Optimizing Complex Software
Platforms with Cross-Layer
Resource Control and Scheduling

20144 12& 19¢
REIRS

sshong@redwood. snu.ac.kr
ANEaUsW MINEE3SE W=
I DB S THE A E DA
INHUREI =S ADEAAEBADA A

oul National U

B I(I‘.E;Lab

Optimizing Complex SW Platfa
Agenda

Introduction

Case study: Cross-layer Resource Control for
Smartphone

Conclusion

Seoul National University

B RT@®S 1:b 2

Hot IT Trends (1): loT and Cloud

The Internet-of-Things (IoT) has emerged as one of
the hottest IT trends in recent years

Definition of 10T [ITU-T Recommendation Y.2060, 2012]
wwWw.itu.int/itu—t/gsi/iot

A global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual)
things based on, existing and evolving, interoperable
information and communication technologies

» Thing: object of the physical world or of the information world,
which is capable of being identified and integrated into the
communication networks

loT and Cloud Computing
Cloud computing is “a key enabler of the I0T"

Seoul National University

B RT@®

Hot IT Trends (2): loT and Cloud

Defense

A broad set of applications

Energ avin s - A
ntelligent Buildings
‘ ’%‘)

N

Industn'
Automation

s

SmartS nce

.h

Q’r

Smart Grld Smart Clty Seoul National Uni

Smart Home

RT‘S Lab

4

Hot IT Trends (3): loT and Cloud

One obvious example: cloud-connected venhicles

Cloud computing for vehicles’
self-localization

Real-time data processing and
communication for massive
sensory data

Smart driving strategy, using
context awareness achieved
from vehicles and externallinfra:

\ - nse
{ Intelligent Buildings ‘
Iy nﬂ' 37 SmartSthyeillance Healihcare
TN X
oud el Y
!
p- - t SARke
= L o AN ol
&2, .2 e >
N a0 :;)‘a" SmartHome
8lo-
Smart Grid SmartCity

Seoul National University

RT@®S 1:bH 5

Hot IT Trends (4): Cloud-Connected

Vehicle

Navigation / Motion Planning

o \
Navigation |
Dynamic Local Map Motion Goal |
Path Generation |
————————————————— ’
_ \
Fast Vehicles 1)
Cloud Localization l
Computing ‘
In-Vehicle
Processing

Sensors Vehicle Control

Seoul National University

RT@®S 1:bH 6

Hot IT Trends (5): Cloud-Connected

Vehicle

Time granularity and possible services of cloud

TCurrent

Batch processing

« Database update, diagnostics
Second-scale processing

» Navigation, drivability map generation
100ms-scale processing

* Motion planning, path generation
10ms-scale processing

« Vehicle controls

« May be hard to offload from vehicles

Seoul National University

B RT@S 1ab 7

Hot IT Trends (6): Cloud Infrastructure

The “common’ mfrastructure

Data Center

Data Center Cloud
Application hosting, Management,
Service Provisioning

Core Network

IP/MPLS, Multicast, security
Network services, Quality-of-Service
Mobile packet core

- ———————————————-

e e oo

Multi-Service Edge
3G/AG/5GWi-Fi
Ethernet

Hot IT Trends (7): Cloud Infrastructure

Huge, complex and thus layered

? lines of code...

But must be more huge and complex
than those of smartphone -] Your Datebase

e | [T11

Core Network

Application

Load balancer
Access control

Storage

AWS identity

Management

Applications
Application 2 Application 3

i

V . Surface
= ¢ — 3 4
== = - Manager |
~ = |

More than 12 Million lines S

(Camera, Modem..)
of code!!!
* In case of Android KitKat

Seoul National University

I RT@®S 1.2

l. Introduction

Why Layered?

