

Big Graph Mining: Theory, Engineering, and Discoveries

U Kang Dept. of Computer Science KAIST

• Graphs are everywhere.

Internet Map [cheswick.com]

facebook

twitter

Friendship Network [fmsag.com]

Food Web [biologycorner.com]

Protein Interactions [bordalierinstitute.com]

KHU CE'14

• Graphs are everywhere.

Internet Map [cheswick.com]

Food Web [biologycorner.com]

twitter

Goal 1: Find Patterns and Anomalies

Communities, diameter, important nodes, etc.

The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day 15 PBytes/total [Thusoo+ '10]

1.4 billion web pages6.6 billion edges[Broder+ '04]

ClickStream Data 0.26 PBytes 1 billion query-URL [Liu+ '09]

Google

20 PBytes/day [processed]

[Dean+ '08]

KHU CE'14

U Kang (KAIST)

The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day 15 PBytes/total [Thusoo+ '10] ClickStream Data 0.26 PBytes 1 billion query-URL [Liu+ '09]

YAHOO!

Google

Goal 2: Scale-up

For graphs with **billions** of nodes and edges

Goal

PEGASUS: Peta-Scale Graph Mining System

• Scalable algorithms for mining very large graphs

- Pagerank, Random Walk with Restart
- Connected Component
- Radius

. . .

- Belief Propagation
- Eigensolver

Open Source Software World Challenge

KHU CE'14

U Kang (KAIST)

Data

Real and synthetic graphs

Graph	Nodes	Edges	File Size
YahooWeb	1.4 B	6.6 B	0.12 TB
Twitter	104 M	3.7 B	80 GB
LinkedIn	7.5 M	58 M	1 GB
U.S. Patent	6 M	16 M	264 MB
Wikipedia	3.5 M	42 M	600 MB
Kronecker	177 K	1,977 M	25 GB
Erdos-Renyi	177 K	1,977 M	25 GB

Overview

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion-scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Outline

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Motivation

➡ □ Structure of Large Graphs

- ➡ D1. Radius Plots
 - A1. GIM-V
- □ Eigensolver
- □ Tensor Decomposition
- □ Conclusions

Problem Definition

- Q1: What do large networks look like?
 - □ Q1.1: What is the structure of large networks?
 - Q1.2: Node centrality: which node is the most central?
 - Q1.3: How does the structure of networks change over time?

Q1.1: Structure of Large Networks

Clique?

Chain?

Q: Can we have a concise summary of the structure of networks?

KHU CE'14

Q: If you have to pick 1 person to advertise, who do you want to choose?

Q1.3: Evolution of networks

How does the structure of networks change over time?

Answer: Radius Plot!

- Radius of a node: the longest shortest distance to all other nodes
- Effective radius of a node: 90th-percentile of the radius
- Diameter of a graph: maximum radius
- Effective Diameter of a graph: the number of hops 90% of all pair of nodes can be reached

Radius Plot

U Kang (KAIST)

KHU CE'14

U Kang (KAIST)

Q1.1: Structure of Large Networks

Clique?

Chain?

Q: Can we have a concise summary of the structure of networks?

KHU CE'14

Q1.1: Structure of Large Networks

A: Radius plot gives an answer

Q: Can we have a concise summary of the structure of networks?

Q: If you have to pick 1 person to advertise, who do you want to choose?

KHU CE'14

Q1.2: Node (closeness) centrality

Q1.3: Evolution of networks

How does the structure of networks change over time?

A: Study Radius plot over time!

LinkedIn: |V|=7.5M, |E|=58M, 1GBytes
U.S. Patent: |V|=6M, |E|=16M, 264 MBytes

LinkedIn: |V|=7.5M, |E|=58M, 1GBytes
U.S. Patent: |V|=6M, |E|=16M, 264 MBytes

A: Bi-modal!

A: Bi-modal!

Q: What is the reason for this bi-modality?

A1.1: Radius plot of YahooWeb

■ YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: How about the radius plot of a much larger graph? Also bi-modal?

A1.1: Radius plot of YahooWeb

A: Multi-modality!

Multi-modality possibly from mixture of cores

A1.1: Radius plot of YahooWeb

■ YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: What is the diameter of the Web?

A1.1: Radius plot of YahooWeb

A: 7 degrees of separation!

