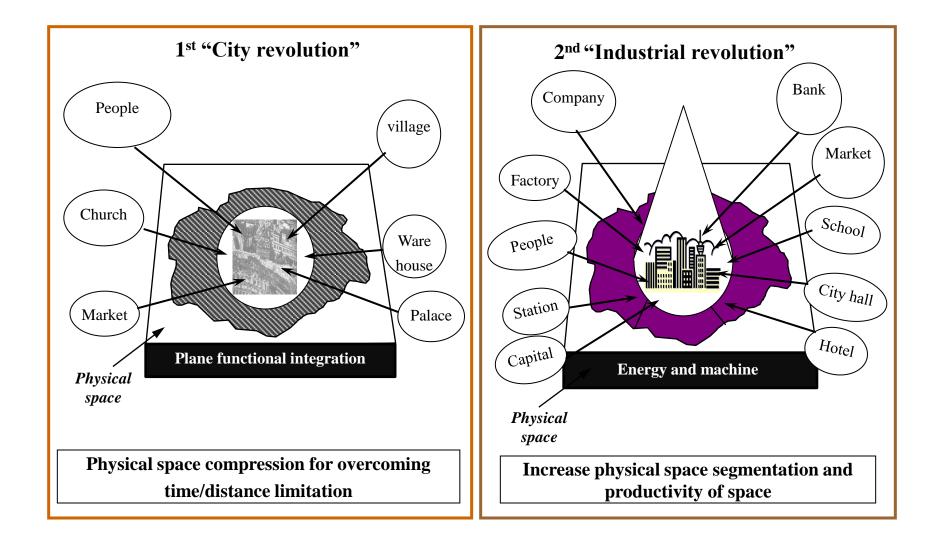
Modeling and Processing of Streaming Data in IoT Environment

Nov. 7, 2014

Hee Yong Youn Professor, College of Information and Communication Director, Ubiquitous computing Technology Research Institute Sungkyunkwan University youn7147@skku.edu

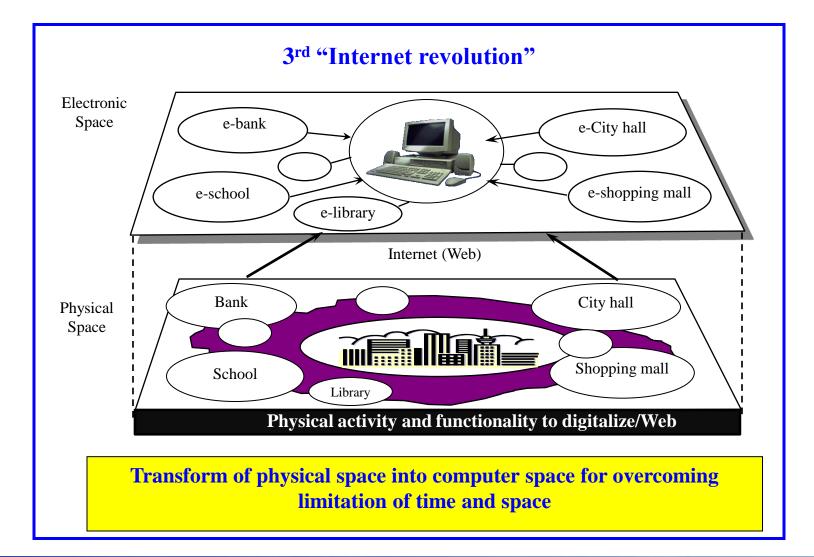
Ubiquitous Computing Technology Research Institute SungKyunKwan University

2 **IoT Standard**

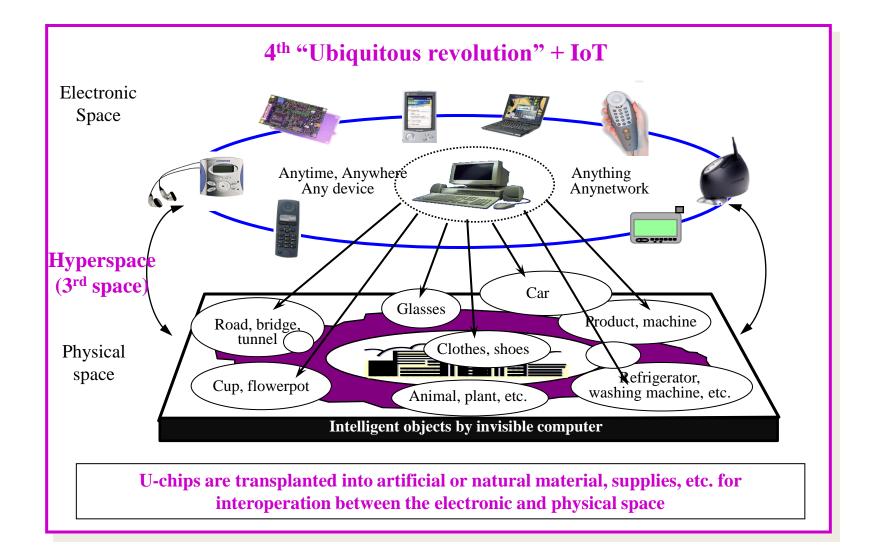


- **IoT Platforms**
- 4 Modeling and Processing Streaming Data

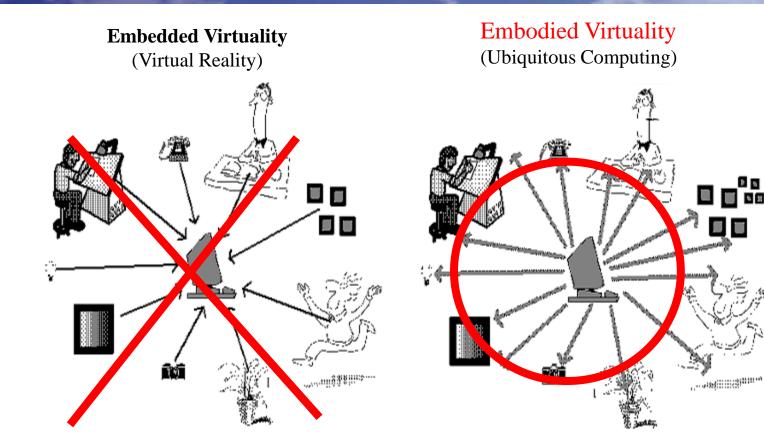
Conclusion 5



Background: Revolution in Human History



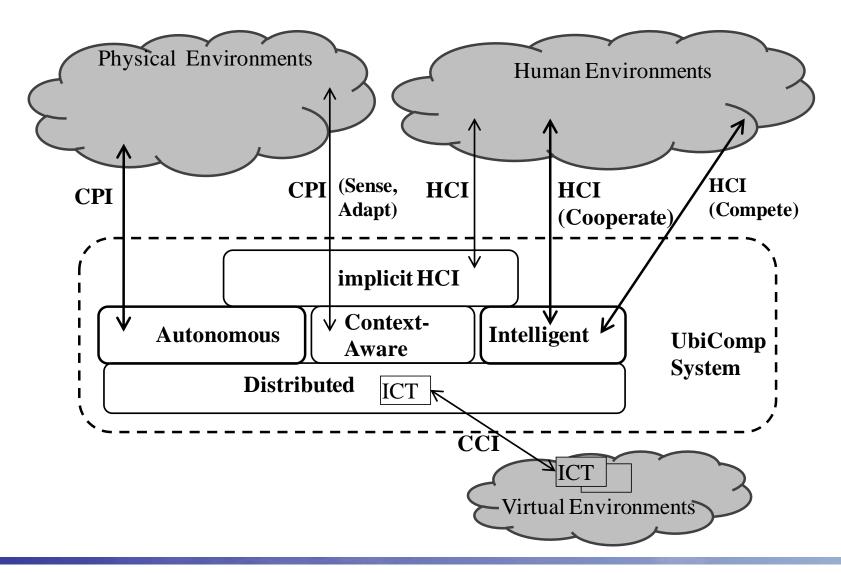
Background: 3rd Revolution



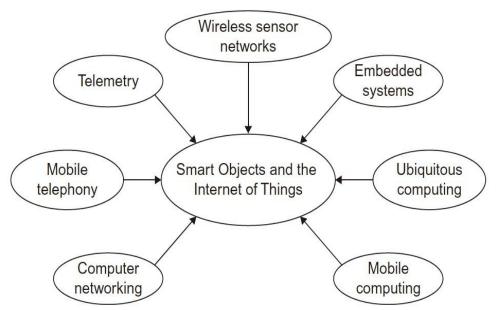
Background: 4th Revolution

Background Embodied Virtuality

Focus on digital content service


Psychical (real life) direct computing service via individual computer at user location

D 11


5 3

Key Technology

The Internet of Things

- The Internet of Things is the networking and applications concept of connecting EVERYTHING to the Internet
 - What does this mean?
 - Things enable applications
 - Things hold context to exchange
 - Things have connectivity
 - Things have IP address