Separation of concerns

Decomposition of functionality

« Each layer implements separated, independent functionality
of the system
— Each layer can be developed and advanced independently from
other layers as long as the interfaces are not changed
Decomposition of optimization

« Each layer is a solver of a local optimization problem which is
smaller than the global optimization problem

Local Optimization Control

Global Optimization
Problem
Maximize f(V,, V,)

Problem 2 L3 . Laver L
s @@ variables V I y 2

f: Objective function
(E.g., end-to-end response time)

Local Optimization - Control
Problem 1 ; Laver L
b LY A A variables V yer L,

Seoul National Universit

B RT.Sy

10

l. Introduction

Limitation of Layered SW Structure

Optimization of individual layers does not always
generate the global optimal solution

Local Optimizati _ _
ocaProlcl;IIer?nlzza o W, ISS':IS_Olutlon
Maximize g,(V) that maximizes g,(V)

Local Optimization

Problem 1
‘ Maximize g,(V)

U,, U, is a solution
that maximizes f(V,, V,)

Global Optimization
Problem
Maximize f(V,, V,)

W, is a solution
that maximizes g,(V)

f(Uy, Uy) > (W, W)

Seoul National Universit

RT®S 1:h 11

Cross-Layer Optimization (CLO)

What Is 1t?

Re-design local optimization problems such that local optima
lead to the global optimum
« To do so, internal states of a layer are selectively transferred
across layer boundaries
— Serves as constant values in the local optimization problem

Global Optimization
Problem
Maximize f(Vy, V,)

Layer L,

Local Optimization — . Control
Problem 1 A A .
Maximize g,(V, S; S,) States S, A A Variables V,

Seoul National University

RT@®S 1.2b

12

In this Talk...

Present a case study of CLO in Android platform
Objective function: reduce the end-to-end response time of

a given user input

DataCenterCIoudi i i i i i i

P> 3
Core Network & (><
B
Multi-Service Ed = g
ulti-Service Edge = :
P o B O
Embedded Systems <y gy o g

Response time

Applications

SSSSS

. Reduce the
""" ! S ‘:d ace | respopge time

Response time
-

» For more information, please refer to the following paper:

— S. Huh, J. Yoo and S. Hong, “Cross-Layer Resource Control and
Scheduling for Improving Interactivity in Android,” To appear in the
Journal of Software: Practice and Experience, 2014°

* http://redwood.snu.ac.kr/?g=publications/international/journals/cross-layer-resource-control-and-scheduling-improving-interactiv

Seoul National Universit

RT‘SY Lab 13

Agenda

Introduction

Case study: Cross-layer Resource Control

for Smartphone

Introduction
Background: Android Framework and Linux Kernel

Problem Description
Solution Approach: FTC and VT-CFS

Experimental Evaluation
Conclusion

Seoul National University
~1
B Lab

14

[I-A. Introduction

Android Becomes More Complex

Ever growing complexity of the Android framework
= Desired level of user experience also increases

Lines of Code:

12 Millions

Lines of Code:

9 Millions

Seoul National Universit

RT‘/Sy Lab

Source: M. Comet, http://www.bonkersworld.net/robot-evolution/

15

[I-A. Introduction

User Interactivity in Android

Android often demonstrates poor interactivity when it
runs with various workload concurrently
= |n terms of responsiveness

-
Seoul National University
d Lab
\N1W) a

16

Optimizing Complex SW Platic

Agenda
Introduction
Case study: Cross-layer Resource Control for
Smartphone
Introduction

Background: Android Framework and Linux Kernel

Problem Description
Solution Approach: FTC and VT-CFS
Experimental Evaluation

Conclusion

Seoul National University

B RT@®S 12 17

II-B. Background: Androic

System Architecture (1)

Layered system architecture of the Android platform

Applications
Application 1 Application 2 Application 3

Application Framework

Location Surface Audio
Manager Flinger Flinger

/ i
, Surface |
; Manager |
\ 7

Linux Kernel
Interrupt Handler Scheduler (CFS) Binder (IPC) driver Device Drivers

(Camera, Modem...)

Soft-IRQ —— . Wireless Dongle
e Daemon e Migration Task [e Binder Task | eHost Driver Task
Touch H:

Seoul National University

RT@®S 125 18

II-B. Background: Androit

System Architecture (2)

Task types

System servers
» Responsible for a dedicated system resource administration
— e.g., Surface Flinger is in charge of the frame buffer
Kernel tasks
* Running for core system services
— e.g., Migration task for load balancing, Binder task for IPC
Applications
« Executed on top of a Dalvik VM instance

* |n order to access hardware devices, must use a different
interface provided by a dedicated system server

« Can be split to one main (Ul) task and several worker tasks

Seoul National University

B RT@®

19

II-B. Background: Androit

Android Runtime Behaviors (1)