- Multi-modality possibly from mixture of cores
- Effective diameter: surprisingly small U Kang (KAIST)

A1.2: Node (closeness) centrality

■ YahooWeb: |V|=1.4B, |E|=6.6B, 120GBytes

Q: What is the most central node in the Web?

A1.2: Node Centrality

A1.2: Node Centrality

A1.3: Radius plots over time

At time T T+1 T+2

Q: How the radius plots change over time?

A1.3: Radius plots over time

A1.3: Radius plots over time

A: Expansion-Contraction!

[Kang et al. SDM'10]

A1.3: Radius plots over time

Outline

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorithm?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Motivation

➡ □ Structure of Large Graphs

- D1. Radius Plots
- ➡ A1. GIM-V
- □ Eigensolver
- □ Tensor Decomposition
- □ Conclusions

Problem Definition

- Q2: How to scale-up structure analysis algorithm?
 - Q2.1: How to unify many structure analysis algorithms (connected components, PageRank, diameter/radius)?
 - Q2.2: How to design a scalable algorithm for the structure analysis?

Q2.1: Unifying Algorithms

- Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius with *one algorithm*?

Q2.1: Unifying Algorithms

- Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius with *one algorithm*?

Yes! How?

Main Idea

■ GIM-V

- □ Generalized Iterative Matrix-Vector Multiplication
- Extension of plain matrix-vector multiplication
- □ includes
 - Connected Components
 - PageRank
 - RWR (Random Walk With Restart)
 - Diameter Estimation

Plain M-V multiplication

- Weighted Combination of Colors
- ~ Message Passing

Plain M-V multiplication

- Weighted Combination of Colors
- ~ Message Passing

 \bigcirc

С

D

B

1

1

C

0.1

D

1

1

0.1

=

Х

Plain M-V multiplication

Plain M-V multiplication

Three Implicit Operations here: multiply m_{ji} and v_i sum n multiplication results update v_j'

combine2Message sendingcombineAllMessage combinationassign

Main Idea

• GIM-V

					(approx.)
Operations	Standard MV	Con. Cmpt.	PageRank	RWR	Diameter
combine2	Multiply	Multiply	Multiply	Multiply	Multiply
			with c	with c	bit-vector
combineAll	Sum	MIN	Sum with rj	Sum with	
			prob.	restart prob)
assign	Assign	MIN	Assign	Assign	BIT-OR()

[Kang et al. ICDM'09]

Q2.2: Scalable Algorithm

The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day 15 PBytes/total [Thusoo+ '10]

1.4 billion web pages6.6 billion edges[Broder+ '04]

ClickStream Data 0.26 PBytes 1 billion query-URL [Liu+ '09]

Google

20 PBytes/day

[Dean+ '08]

KHU CE'14

U Kang (KAIST)

Q2.2: Scalable Algorithm

• The sizes of graphs are growing!

Background: MapReduce

MapReduce/Hadoop Framework

HDFS: fault tolerant, scalable, distributed storage system

Mapper: read data from HDFS, output (k,v) pair

Output sorted by the key

Reducer: read output from mappers, output a new (k,v) pair to HDFS

KHU CE'14

Background: MapReduce

MapReduce/Hadoop Framework

HDFS: fault tolerant, scalable, distributed storage system

Mapper: read data from HDFS, output (k,v) pair

Output sorted by the key

Reduce 1Reducer: read output from
mappers_output a new (k v) pairProgrammers need to provide only
map() and reduce() functions

KHU CE'14

Two Restrictions on HDFS

[R1] HDFS is location transparent

Users don't know which file is located in which machine

[R2] A line is never split

- A large file is split into pieces of a size(e.g. 256 MB)
- □ Users don't know the point of the split

Fast Algorithms for GIM-V

- Given the two restrictions R1 and R2, how can we make faster algorithms for GIM-V in Hadoop?
 - □ Three main ideas:
 - I1) Block Multiplication
 - I2) Clustering
 - I3) Compression

[Kang et al. ICDM'09]

Fast Algorithms for GIM-V

I1) Block-Method

[Kang et al. ICDM'09]

Fast Algorithms for GIM-V

I2) Clustering

A: preprocessing for clustering (only green blocks are stored in HDFS)

[Kang et al. KDD'11]

Fast Algorithms for GIM-V

I3) Compression

A: compress clustered blocks

[Kang et al. VLDBJ'12]