Requirements

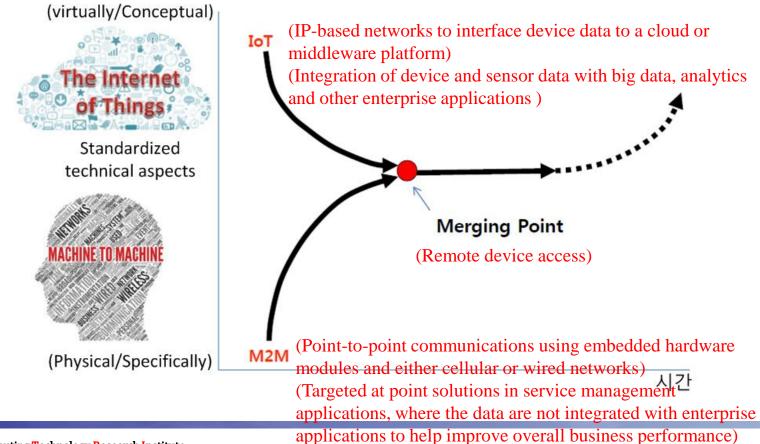
Cost-effectiveness

- Resource constrained wireless devices
- Low energy consumption

Easy installation and maintenance

- Large scale networks(many devices and /or large area)
- Distributed vs. centralized channel access

Reliable and on-time information delivery


- Determinism on channel access
- Robustness against channel impairments and network faults

Relationship between M2M and IoT

Perspective of M2M/IoT standardization

• Technical direction of the IoT and M2M standardization

Organization for Standardization

oneM2M

• M2M Global Partnership for Standardization

■ ETSI TC M2M (SmartM2M)

- Independent sub-communications network/End-to-End M2M is service target
- M2M service requirements, functional structure, interface specification standardization

■ 3GPP SA1/SA2 MTC(Machine Type Communication)

- Mobile network perspective
- MTC service requirements

■ IEEE 802.16's M2M Task Group

• System requirements for M2M in Wireless MAN/Reference Architecture/Air Interface Specification

Organization for Standardization

■ WiMAX Forum

- WiMAX network perspective
- M2M standardization in progress on the requirements

■ IETF 6LoWPAN/CoRE/ROLL (Constrained RESTful Environments;

• IPv6 over LAN/CoAP/Routing,...

(Constrained RESTful Environments; Routing Over Low power and Lossy networks; Constrained Application Protocol)

■ ITU-T IoT-GSI/JCA-IoT

• Creating a standard for IoT reference model

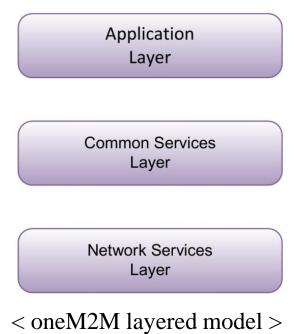
■ ITU-T FG-M2M

• M2M technology standardization for service layer

W3C

• Semantic web technology

- Global Partnership developing standards for M2M and IoT initial release
 - Sophia Antipolis, France, Aug. 7, 2014


Released standard documents

- oneM2M Functional Architecture Baseline Draft
- oneM2M Requirements Technical Specification
- oneM2M Security Solutions
- oneM2M Service Layer Protocol Core Specification
- Management Enablement (OMA)
- Management Enablement (BBF)
- Constrained Application(CoAP) Protocol Binding Technical Specification
- HTTP Protocol Binding Technical Specification
- Definitions and Acronyms

oneM2M Functional Architecture Baseline Draft

- oneM2M functional architecture focuses on the service layer aspects and takes underlying network-independent view of the end-to-end services
- Underlying network is used for the transport of data and potentially for other services

• Functional Architecture

✓ AE

Application Entity

✓ CSE

Common Services Entity

✓ NSE

Network Service Entity

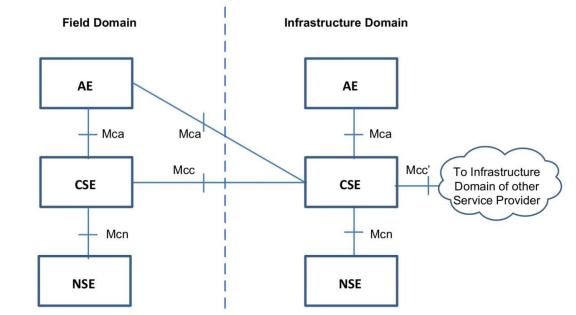
✓ Mca

Reference Point for M2M Communication with AE

✓ Mcc

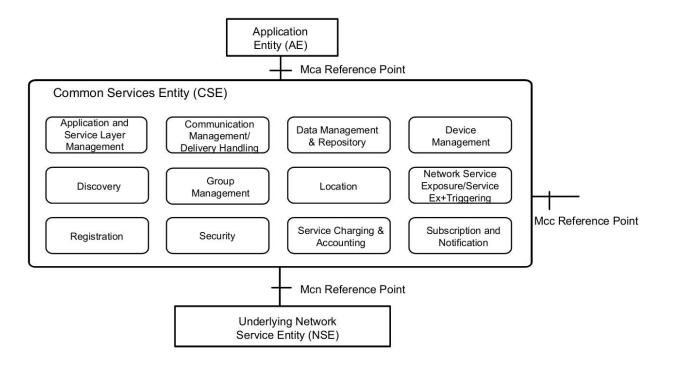
Reference Point for M2M Communication with CSE

✓ Mcc'

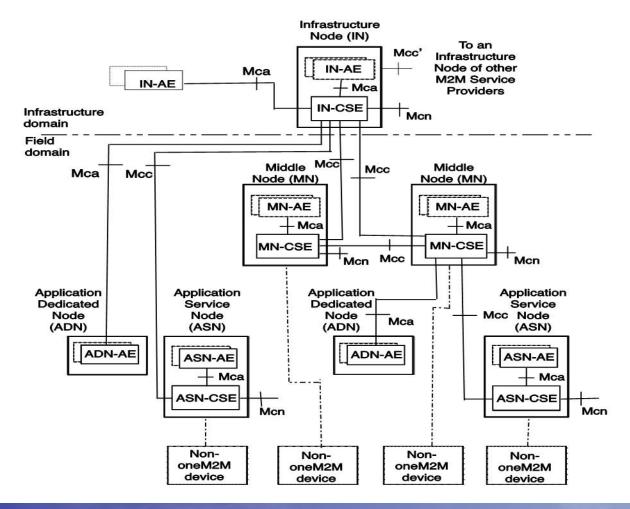

Reference Point for M2M Communication with CSE of different M2M Service Provider

✓ Mch

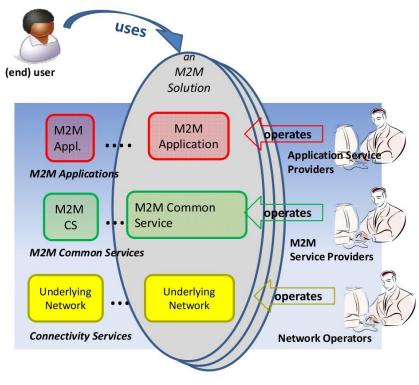
Reference Point for M2M Communication with external charging server


✓ Mcn

Reference Point for M2M Communication with NSE



- Common Services Functions
 - ✓ Common Service Layer in M2M system
 - \checkmark Provide services to other CSE via Mcc
 - ✓ Provide services to the AE via Mca


• Relationships among oneM2M entities

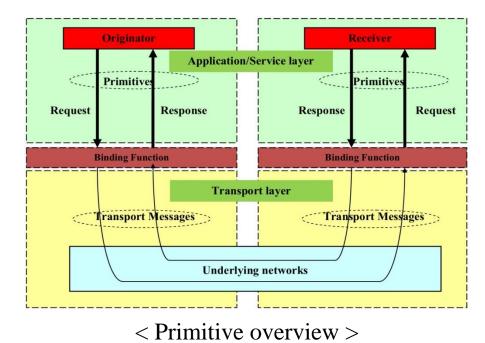
oneM2M Requirements Technical Specification

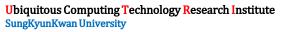
• Informative functional role model and normative technical requirements for oneM2M

< Functional roles in M2M >

oneM2M Security Solutions

• Defines security solutions applicable within the M2M system


Security Services	– – – Security API	(Mca, Mcc) (not sp	ecified in the prese	nt document) — — -	
Security Functions L	ayer				
Identification and Authentication	Authorization	Identity Management	Security Association	Sensitive Data Handling	Security Administration
Secure Environment Abstraction Layer (not specified in the present document)					
Secure Environments Layer					
Secure Environment n					
Sensitive Data Sensitive Functions					


< Security architecture >

oneM2M Service Layer Protocol Core Specification

- Specifies the communication protocol(s) for oneM2M compliant Systems, M2M Applications, and/or other M2MSystems
- Specifies the common data formats, interfaces and message sequences to support reference points(s) defined by oneM2M

oneM2M schedule for IoT

oneM2M show case

- Dec. 2014
- Proof and preview of application, platform, etc based on oneM2M standard

TTA & IoT-Week Korea

- Nov. 2014
- 14th Technical Plenary in Korea
- Source TTA press release (http://www.tta.or.kr)