Input event handling
Input Reader retrieves raw input events and processes them

Input Dispatcher determines valid input targets and
dispatches input events to them

---> Functioncall — Eventdata

Input Reader Input Dispatcher Application main task
T wake () _____s
epoll wait () "" DispatchOnce () / A
Tt 1m==-=
"""""" 1||Inpthtener|\E/TpubllshMotlonEvent()consume()
[ut Ll
v :lIf%OfnldQlule”lel | Idput Publisher | | Input Consumer |
| Event Hub | sendMessage () receiveMessage ()
| itgetEvento [Input Channel | Framework

II-B. Background: Andro

Android Runtime Behaviors (2)

Rendering

Surface Flinger draws the contents of layers and synthesizes
all the layers into a single image

---> Function call — Event data -3 Surface data
Application
main task VSYNC timer Surface Flinger
9 - ___handleRepaint ()
.l‘lr ______________________ 310‘____________________________________'i
g i} & | LayerBase | :
s é) : i draw (v i
§ 2 A [CLayer][tayer |..[Layer | ’
g : i onDraw ()\1/ onDraw ()\;/ onDraw ()\;/
U R e TgueRe T I [_Buffer || Buffer |.. [Buffer |
R) E—— I Gl bttty o= 1 I]
i E g onMessageReceived () composi teCamplete ()
i Z .
i postFramebuffer () Framework :
A S —— Binder IPC ———————————J Linux Kernel

Frame Buffer

II-B. Background: Android

Linux CFS (1)

CFS (Completely Fair Scheduler)

Primary task scheduler of the mainline Linux kernel

« Symmetric multiprocessor scheduling algorithm which
maintains a dedicated run-queue for each CPU

— Make scheduling decisions independently of each other
* Its primary goal is to provide fair share scheduling by giving

each task CPU time proportional to its weight
4 Appl gets x2 longer
- CPU time than App2
I Appl App2
Weight: 2 Weight: 1%

Seoul National University

RT@®S 12 22

Per-CPU RQ Per-CPU RQ

II-B. Background: Androic

Linux CFS (2)

Virtual runtime of task ;
;'S cumulative runtime inversely scaled by its weight at time t

The weight of nice value O

w i
0 :
Vi(t) =X Cl(t) Amount of CPU time that z, has received for t
W; '

The weight of 7

* Perfect fairness is achieved if virtual runtimes are the same
among all the tasks at any given time

— CFS approximates this by dispatching the task with the smallest
virtual runtime at every scheduling decision point

Similarly, virtual runtime of task group g; is defined as:

~ 0 ~
Viv = W X|C;(t) Amount of CPU time that tasks in g; have received for t

)
The weight of g;

Seoul National Universit

B RT.Sy b 23

II-B. Background: Android

Linux CFS (3)

Time slice of task 7,

Time interval for which z; is allowed to run without being
preempted

* The length of a time slice is proportional to a task’s weight

The weight of z; The number of tasks in the run-queue
_ | W, _ 6 ms ifin > 8
i = X P P =075 ms xn otherwi
ZT]_ és Wj .75ms Xxn otherwise

Set of runnable tasks in the run-queue

» For determining the preemption of the current running task,
CFS uses the notion of the time slice

Seoul National University

B RT@®S 1 2b

II-B. Background: Androic

Linux CFS (4)

Run-time algorithm of CFS

C h hadiili +inl
FOr-caci-sthnecaung tCK

Update the virtual runtimes of the currently
running task and task group

Set need_resched flag

Interrupt Context

En-queue the

currently
running task

\ 4

Pick the task group
with the smallest
VR

Pick the task with
the smallest VR

v

Replenish time slice
need_resched =0

=T

Seoul National University

RT@S

25

II-B. Background: Android

Linux CFS (5)

As shown, CFS uses virtual runtimes merely for
keeping the relative order among tasks
CFS adjusts a task’s virtual runtime when it is inserted into
or removed from the run-queue
(1) De-queuing z; at time t,

_ Minimum virtual runtime of
mm(tl) the run-queue at time t,

Viep =Viep =V
— At the time of scheduling, V “(t,) equals to 0 since V;(t;) = V,;(t,)
(2 En-queuing t; at time t,
Vi(tz) — V’i(tz) + le_n(tz)_ Minimum virtual runtime of

the run-queue at time t,

Seoul National University

B RT@S 1ab 26

Optimizing Complex SW Plat

Agenda
Introduction
Case study: Cross-layer Resource Control for
Smartphone
Introduction

