facebook.

Q: How can we handle large graphs which don't fit into the memory, or disks of a single machine?

YАНОО!
 Google

A: Parallelism, with MapReduce!
[Dean+ U8]

Background: MapReduce

- MapReduce/Hadoop Framework

HDFS

KHU CE'14

Background: MapReduce

- MapReduce/Hadoop Framework

HDFS

Reduce 1

HDFS: fault tolerant, scalable, distributed storage system

Mapper: read data from HDFS, output (k,v) pair

Output sorted by the key
Reducer: read output from manners outnut a new (k v) pair
Programmers need to provide only $\operatorname{map}()$ and reduce() functions

Two Restrictions on HDFS

- [R1] HDFS is location transparent
- Users don't know which file is located in which machine
- [R2] A line is never split
- A large file is split into pieces of a size(e.g. 256 MB)
- Users don't know the point of the split

Fast Algorithms for GIM-V

- Given the two restrictions R1 and R2,
how can we make faster algorithms for
GIM-V in Hadoop?
- Three main ideas:
- I1) Block Multiplication
- I2) Clustering
- I3) Compression

Fast Algorithms for GIM-V

- I1) Block-Method

Fast Algorithms for GIM-V

- I2) Clustering

				1			
		1					
	1						
						1	
1							1
							1
			1				
				1	1		

Preprocess

	1						
1		1					
	1		1				
		1					
					1		
				1			
							1
						1	

A: preprocessing for clustering (only green blocks are stored in HDFS)

Fast Algorithms for GIM-V

- I3) Compression

A: compress clustered blocks

Fast Algorithms for GIM-V

	Block Encoding?	Compression?	Clustering?
RAW	No	No	No
NNB	Yes	No	No
NCB	Yes	Yes	No
CCB	Yes	Yes	Yes

Fast Algorithms for GIM-V

A: Proposed Method(CCB) provides 43 x smaller storage, 9.2 x faster running time

Outline

B Motivation

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algoriti
Aigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

■ Structure of Large Graphs

\square Eigensolver

- D2. Triangle Counting

A2. HEigen
\square Tensor Decomposition
\square Conclusions

Triangle Counting

- Q3: How to spot strange behaviors in networks?
- E.g.) Twitter who-follows-whom graph?

Triangle Counting

- Triangle Counting

- Real social networks have a lot of triangles
- Friends of friends are friends
- But, triangles are expensive to compute
- (3-way join; several approx. algos)
- Q: Can we do that quickly?
- A: Yes!
- \#triangles $=\frac{1}{6} \sum_{i} \lambda_{i}{ }^{3}$
- (and, because of skewness in eigenvalues, we only need the top few eigenvalues!)

Triangle Counting

- Triangle counting in Twitter social network

[Twitter 2009;
~ 60 million nodes
~ 3 billion edges]
- U.S. politicians: moderate number of triangles vs. degree

Triangle Counting

- Triangle counting in Twitter social network

[Twitter 2009;
~ 60 million nodes
~ 3 billion edges]
- U.S. politicians: moderate number of triangles vs. degree
- Adult sites: very large number of triangles vs. degree

Outline

B Motivation

Task	Discoveries	Algorithm
$\begin{array}{c}\text { Structure of } \\ \text { Large Graphs }\end{array}$	$\begin{array}{l}\text { Q1: What do } \\ \text { large networks } \\ \text { look like? }\end{array}$	$\begin{array}{l}\text { Q2: How to scale- } \\ \text { up structure } \\ \text { analysis algoriti }\end{array}$
A?		

■ Structure of Large Graphs

\square Eigensolver
D2. Triangle Counting
\Rightarrow A2. HEigen
\square Tensor Decomposition
\square Conclusions

Background: Eigensolver

- Eigensolver
- Given: (adjacency) matrix A,
\square Compute: top k eigenvalues and eigenvectors of A
- Application:
- SVD

- triangle counting

- spectral clustering

Problem Definition

- Q4: How to design a billion-scale eigensolver?
- Existing eigensolver: can handle millions of nodes and edges

Proposed Method

- HEigen algorithm (Hadoop Eigen-solver)
- Selectively parallelize 'Lanczos-SO' algorithm
- Block encoding
- Exploiting skewness in matrix-matrix mult.
- ($\mathrm{m} \gg \mathrm{n}>\mathrm{k}$)

Skewed Matrix-Matrix

 Mult.- Multiply $\mathrm{Q}_{\mathrm{n}}{ }^{\mathrm{mxn}}$ and $\mathrm{H}^{\mathrm{nxk}}(\mathrm{m} \gg \mathrm{n}>\mathrm{k})$

$\mathrm{Q}_{\mathrm{n}}: \mathrm{O}(100 \mathrm{Gbytes})$
H: O(Kbytes)
Eigenvector
- Naïve multiplication: too expensive
- Proposed:
- `cache'-based multiplication: broadcast the small matrix H to all the machines that contains Q_{n}

Mult.

- `cache'-based multiplication: broadcast the small matrix H to all the machines that contains Q_{n}

Eigenvector

Skewed Matrix-Matrix Mult.

Which Matrix-Matrix multiplication algorithm runs the fastest?