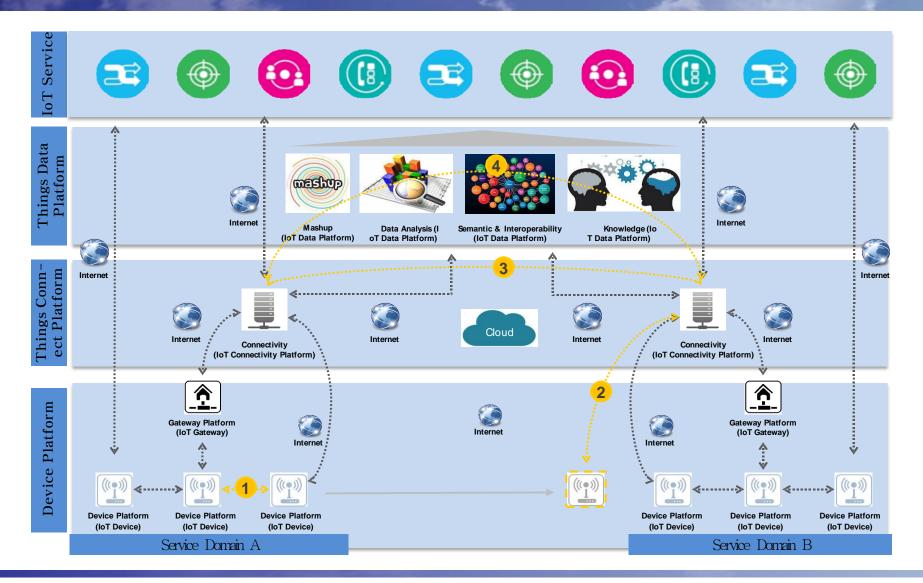
(LWM2M:

- management functionality over sensor or cellular networks
- transfer service data from the network to devices
- extend to meet the requirements of most any application)

Internet of Things – Platform

■ IoT Platforms

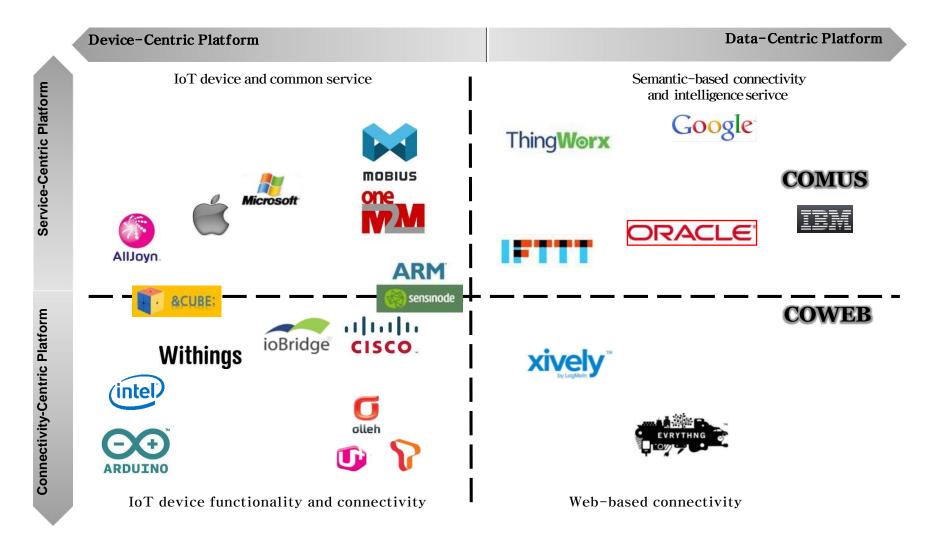
Platform	Company	OS	Interface	Core
IMX53QSB	Freescale	Linux, Android	Ethernet	ARM Coretex A8
SimpleLinks	TI	Linux, Android	WiFi	MSP430
Hitex OM 13031	NXP	FreeRTOS	Ethernet	ARM Cortex M4&M0
RZ Raven	Atmel	Embedded C	6LoWPAN	AVR Atmega 1284P
Beaglebone	TI	Linux, Android	Etherent	ARM Coretex A8
Raspberry Pi	Boradcom	Linux	Ethernet	Arm11
ARM mbed	NXP	Embedded C/C++	Ethernet	ARM Coretex-M3
Arduino Uno	Atmel	Arduino	Etherent, WiFi, Cellular	AVR ATmega328


Internet of Things – Industry

■ IoT Companies

Company	Feature	Application Service	Device Collaborator
IBM	MQTT, Inforsphere bigdata platform, Message processing platform for MessageSight-IoT	Smarter Planet Service Strategy (Energy, Traffic, Finance, Distribution, Public security, City management, etc)	Libelium
Cisco	Smart solution for 'smart city Barcelona', Drava Networks RuBAN IoE platform	Smart+Connected Communicaties Service Strategy	
Oracle	Java + DB IoT Platform; One Box platform with Freescale	Supports B2B, B2C, P2P	Freescale
Google	Search, cloud, Bigdata technology	Promoting home services	
LogMeIn (Xively)	Provide cloud-based IoT service; support various HW platform	Integration with open IoT HW platform	ARM mbed
Thingspeak	Support Thingspeak-based community platform and ecosystem	Device monitor and control via Tweeter,	ioBridge
Everything	Provide WoT platform by connecting things and web	Integration with SNS, ERP, CRM etc	
ThingWrox	Fast service development using model-based service design; visualization	M2M/IoT service platform based on B2B,	

IoT Platform Infrastructure (1)



IoT Platform Infrastructure (2)

Category	Function	Status	Vision
Open HW Platform	Things are created in open HW platform	• Arduino, Respberry Pi, Galileo	 Open HW allowing easy development Applicable for various creative IoT product
Device Platform (GW, Things)	Device Operating System Device Service Platform	 Lightweight OS such as TinyOS, Contiki, nanoQplus etc. Ultralight / Ultra low power OS for wearable device IoT of network devices (Cisco: Fog Computing) 	 Customized ultralight/ultra lowpowerOS Release IoT infrastructure of network equipment
Things Connection Platform	Things Connection, Control, Management, Openness	 Closed/ vertical platform → open platform Telecommunication company centric Open M2M platform Global Company-based IoT Platform Specific IoT company open Platform (xively ect.) 	 Standardized open platform Global Company-based IoT Platform
Things Data Platform	Things Data Openness/Connectivity/Search /Analytics	 Commercialization of IoT data analytics platform of Global corporation Linked data by applying semantic technology to IoT Things data connectivity platform(IBM etc.) 	 Expansion of public data platform Connection with global search engine platform such as Google

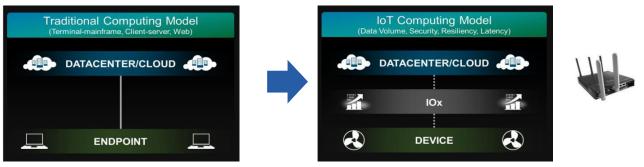
Arduino

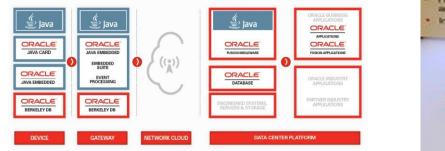
• Implement various things by connecting sensors and actuators on a single board based on open source


[Arduino shield]

[Intel Galileo pin-compatible]

- Raspberry Pi(UK)
 - Single board computers promoting the education of basic computer science in school

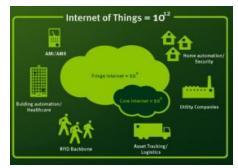



Wearable device combining 3D printing technique with Pi Technology

- Cisco (Fog)
 - Extend the cloud network device based on Fog computing concept

- Oracle + Freescale(Java Solution & oneBox)
 - Freescale : Development of IoT Gateway based on chip technology (with Oracle solutions)
 - Oracle : Provide IoT service development platform based on Java solution



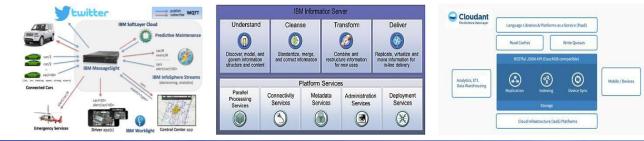


ARM + Sensinode

• ARM: By taking over Sensinode, retain open solution based on All IP

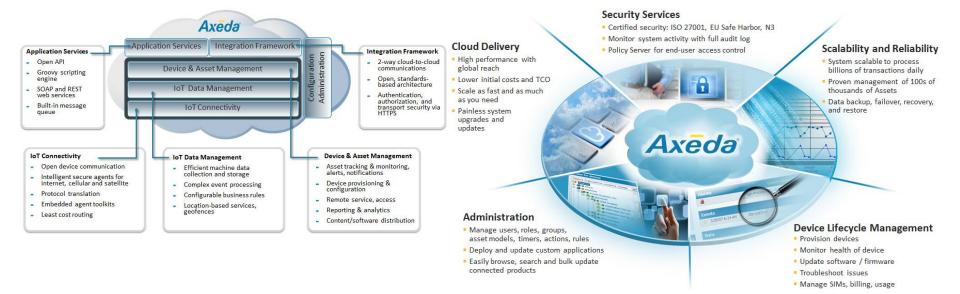
AllJoyn(Qualcomm)