Background: Android Framework and Linux Kernel
Problem Description

Solution Approach: FTC and VT-CFS
Experimental Evaluation

Conclusion

Seoul National University

BN RT@®S 125

27

II-C. Problem Description

Terminologies (1)

DEFINITION 1. (USER-INTERACTIVE TASK CHAIN)

A sequence of task executions which begins with a task handling an
Input event and ends with a task rendering the outcome of that input

DEFINITION 2. (USER-INTERACTIVE TASK)
A task which appears in a user-interactive task chain

Input Input App Main App Main Binder Surface i
Reader Dispatcher Task Task Task Flinger !

iUser-Interactive @3
TETG-0-0-0-0-0-0

Input Interrupt handler i

Input Reader Task
Input Dispatcher Task
Application Main Task - .
| | | |
Binder Task i
Surface Flinger Task H

tl t2 t3 t4 t5 t6 Seogm%ional University

I RT@S 1.2b 28

II-C. Problem Description

Terminologies (2)

DEFINITION 3. (FOREGROUND TASK GROUP)

A set of tasks consisting of the main task of foreground application,
system server tasks and kernel tasks

DEFINITION 4. (BACKGROUND TASK GROUP)

A set of tasks consisting of the worker tasks of foreground
application and all the tasks of background applications

(Foreground group Background group]
System Kernel Main | Main Main Worker Worker i
servers tasks task i task task task task !

| | 1
| .‘ | ea

__

Seoul National University

RT@®S 1 25 29

II-C. Problem Description

Problem Statement

Interactivity can be evaluated by the end-to-end
response time taken to react to a user’s action

In order to reduce the response time, it is critical for user-
Interactive tasks to reduce two types of latencies

1) Preemption latency

— The accumulated amount of time during which a user-interactive
task is preempted by other tasks until the completion of its
execution

2) Dispatch latency

— The delay between the time when a user-interactive task is
inserted into a run-queue and the time when it begins to execute
its first instruction

Seoul National University

B RT@®

30

lI-C. Problem Descriptio

Android’s Efforts (1)

To shorten the response time, Android ensures

Main task of the application visible on screen can get a
sufficient CPU time regardless of background loads

To do so, Android controls the amount of time during which
tasks in BG interrupt tasks in FG

 FG is assigned about 10 times larger weight for CPU than BG
— Weight of FG: 1024, weight of BG: 110

* From the perspective of task scheduling, CFS allocates CPU
times to task groups proportionally to their weights

— Tasks in FG are guaranteed to use at least 90% of CPU resource

Seoul National University

B RT@®

31

Android’s Efforts (2)

Execution of the main task of the application
Interacting with a user can be prioritized
Example: launching and interacting with Facebook App

PP onCreate () _____ S .
| y o p
: e doInBackground () £
Facebook’s | i Facebook’s
main task : ! worker i
tasks |
System Kernel l i App2’s App2 s
servers tasks : . main worker
'\ tasks tasks
Foreground group Background group
(weight: 1024) (weight: 110)
Seoul National University

RT@®S 1:bH 32

Why Android Fails to

Achieve the Goal? (1)

Long preemption latency of worker tasks

= CFS cannot favor those tasks over other background tasks
during task scheduling

Foreground group Background group
| Ul task lNoliker BGTaskl K4l BG Task 2 BG Task 3 BG Task 3 |
| Weight=1 V?lzight: . Weight=1 < Weight=1 Weight = 3 Weight = 2 |

__

Needs 3ms to complete
the interactive work

Processing of user input is done 17ms

Worker task is later since a user interaction occurs

scheduled Finally
: Not finished yet, but preempted again \ done

Time

Worker task does not finish its work but it returns to
run-queue since its time slice is expired

Seoul National Uni

RT‘S Lab

33

Why Android Fails to

Achieve the Goal? (2)

Long dispatch latency

= CFS schedules runnable tasks in a non-preemptive manner
for their time slices

__

Foreground group

- Ul task - Task 1 @ Task?2
Weight =1 Weight=1 g Weight=1

__

Interrupt issued at the start of Ul task should.wait until

time slice of Audio decoder %xpiration of Audio-decoder Run-gueue state
|
Time
Interrupt handler wakes up