Fast Algorithms for GIM-V

	Block Encoding?	Compression?	Clustering?
RAW	No	No	No
NNB	Yes	No	No
NCB	Yes	Yes	No
CCB	Yes	Yes	Yes

[Kang et al. VLDBJ'12]

Fast Algorithms for GIM-V

A: Proposed Method(CCB) provides 43x smaller storage, 9.2x faster running time

Outline

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorited?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Motivation

Structure of Large Graphs

➡ □ Eigensolver

- ➡ D2. Triangle Counting
 - A2. HEigen
- □ Tensor Decomposition
- □ Conclusions

Q3: How to spot strange behaviors in networks?
 E.g.) Twitter who-follows-whom graph?

Triangle Counting

- Real social networks have a lot of triangles
 - Friends of friends are friends
- But, triangles are expensive to compute
 (3-way join; several approx. algos)
- Q: Can we do that quickly?
- A: Yes!
 - #triangles = $\frac{1}{6}\sum_i \lambda_i^3$
 - (and, because of skewness in eigenvalues, we only need the top few eigenvalues!)

KHU CE'14

Triangle counting in Twitter social network

• U.S. politicians: moderate number of triangles vs. degree

Triangle counting in Twitter social network

- U.S. politicians: moderate number of triangles vs. degree
- Adult sites: very large number of triangles vs. degree

Outline

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorited?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensolver?
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Motivation

Structure of Large Graphs

➡ □ Eigensolver

- D2. Triangle Counting
- ➡ A2. HEigen
- □ Tensor Decomposition
- □ Conclusions

Background: Eigensolver

Eigensolver

Given: (adjacency) matrix A,

- Compute: top k eigenvalues and eigenvectors of A
- Application:

Problem Definition

Q4: How to design a billion-scale eigensolver?
 Existing eigensolver: can handle millions of nodes and edges

Proposed Method

- HEigen algorithm (Hadoop Eigen-solver)
 - Selectively parallelize 'Lanczos-SO' algorithm
 - Block encoding
 - Exploiting skewness in matrix-matrix mult.
 - $(m \gg n > k)$

- Naïve multiplication: too expensive
- Proposed:
 - `cache'-based multiplication: broadcast the small matrix H to all the machines that contains Q_n

Details

[Kang et al. PAKDD'11] Skewed Matrix-Matrix Mult.

 `cache'-based multiplication: broadcast the small matrix H to all the machines that contains Q_n

Outline

Task	Discoveries	Algorithm
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorited?
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensol
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?

Motivation

- Structure of Large Graphs
- **Eigensolver**
- ➡ □ Tensor Decomposition
 - ➡ D3. Knowledge Base Tensor
 - A3. GigaTensor
 - □ Conclusions

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
 - □ Hyperlinks and anchor texts in Web graphs

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
 - □ Sensor stream (time, location, type)
 - Predicates (subject, verb, object) in knowledge base

KHU CE'14

U Kang (KAIST)

Problem Definition

- Q5: What are the important concepts and synonyms in a KB tensor?
 - Q5.1: What are the dominant concepts in the knowledge base tensor?
 - Q5.2: What are the synonyms to a given noun phrase?

A5.1: Concept Discovery

Concept Discovery in Knowledge Base

		Noun Phrase 1	Noun Phrase 2	
		Concept 1: '	'Web Protocol	n
		internet	protocol	'np1' 'stream' 'np2'
		file	software	'np1' 'marketing' 'np2'
Concept1 Concept2	Concept R	data	suite	'np1' 'dating' 'np2'
verbs \mathbf{z}_{1} \mathbf{c}_{1} \mathbf{b}_{1} \mathbf{c}_{2} \mathbf{b}_{2}	\mathbf{c}_{R}	Concept 2: '	'Credit Cards'	'
\approx \mathbf{b}_{1+} \mathbf{b}_{2+}	$\dots + \mathbf{b}_R$	credit	information	'np1' 'card' 'np2'
subjects χ \mathbf{a}_1 \mathbf{a}_2	\mathbf{a}_{R}	Credit	debt	'np1' 'report' 'np2'
	\mathbf{u}_{R}	library	number	'np1' 'cards' 'np2'
$\overset{\bullet}\longleftrightarrow$	•	Concept 3: '	'Health Systen	י''
objects		health	provider	'np1' 'care' 'np2'
		child	providers	'np' 'insurance' 'np2'
		home	system	'np1' 'service' 'np2'
		Concept 4: '	'Family Life''	
		life	rest	'np2' 'of' 'my' 'np1'
		family	part	'np2' 'of' 'his' 'np1"
		body	years	'np2' 'of' 'her' 'np1'