• Qualcomn starts AllSeen aliance leading open source things connection platform

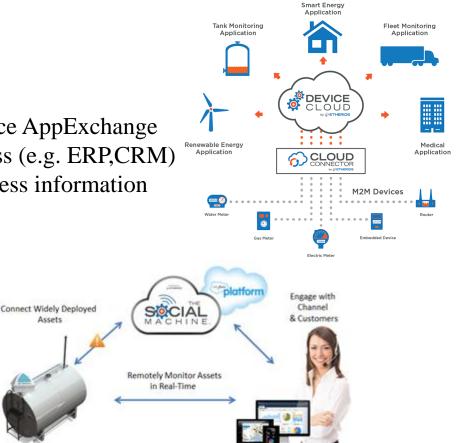

SensorCloud (LORD Microstrain)

• Integration of various sensor devices based on Open API

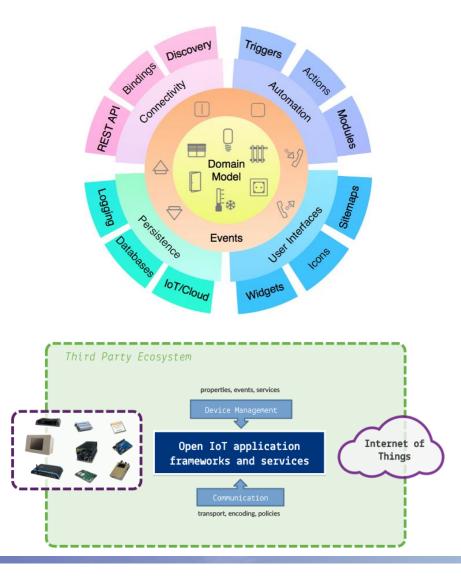
IBM + Cloudant


- Solution: MessageSight(Connectivity), InforSphere(Data Integration/Management/BigData) etc.
- Acquire cloud technology via M&A of Cloudant

Axeda

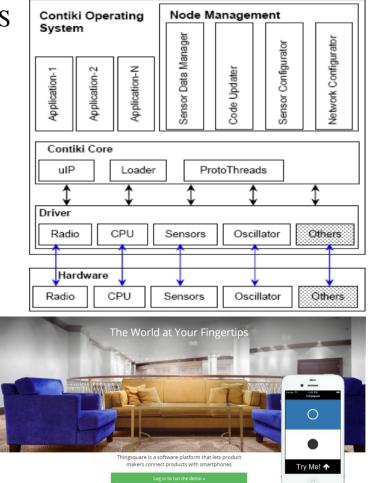

- A complete M2M data integration and app development platform
- Cloud-based service infrastructure
- Support scalability and security, and integration with enterprise applications & systems
- Powerful open source API
- Standard-based message queue technology for integration
- Preconfigured application e.g. location tracking, and customized applications
- Provides an agent for connectivity of devices
- Axeda AnyDevice codec server handles protocol to install, configure and use M2M devices which have Axeda agent or Axeda wireless protocol capability

Digi, Etherios

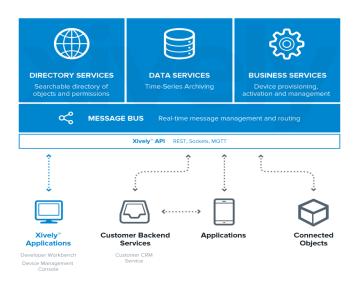

- Device cloud connects devices with open APIs, toolkit for custom solution
 - \checkmark Connect devices with open APIs
 - ✓ Toolkit to build custom IoT solutions
 - ✓ Visualization and business intelligence
- Social Machine
 - ✓ Connected product solution on Salesforce AppExchange
 - ✓ Connect product to core business process (e.g. ERP,CRM)
 - $\checkmark\,$ Raw machine date into actionable business information
 - $\checkmark\,$ Remote monitoring of machine
 - $\checkmark\,$ Preventive repair and maintenance
 - ✓ Increase efficient
- Gateways
- Communication modules
- Solutions e.g. IDigi Energy , IDigi Tank

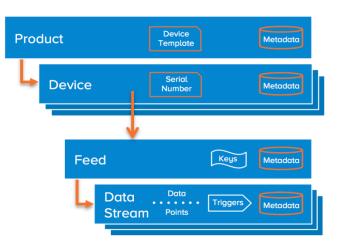
Eclipse M2M

- Consortium of companies
- Projects include
 - Kura: a set of Java and OSGi services that are most commonly required for IoT gateways, including I/O services, Data Services, Cloud Services, Newtorking, etc
 - Mihini, written in the Lua script language, provides low-level connectivity management, Paho, communication M2M devices
 - ✓ Koneki, development environment
 - ✓ OMA-DM, a simulator for device management
- SmartHome framework for smart home solution
- Eclipse SCADA solution for connecting different industry devices



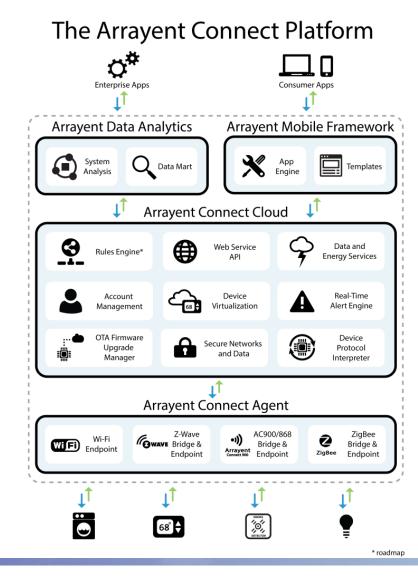
Thingsquare


- Contiki, OS for low power, memory constrained, connected devices
- Things(devices) equipped with Thingsquare Mist OS ٠
- Things for low-power wireless mesh network ٠
- Things Code, An IDE for applications ۰
- Connected consumer products ٠
- Wireless industrial monitoring solutions



Xively(Pachube)

- Public cloud for IoT
- Tools for building and managing connected things
- Consists of Libraries(SDK), Cloud Platform, WebApplication
- Xively can be applied to various fields
- Supports various hardware, platforms, languages
- Provides all the things for the development, deployment, management of IoT


Xively Data Hierarchy

Arrayent

- Connect Things to Smartphone and web apps.
- Scalable to millions of devices
- Major part of platform hosted at Connect Cloud
 - ✓ Connect agent
 - ✓ Connect cloud
 - ✓ Mobile framework
 - ✓ Data analytics
- Features
 - ✓ Device Virtualization
 - ✓ Alert Engine
 - ✓ Over-the-Air (OTA) Firmware Updates
 - ✓ Low Latency
 - ✓ Legacy Product Support
 - ✓ Rich, Scalable Storage
 - ✓ Low-Cost Hardware Support
 - ✓ API Abstraction
 - ✓ Data Mart services

IoT Application - Environmental Monitoring

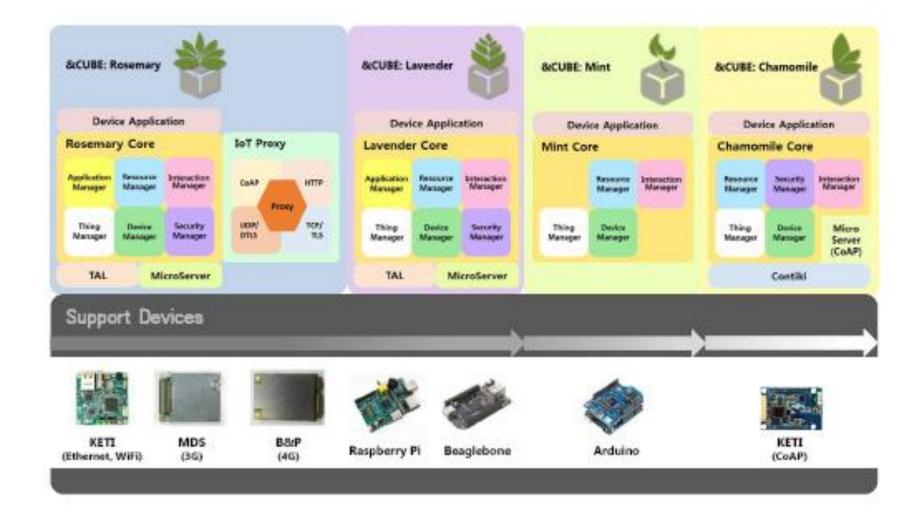
- TST is a wireless products manufacturer for smart applications, M2M and IoT world
 - Assist environmental protection by monitoring air or water quality, atmospheric or soil conditions, earthquake and tsunami
 - ✓ Pluviometers (rain gauge)
 - ✓ Anemometers (windmeter)
 - \checkmark Flow water meters
 - ✓ Temperature and ground sensors
 - ✓ Humidity and ground sensors
 - ✓ Ground electrical conductivity sensors
 - ✓ Plant's leaf humidity sensors
 - ✓ Sap flow sensors
 - \checkmark Level sensors
 - ✓ PH sensors
 - ✓ Gas sensors (CO, CO2, NO2…)