Ul task and en-queues it Ul task should wait another
time slice expiration of Task 3

Seoul National Universit

RT‘/Sy Lab

Optimizing Complex SW Platf

Agenda
Introduction
Case study: Cross-layer Resource Control for
Smartphone
Introduction

Background: Android Framework and Linux Kernel

Problem Description
Solution Approach: FTC and VT-CFS
Experimental Evaluation

Conclusion

Seoul National University

I RT@S 1.2b 35

lI-D. Solution Approach: FT

Solution Overview

Two interactivity enhancement mechanisms
FTC: to reduce preemption latency of worker tasks
* |dentify those tasks and promote their priorities

VT-CFS: to reduce dispatch latency of user-interactive tasks

 Make the identified tasks be inserted at the first node in the run-
gueue and make other tasks more preemptive

Applicationinteracting

with a user
Maln J orker ET :
Thread Thread Thread Surface

Flinger

BinderIPC

Promote priorities of the identified worker threads Restore priorities of the identified threads
Q VT-CFS ;

|
T |

Seoul National University
User Touch Input) .
== |nform TIDs of the user interactive tasks
==p Schedule tasks with the shorter dispatch latency

RT@®S 1.2b

II-D. Solution Approach: FTC ant
Framework-assisted Task
Characterization (FTC) (1)

Key idea of FTC

= Selectively promote the priorities of user-interactive tasks
running in the background group: worker tasks

« So that they can get larger time slices under CFS

Sub-problems of FTC
umb.'em

q Identifying the worker tasks in the user-interactive chain

Seoul National Universit

RT')S Lab

37

II-D. Solution Approach: FTC

Framework-assisted Task
Characterization (FTC) (2)

FTC takes advantage of run-time behaviors of the
Android framework (For sub-problem 1, 2, 3)
Input event handling and rendering

__

—————————

Main

T : | task | E ! Binder ?:llj_rface L
Saitlsr | Dalvik v | :] NEr
i| Instance | ubprob :

__

; Using TGID of

| Input ChanneI/J Application Main
 (Socket) /
£—_

~

TGID of
Application Main

Promote the
~application’s worker
ooy tasks’ priorities

Restore all of the
promoted tasks’
priorities

Promotion Restoration

Linux Kernel

Seoul National Universit

RT‘»Sy Lab

II-D. Solution Approach:

Framework-assisted Task
Characterization (FTC) (3)

How much user-interactive tasks’ priorities should be
promoted? (For sub-problem 2-1)

Until user-interactive tasks get time slice larger than the
average execution time of them: target slice

* Thelength of target slice varies depending on:
1) The computational power of the underlying hardware
2) User interaction patterns

— On our target system, the best interactivity was achieved when
target slice was setto 10 and 20 milliseconds for instant and

continuous interactions
New weight value for user interactive task

YresW;
W' = target slice X cres

P

Seoul Nat

B RT®S 39

II-D. Solution Approach: FTC

Framework-assisted Task
Characterization (FTC) (4)

Revisiting the problem
= Preemption latency can be effectively reduced by FTC

{ Foreground group ! i Background group

| 0 Ultask | 0 l/g/gliker BG Task 1 (4 B Task 2 BG Task 3 BG Task 3 |
i Weight=1 i i Weight = 3 Weight =1 < Weight=1 Weight = 3 Weight = 2 i

Needs 3ms to complete
the interactive work

Worker task is , Worker task can execute for 3ms
scheduled ' without being preempted

| | | | | N H
m | | | | | > Time

FTC identifies that the worker task is a user-
interactive one, so it promotes its priority

Seoul National Universit

B RT‘/Sy Lab

40

Virtual Time-based CFS (VT-CFS) (1)

Key ideas of VT-CFS

Force a task to be preempted at any predefined time tick
» Tasks in VT-CFS become more pre-emptible than in CFS

CFS: Preempt task when running VT-CFS: Preempt task for every
task runs out its time slice preemption tick period
Time Time

User-interactive tasks identified by the FTC are treated
differently from other preempted tasks

» The identified tasks are always placed at the first node in the
run-queue

Seoul National University

B RT@®S 1 2b

Virtual Time-based CFS (VT-CFS) (2)