KHU CE'14

A5.1: Concept Discovery

Noun Phrase 1	Noun Phrase 2	Context			
Concept 1: "	Concept 1: "Web Protocol"				
internet	protocol	'np1' 'stream' 'np2'			
file	software	'np1' 'marketing' 'np2'			
data	suite	'np1' 'dating' 'np2'			
Concept 2: "Credit Cards"					
credit	information	'np1' 'card' 'np2'			
Credit	debt	'np1' 'report' 'np2'			
library	number	'np1' 'cards' 'np2'			
Concept 3: "	Health System	ı''			
health	provider	'np1' 'care' 'np2'			
child	providers	'np' 'insurance' 'np2'			
home	system	'np1' 'service' 'np2'			
Concept 4: "Family Life"					
life	rest	'np2' 'of' 'my' 'np1'			
family	part	'np2' 'of' 'his' 'np1"			
body	years	'np2' 'of' 'her' 'np1'			

76

[Kang et al. KDD'12]

A5.2: Synonym Discovery

Synonym Discovery in Knowledge Base

(Given) Noun Phrase	(Discovered) Potential Synonyms
pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast
Christian history	European history, American history, Islamic history, history
disbelief	dismay, disgust, astonishment
cyberpunk	online-gaming
soul	body

78

A5.2: Synonym Discovery

	(Given) Noun Phrase		(Discovered) Potential Synonyms	
	pollutants		dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol	
	disabilities		infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries	
	vodafone		verizon, comca	st
	Christian h	istory	European histor Islamic history,	ry, American history, history
	disbelief		dismay, disgust, astonishment	
	cyberpunk		online-gaming	
KHU	soul		body	

Outline

Task	Discoveries	Algorithm	
Structure of Large Graphs	Q1: What do large networks look like?	Q2: How to scale- up structure analysis algorited?	
Eigensolver	Q3: How to spot strange behaviors in networks?	Q4: How to design a billion- scale eigensol	
Tensor Decomposition	Q5: What are the important concepts and synonyms in a KB tensor?	Q6: How to decompose a billion-scale tensor?	

Motivation

- Structure of Large Graphs
- **Eigensolver**
- ➡ □ Tensor Decomposition
 - D3. Knowledge Base Tensor
 - ➡ A3. GigaTensor
 - \Box Conclusions

Problem Definition

Q6: How to decompose a billion-scale tensor?
 Corresponds to SVD in 2D case

Challenge

Alternating Least Square (ALS) Algorithm

 $\hat{\mathbf{A}} \leftarrow \mathbf{X}_{(1)} (\mathbf{C} \odot \mathbf{B}) (\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}$

How to design fast MapReduce algorithm for the ALS?

Main Idea

• 1. Ordering of Computation Our choice $[\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})](\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}$

8 · 10⁹ FLOPS (NELL data)

$\mathbf{X_{(1)}} [(\mathbf{C} \odot \mathbf{B}) (\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}]$ $\mathbf{2.5} \cdot \mathbf{10^{17}} \text{ FLOPS (NELL data)}$

Main Idea

2. Avoiding Intermediate Data Explosion

Main Idea

2. Avoiding Intermediate Data Explosion
 (Before) (After)

Scalability

• GigaTensor solves *100x* larger problem

Outline

Motivation

- Structure of Large Graphs
- **Eigensolver**
- **Tensor Decomposition**
- \rightarrow \Box Conclusions

Conclusions

Big graphs open big opportunities for

- Anomaly detection
- Scalable algorithms
- Real-world applications

Conclusions

- PEGASUS: Peta-Scale Graph Mining System
 - □ 12.8 K lines of JAVA code (Hadoop on M45 cluster)
 - Open source (Apache license)
 - Outreach
 - Downloaded \geq 800 times from 83 countries
 - 2 U.S. patents, 2 best paper awards
 - Microsoft : part of Hadoop distribution for Windows Azure

Thank you ! web.kaist.ac.kr/~ukang