IoT Application - Infrastructure Management

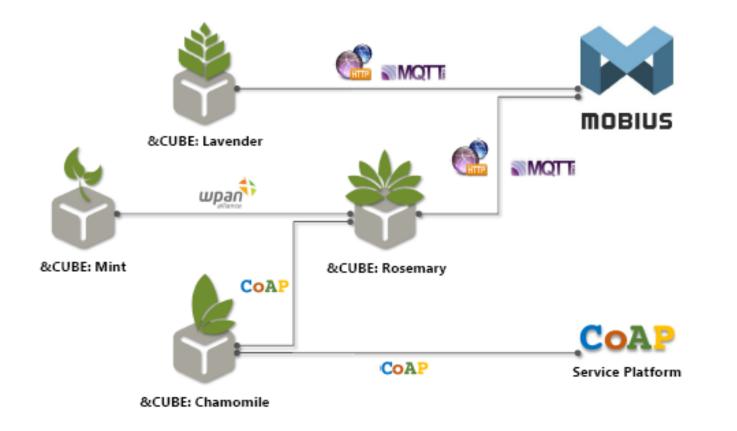
- Monitoring and controlling operations of urban and rural infrastructures such as bridges, railway tracks, on- and offshorewind-farms. TST provides TSmarT communication platform.
 - Street Lighting
 - Smart Parking
 - Supervision of water canalization
 - Air quality measurement
 - Interactive communication with citizens

TStreeT light wireless controller

Ferromagnetic sensors detecting the presence of vehicles parked over them

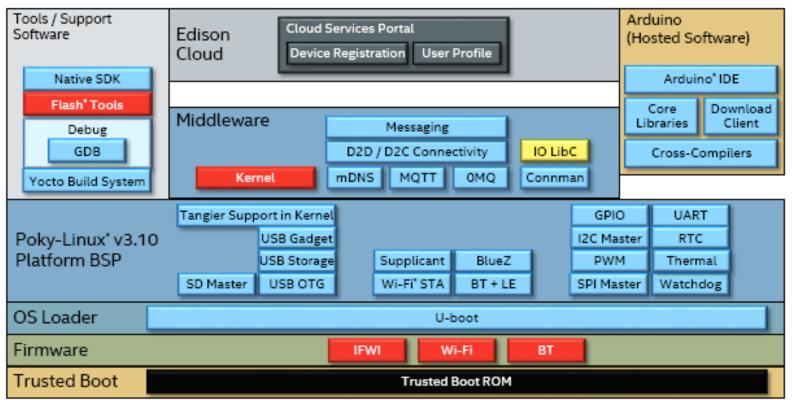

Wireless remote control system to manage the traffic lights at train crossings in Bilbao harbor.

IFI TST


Head lighting control

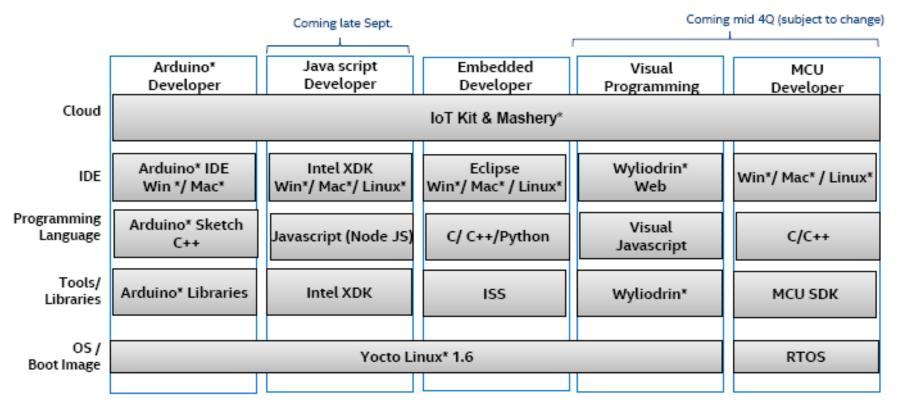
IoT Application - Industrial Application

IoT Platform: KETI



IoT Platform: Intel Edison

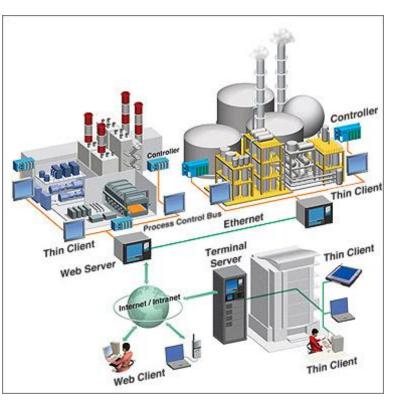
Intel[®] Edison Technology Release 1 Software Stack


Software License Types			
GPL License	MIT License		PaaS
Branded or Licensed Binary On Die Silicon based ROM			

IoT Platform: Intel Edison

Intel[®] Edison Developer Options

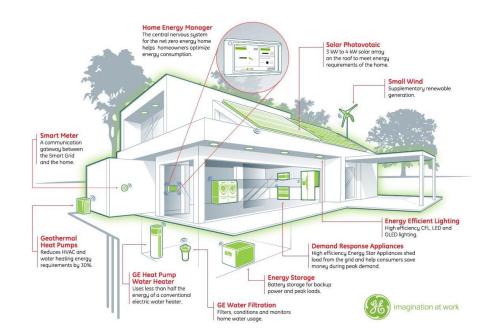
IoT Application - Industrial Application


- Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control
 - Smart Grid
 - Enabling real-time energy optimization
 - Measurements
 - Automated controls plant optimization
 - Health and safety management

IEEE 802.15.4, Zigbee, UHF RFID and SubG (433MHz) RF technologies

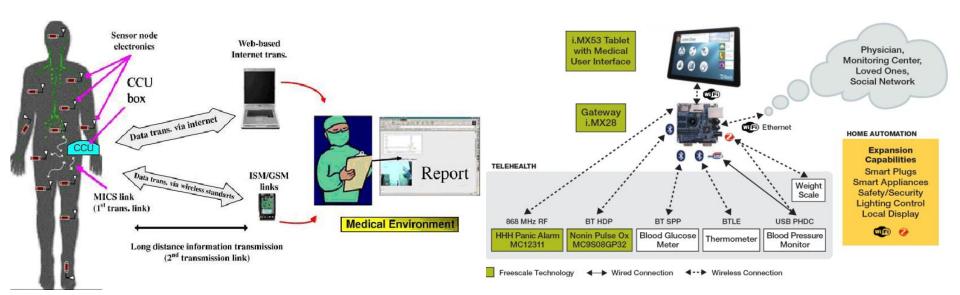
AD\ANTECH

Enabling an Intelligent Planet



IoT Application - Energy Management

 IoT devices integrated into all forms of energy consuming devices (switches, power outlets, bulbs, televisions, etc.)



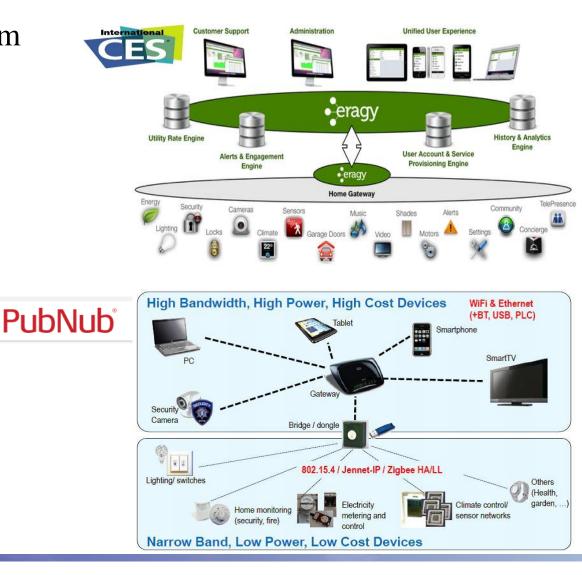
IoT Application - Medical and Healthcare System

■ IoT devices enable remote health monitoring for blood pressure and heart rate, and emergency notification

IoT Application - Transport systems

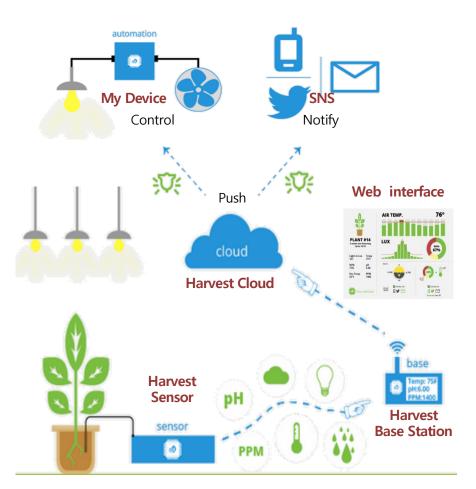
Integration of communications, control, and information processing across various transportation systems i.e the vehicle, the infrastructure, and the driver or user, electronic toll collection systems

Digi TransPort VC7400



Iot Application - Building and Home Automation

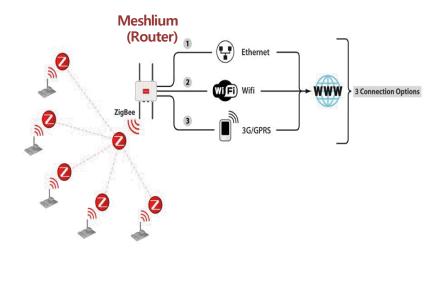
Home automation system


- to control
 - ✓ heating
 - ✓ lighting
 - ✓ ventilation
 - \checkmark air conditioning
 - ✓ appliances
 - ✓ communication systems
 - ✓ entertainment
 - ✓ home security devices
- to improve
 - ✓ convenience
 - ✓ comfort
 - ✓ energy efficiency
 - ✓ security