Eigenvector
MM: naïve mat-mat mult. IMV: naïve iterative mat-vec mult.
CBMV: cache-based iterative mat-vec mult. CBMM: cache-based mat-mat mult.
Time vs. algorithms (100 machines used)

Cache-based MM runs 76x faster

Outline

B Motivation

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algoriu?
Eigensolver	Q3: How to spot strange behavior in networks?	Q4: How to design a billion- scale eigensolv?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

■ Structure of Large Graphs

Eigensolver
\square Tensor Decomposition
\Rightarrow D3. Knowledge Base Tensor

A3. GigaTensor

\square Conclusions

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
\square Hyperlinks and anchor texts in Web graphs

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
\square Predicates (subject, verb, object) in knowledge base
"Eric Clapton plays
guitar"
"Barrack Obama is
the president of U.S."
(48M) verbs subjects (26M)

NELL (Never Ending Language Learner) data Nonzeros $=144 \mathrm{M}$

Problem Definition

- Q5: What are the important concepts and synonyms in a KB tensor?
Q Q.1: What are the dominant concepts in the knowledge base tensor?
- Q5.2: What are the synonyms to a given noun phrase?
(48M) verbs
subjects
(26M)

A5.1: Concept Discovery

- Concept Discovery in Knowledge Base

A5.1: Concept Discovery
 Noun Noun
 Phrase 1 Phrase 2 Context

Concept 1: "Web Protocol"

internet	protocol	'np1' 'stream' ' n n2'
file	software	'np1' 'marketing' ' n 2'
data	suite	'np1' 'dating' ' n 2'

Concept 2: "Credit Cards"		
credit	information	'np1' 'card' 'np2'
Credit	debt	'np1' 'report' 'np2'
library	number	'np11' 'cards' 'np2'

Concept 3: "Health System"

health	provider	'np1' 'care' 'np2'
child	providers	'np' 'insurance' 'np2'
home	system	'np1' 'service' 'np2'

Concept 4: "Family Life"

life	rest	'np2' 'of' 'my' 'np1'
family	part	'np2' 'of' 'his' 'np1'
body	years	'np2' 'of' 'her' 'np1'

A5.2: Synonym Discovery

- Synonym Discovery in Knowledge Base

A5.2: Synonym Discovery

pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast
Christian history	European history, American history, Islamic history, history
disbelief	dismay, disgust, astonishment
cyberpunk	online-gaming
KHUsoul body	

(Given)
Noun Phrase
(Discovered)
Potential Synonyms

Outline

B Motivation

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algoriu?
Eigensolver	Q3: How to spot strange behavior in networks?	Q4: How to design a billion- scale eigensolv?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

■ Structure of Large Graphs

Eigensolver
\square Tensor Decomposition
D3. Knowledge Base Tensor
\Rightarrow A3. GigaTensor
\square Conclusions

Problem Definition

- Q6: How to decompose a billion-scale tensor?
\square Corresponds to SVD in 2D case

Challenge

- Alternating Least Square (ALS) Algorithm

$$
\hat{\mathbf{A}} \leftarrow \mathbf{X}_{(\mathbf{1})}(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{T} \mathbf{C} * \mathbf{B}^{T} \mathbf{B}\right)^{\dagger}
$$

($\mathrm{K}=48 \mathrm{M}$)

\odot : Khatri-Rao
*: Hadamard
\dagger : pseudo-inverse
How to design fast MapReduce algorithm for the ALS?

Main Idea

- 1. Ordering of Computation

Our choice

$$
\left[\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})\right]\left(\mathbf{C}^{T} \mathbf{C} * \mathbf{B}^{T} \mathbf{B}\right)^{\dagger}
$$

$\mathbf{8} \cdot \mathbf{1 0}^{\mathbf{9}}$ FLOPS (NELL data)

$$
\begin{gathered}
\mathbf{X}_{(\mathbf{1})}\left[(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{T} \mathbf{C} * \mathbf{B}^{T} \mathbf{B}\right)^{\dagger}\right] \\
2.5 \cdot \mathbf{1 0}^{17} \text { FLOPS (NELL data) }
\end{gathered}
$$

Main Idea

- 2. Avoiding Intermediate Data Explosion

Size of Intermediate Data (NELL)

- Naïve: 100 PB

Main Idea

- 2. Avoiding Intermediate Data Explosion

Size of Intermediate
Data (NELL)

- Naïve: 100 PB

Scalability

- GigaTensor solves 100x larger problem

(K)
(J)

(I)

Number of
nonzero
= I / 50

Outline

B Motivation

■ Structure of Large Graphs
\square Eigensolver
Tensor Decomposition
\square Conclusions

Conclusions

- Big graphs open big opportunities for
- Anomaly detection
- Scalable algorithms
\square Real-world applications

Conclusions

- PEGASUS: Peta-Scale Graph Mining System
- 12.8 K lines of JAVA code (Hadoop on M45 cluster)
- Open source (Apache license)
\square Outreach
- Downloaded ≥ 800 times from 83 countries
- 2 U.S. patents, 2 best paper awards
- Microsoft : part of Hadoop distribution for Windows Azure

Thank you! web.kaist.ac.kr/~ukang

KHU CE'14

U Kang (KAIST)
(48M) verbs subjects (26M)