IoT Services - Harvestgeek

Article	Detail
Company	Harvestgeek
Method of Communications	Wi-Fi
Product Component	BaseStation, SensorStation
Mobility Support	No
Application area	Farming
Service Characteristic	Webcloud for farm monitoring and controlDeveloped in open source
Use case	 Case 1: Monitoring farm condition Measure farming environment (Humidity, acidity, temperature); real-time check on Web
	 Case 2: Automatic operation of machine If condition is met, farm machines are triggered (fan, light)

IoT Services - Withings


Article	Detail	Withings Device
Company	Withings	
Method of Communications	Bluetooth4.0, Wi-Fi 802.11b/g/n(Some), Ethernet(Some)	myfitnesspal
Product Component	Health condition check devices	
Mobility Support	OS/Android, Partner app are available(open API)	Open API Provided (Bluetooth, Wi-Fi)
Application area	Health care	
		Withings
Service Characteristic	 Cloud service provides data lookup and share Application push upon the occurrence of some events 	Developer Center Push Data Moni toring
Use case	 Case 1 : Measure weight or BMI Measure and share the weight change when diet is started Case 2 : Real-time baby monitoring Monitor baby condition(24 time), if problem occurs, alarm using an application 	

IoT Services - Waspmote & Meshlium

Article	Detail
Company	Libelium
Method of Communications	Bluetooth, 3G/GRPS, Zigbee, Wi-Fi
Product Component	Open source hardware(Waspmote, Meshlium)
Mobility Support	No
Application area	All area

Service Characteristic	 After installation, provide OTAP(Wireless programming) Provide gateway to send the sensor data to external cloud
Use case	 Case 1 : Smart water project in Valencia Monitor and measure the environment of river(PH,DO)
	 Case 2 : Smart parking Install Waspmote in the parking area, and then monitor parking lot in real-time and air-condition service using Meshlium

Install Sensor, programming (Over-The-Air-Provisioning)

Sensor Traffic condition (Bluetooth)

IoT Services - Spark

Article	Detail
Company	Spark Devices
Method of Communications	Wi-Fi 802.11 b/g
Product Component	Cloud Mobile Platform(Real-time Data transmission), Spark Core Chipset, Shield
Support Mobile	iOS / Android
Application area	All areas

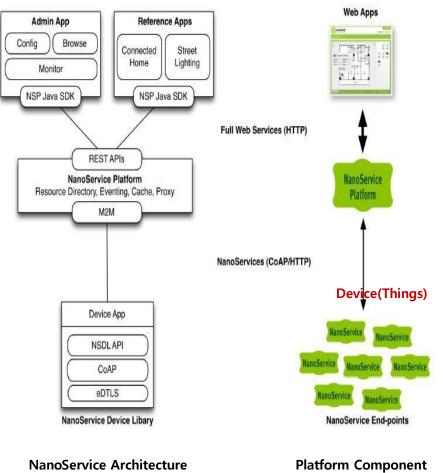
The Spark Core

The Spark Cloud

Service Characteristic	 Attached Spark Core and Shield onto things Install/Programming available after wireless connection to Spark Core Chipset is cheap and compatible with Arduino
Use case	 Case 1: Wireless motion awareness Send SMS if wireless motion sensor recognizes an object

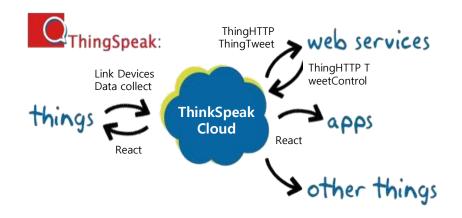
- Case 2: Robot control
- Control robot to which a core is attached

Smart Config Spark Flash (install Core on Wireless) (Programming core on Wireless)



Operate Devices attached Core

IoT Services - NanoService


Article	Detail
Company	Sensinode -> M&A by ARM(13.08')
Method of Communications	IP (6LoWPAN to Cellular)
Product Component	Closed M2M platform (Web Application, REST APIs, Device Libraries)
Mobility Support	No
Application area	Smart Energy, Connected Home, Healthcare etc
Service Characteristic	 Provide M2M Embedded Web service based on 6LoWPAN and CoAP Web Application Reference for each M2M Market Segments
Use case	 Case 1: Connected home Control home appliances using web browser
	 Case 2: Lightening Control and monitor streetlamp using web browser (including firmware)

IoT Services - ThingSpeak

Article	Detail
Company	ioBridge
Method of Communications	IP based(Ethernet, Wi-Fi, Cellular)
Product Component	Libraries(SDK), Cloud Platform, WEB Application
Mobility Support	No
Application area	All areas

Service Characterstic	 Provide OPEN Source APIs Support Arduino Control and monitor device via Tweeter Share data channel Support time zone and localization
Use case	 Case 1: Tweeter mash-up services on temperature If the room is very hot, a message is sent to user by Tweeter

0	53	
ThingTweet	ThingHTTP	e 3156 » Edit
2	>//	Device 3156 Arduino
TeeetControl	React	
	waanta maan	Update Device

Data search, share

APP.Device register

IoT Services - Open.Sen.se

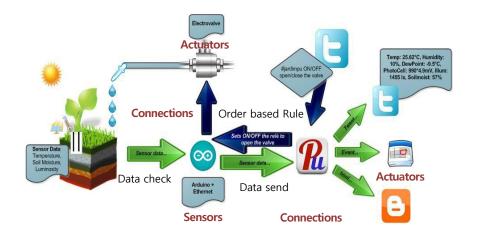
Article	Detail
Company	Sen.se
Method of Communications	IP based(Ethernet, Wi-Fi, Cellular)
Product Component	Libraries(SDK), Cloud Platform, WEB Application
Mobility Support	No
Application area	All areas

You add **Channels** that send or receive data to/from Sen.se Applications process your data and use it to do all sorts of things

You visualize (and maybe share) your data on your Senseboard

Data can be made of anything: numbers, text snippets, binary commands, custom strings or things you don't even understand...

Service Characteristic	 Process sensor data as web application Process, Trigger, Visualize Support Arduino Allow manual data input Various data mash-up
Use case	•Case 1: Withings weight - weather data mash-
	up
	- Available to check the relation between
	weight/energy consumption and weather
	using mash-up Withings weight machine
	and weather data obtained by Sen.se


Register Devices

Data Mash-up using Application

IoT Services - Paraimpu

Article	Detail		
Company	CRS4		
Method of Communications	IP based(Ethernet, Wi-Fi, Cellular)		
Product Component	Libraries(SDK), Cloud Platform, WEB Application		
Mobility Support	No		
Application area	All areas		

Service Characteristic	 Provide connection between things, services Allow to share the things Support various 3rd party(Arduino, Xively etc)
Use case	 Case 1: Foursquare + Gmail Send information on the restaurant to the Gmail account, if people mark it 'Good' in Fourquare
	 Case 2: Arduino + water switch If sensor recognizes the land is dry, open the water.

Examples of IoT Services

* n.thing, Smart plant services

Web Application

Mobile Application (OSancholes/Melanges)

Smart TV Application

Internet of things / M2N Perceduarried

planto 算

plantree

planty Seattle Martin

Examples of IoT Services

※ Beam Brush

* Sphero, robotic ball

* Livescribe Sky Wifi Smartpen

* Deeper Smart Fish Finder

Examples of IoT Services

* Nike Fuelband, Fitbit etc. device for fitness

* LG electronics Co. Home Chat

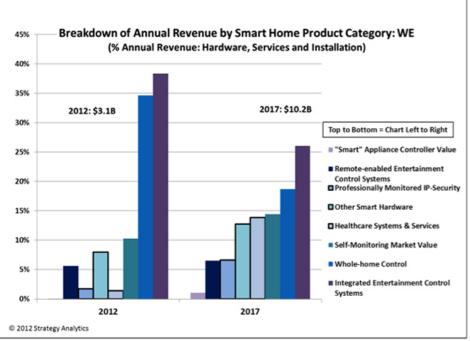
% fibit Aria Wifi Smart Scale

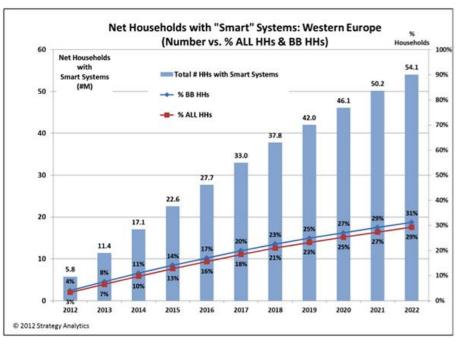
% Smart Toaster

IoT Home & City

- Smart Home
 - Provide various functions
 - household appliances control
 - lighting control
 - curtain control
 - remote telephone control
 - indoor and outdoor remote control
 - burglar alarm
 - environment monitoring
 - HVAC control
 - programmable timing control

Optimize the way people live and help people arrange time, improving the safety and cutting the energy cost





IoT Home & City Growth

Smart Home Growth

- In 10 years 30% of broadband households will have a smart system
- Approximately 65% of households will have multiple systems by 2017

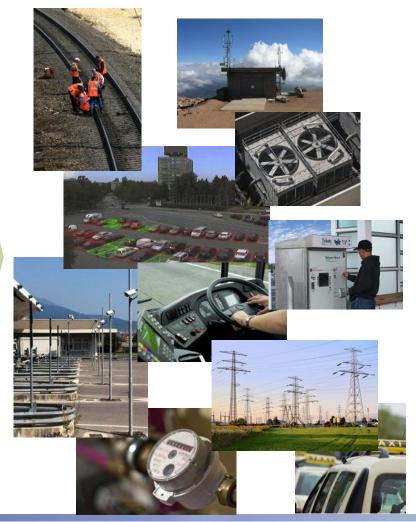
- By 2017, revenues > US\$10 billion
- Professionally installed integrated entertainment and smart home

IoT Home & City Domain

Application domains

Network size	Smart home/office Smart retail		Smart city	Smart agriculture/forest	Smart water	Smart transportation
	Small	Small	Medium	Medium/large	Large	Large
Users	Very few, fam- ily members	Few, community level	Many, policy makers, general public	Few, landowners, policy makers	Few, government	Large, general public
Energy	Rechargeable battery	Rechargeable battery	Rechargeable battery, energy harvesting	Energy harvesting	Energy harvesting	Rechargeable battery, Energy harvesting
Internet connectivity	Wifi, 3G, 4G LTE backbone	Wifi, 3G, 4G LTE backbone	Wifi, 3G, 4G LTE backbone	Wifi, satellite communication	Satellite communication, microwave links	Wifi, satellite communication
Data management	Local server	Local server	Shared server	Local server, shared server	Shared server	Shared server
loT devices	RFID, WSN	RFID, WSN	RFID, WSN	WSN	Single sensors	RFID, WSN, single sensors
Bandwidth requirement	Small	Small	Large	Medium	Medium	Medium/large
Example testbeds	Aware home	SAP future retail center	Smart Santander citySense	SiSViA	GBROOS SEMAT	A few trial implementations

IoT Home & City Applications

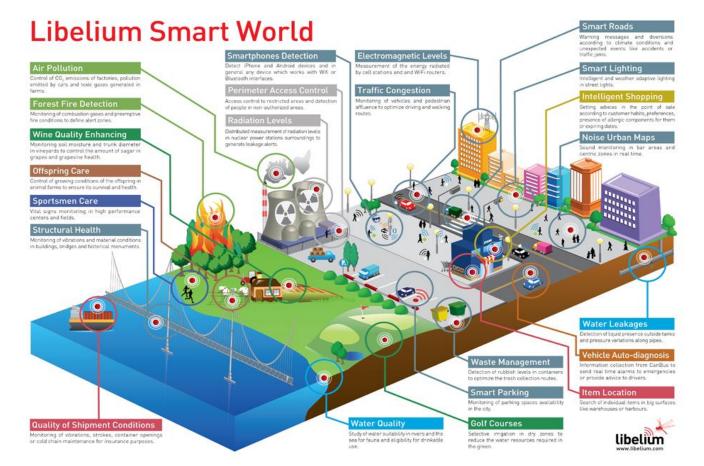

Smart City – A Combination of Vertical Solutions

Smart Transportation & Public Transport

- Smart Ticketing
- Signage
- Geo-Services
- Communication Gateways
- Public Safety & Security
 - Surveillance & Security
 - Emergency Services
 - Public Infrastructure

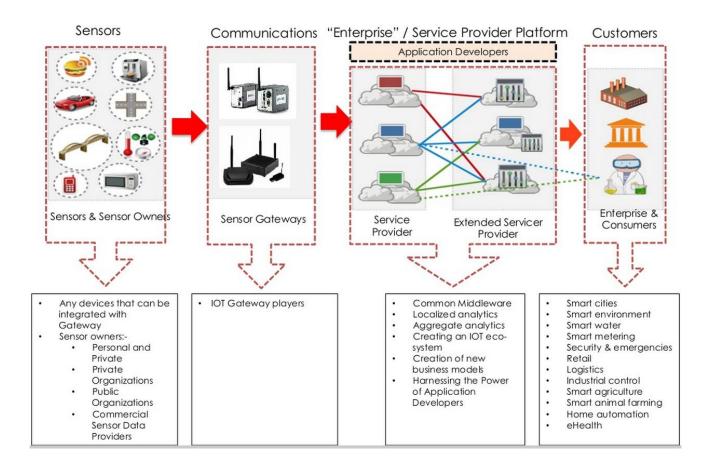
• Smart Well-being

- Healthcare
- Elderly living
- Smart Energy / Smart Grid
- Smart Building
- Smart Water Management
- Smart Retail

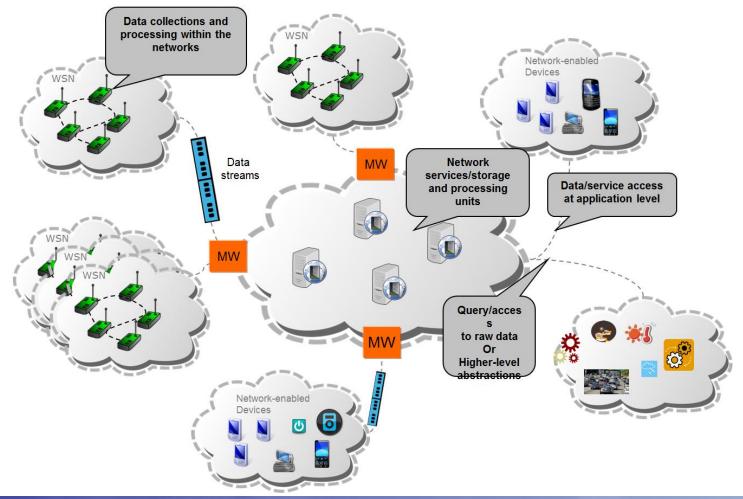


IoT Home & City Infographic

Libelium Smart World Infographic


- Sensors for Smart Cities, Internet of Things and beyond

IoT Home & City SaaS

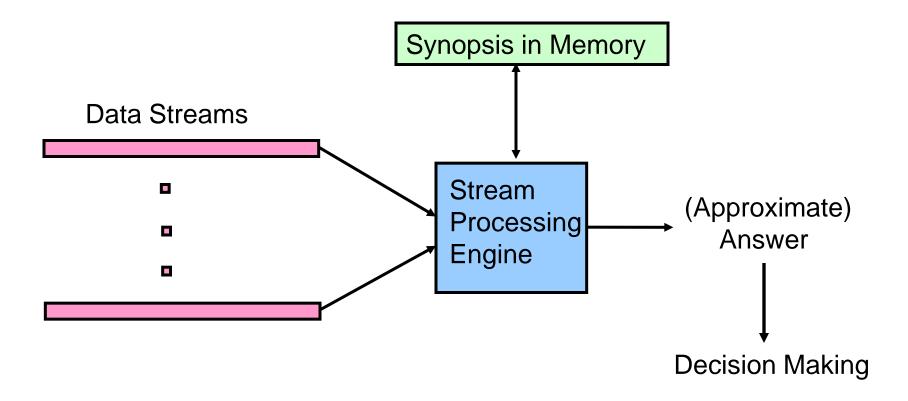

Sensing-as-a-Service Model

Stream Processing

■ IoT Stream Processing

Streaming Data Processing

What is stream data processing


- Method of making audio, video and other multimedia available in real-time over the Internet or corporate intranets
- Streaming ensures no download wait

• Why is stream processing important?

- Large scale data cannot be easily stored because of their volume, and accurate analysis is no simple matter
- With stream processing technology, you can continuously analyze massive volumes of your data in memory to take action in real-time

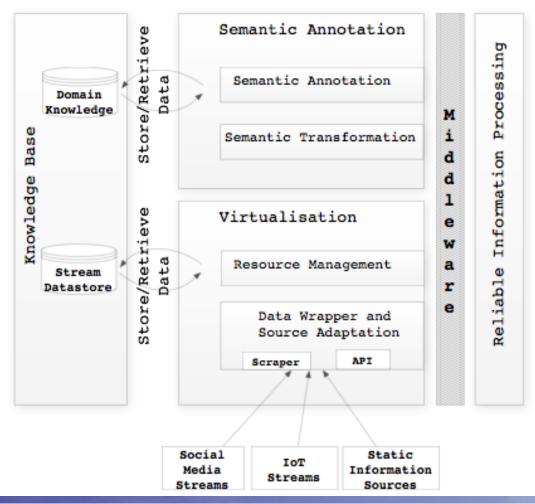
Streaming Computation Model

Ubiquitous Computing Technology Research Institute SungKyunKwan University

Stream Processing in IoT Environment

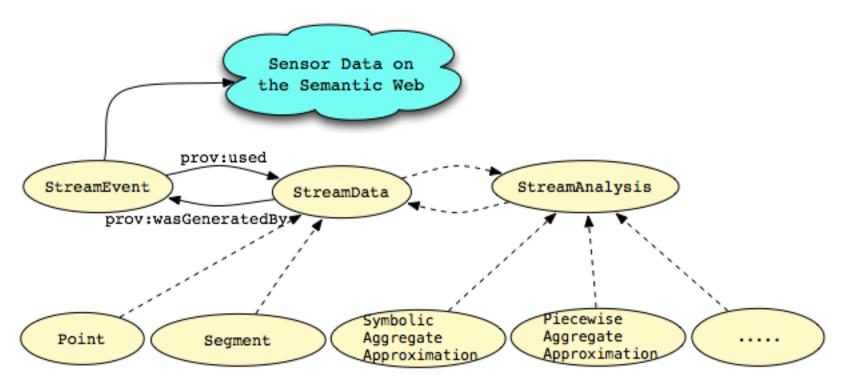
What are needed for IoT?

- analyze the arriving sensor and device data in real-time
- provide comparisons against the trend data by joining the real-time data with historical, stored data
- provide real-time dashboards and alerts for visualization
- provide continuous streaming integration with operational systems for process automation
- stream the data through the existing Hadoop and data warehouse platforms


Essentially, stream processing is to the Internet of Things, what **Big Data** and Hadoop has been to the Internet

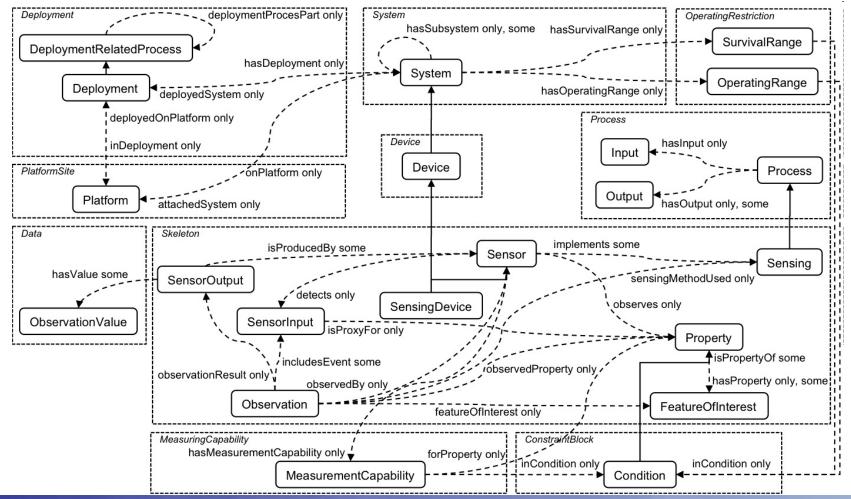
M. Compton et al, "The SSN Ontology of the W3C Semantic Sensor Network Incubator Group", Journal of Web Semantics, 2012.

Stream Annotation

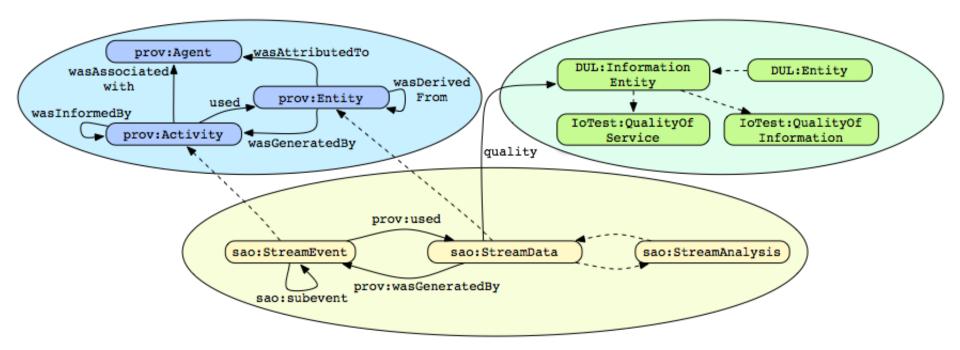

Real-Time Stream Annotation Framework

Stream Annotation Ontology

Stream Annotation Ontology



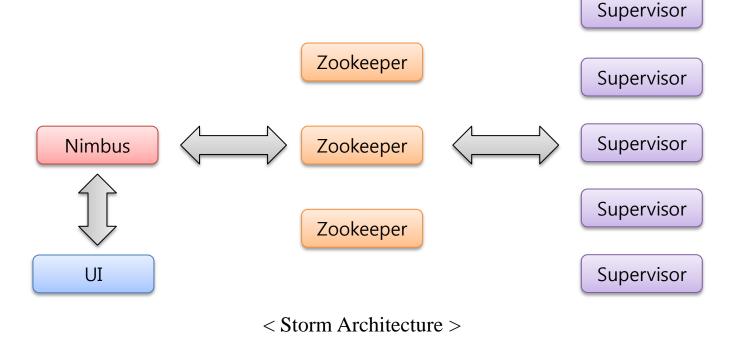
The SAO allows representation of aggregated stream data and temporal characteristics, based on the SSN ontology and Timeline ontology.


Ontology for SSN

Existing models - e.g. W3C SSN Ontology

Stream Information Model

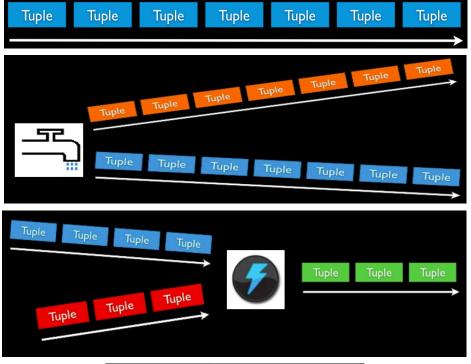
Information Model

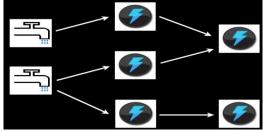


Describing a stream annotation work flow using the Stream Annotation Ontology (SAO)

Stream Processing with Storm

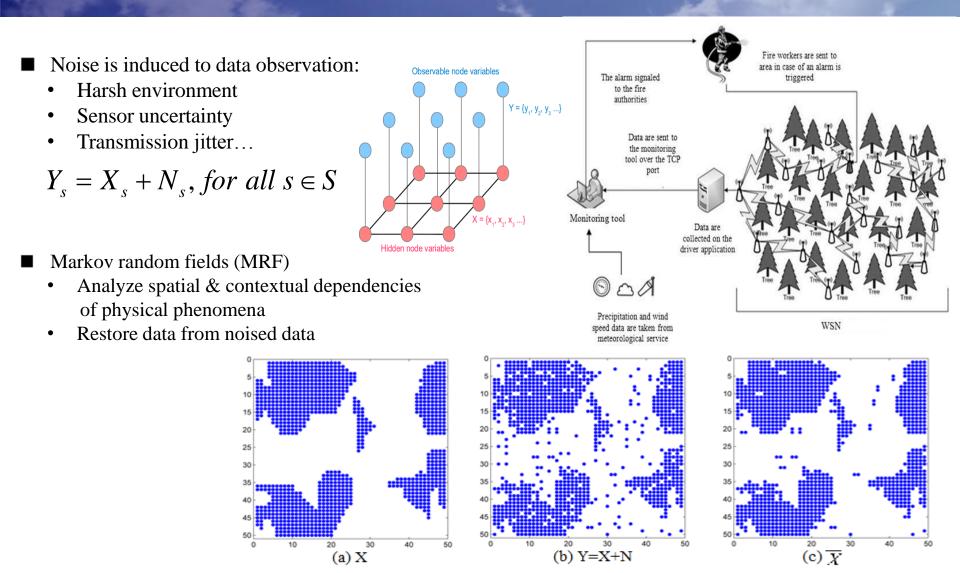
- What is Storm?
- Free and open source distributed real-time computation system
- Easy and simple to reliably process unbounded streams of data
- Real-time processing, while Hadoop batch processing
- Used with any programming language

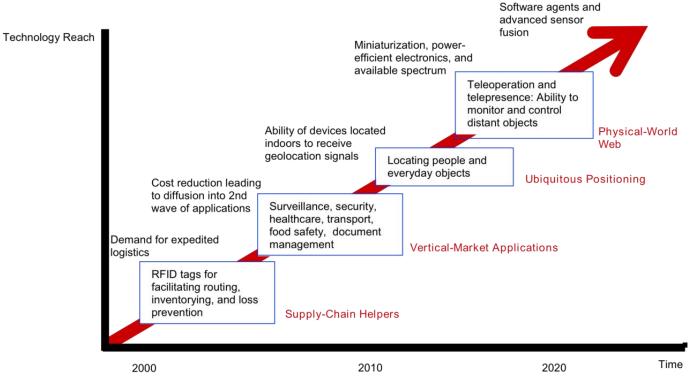




Storm

Concepts


- Streams
- Unbounded sequence of tuples
- Spout
- Source of Stream
- E.g. Read from Twitter streaming API
- Bolts
- Processes input streams and produces new streams
- E.g. Functions, Filters, Aggregation, Joins
- Topologies
- Network of spouts and bolts



Case study: MRF for Environmental Monitoring

Conclusion

TECHNOLOGY ROADMAP: THE INTERNET OF THINGS

Source: SRI Consulting Business Intelligence