Data structure

Maintain the identical data structure as the CFS
 Use ared-black tree as a run-queue
* Maintain a task’s virtual runtime to provide fair scheduling

Eliminate the notion of a weighted time slice

Newly introduce the preemption tick period
* A constant regardless of given workload

» A tunable parameter capable of controlling a tradeoff between
interactivity and run-time overhead

— A smaller period leads to shorter dispatch latency while incurring a
larger overhead due to frequent context switches

Seoul National University

B RT@®

42

Virtual Time-based CFS (VT-CFS) (3)

More preemptive run-time scheduling algorithm

For each preemption tick

Cstart) |
\;/ Interrupt Context
Update the virtual runtimes of Rather than relying on a weighted
the currently running task time slice, we make use of the
and task group virtual runtime for every

M preemption period
NQ

Set need_resched flag

\ 4

» Yes
En-queue the R Plc_k the task group | Pick the task with
currently » with the smallest >
. the smallest VR
running task VR l

B

Replenish time slice
need resched =0

RT@®S

43

Virtual Time-based CFS (VT-CFS) (4)

Virtual runtime adjustment

Apply for user-interactive tasks identified by FTC
* When the user-interactive tasks are woken-up

New virtual runtime value for user interactive task

Wy

—— XA Preemption tick period
W_p0+1

Vi =V @) +

Stored virtual runtime of the
currently running task

 In VT-CFS, a virtual runtime difference of tasks is no lower than
the virtual runtime increment of a task with nice value —20

— V;'(t) guarantees that z; is placed at the first node and will be
scheduled at the next preemption tick

Seoul National Universit

BN RT®S 15 44

Virtual Time-based CFS (VT-CFS) (5)

Run-time overhead of VT-CFS

It incurs timer interrupts more frequently than CFS
* Requires additional preemption tick interrupts

It may perform more frequent context switches than CFS

T; T; | T; |
Maximum # of context switches per one task i: Maximum # of context switches per one task i:
max(scheduling tick period)] [E;
Execution time of task i Time slice of task i Preemption tick period
T; can vary from 0.001 to 4438.05 depending on /. is a constant regardless of the number of tasks
the number of tasks and their weight distribution and their weight distribution

Trade-off: interactivity vs. run-time overhead
Smaller 4 (preemption tick period) leads to shorter dispatch
latency while incurring larger overhead

Seoul National Uni

B RT‘S Lab

45

Virtual Time-based CFS (VT-CFS) (6)

Revisiting the problem
= Dispatch latency can be effectively reduced by VT-CFS

__

Foreground group

y Ul task - Task 1 @ Task?2 0 g\gg:)%er ~ Task3
Weight =1 Weight =1 g Weight =1 Weight = 6 Weight = 2

__

Audio decoder
executes only for
Interrupt issued at the start of one preemption

time slice of Audio decoder %@tiTk period

Interrupt handler wakes up Ul task
and VT-CFS en-queues it into the
first node of run-queue Seoul National Universit

RT‘/Sy Lab

46

Optimizing Complex SW Platf

Agenda
Introduction
Case study: Cross-layer Resource Control for
Smartphone
Introduction

Background: Android Framework and Linux Kernel

Problem Description
Solution Approach: FTC and VT-CFS
Experimental Evaluation

Conclusion

Seoul National University

B RT@®S 1 2 a7

II-E. Experimental Evalue

Experimental Setup

Hardware/software components of the target system

System on Chip Texas Instruments OMAP 4460
CPU 1.2 GHz dual-core ARM Cortex-A9
Hardware Main memory 1-GB LP-DDR2
Storage 16 GB NAND Flash
Display 4.65 in diagonal HD Super AMOLED
Kernel Linux kernel version 3.0.31
VA Android Framework Android 4.1.2 Jelly Bean on- |
Build number JZO54K (485486) Google’s Galaxy Nexus
ROM yakiu GSM/HSPA+

Scheduling event monitoring is done by tools such as:

« trace-cmd, Dalvik Debug Monitor Server (DDMS),
KernelShark, Systrace

Seoul National University

B RT@S

II-E. Experimental Evaluatio

Experiments Scenario

Workloads
= FG App: Aviary photo editing application
= BG Apps: AVG Antivirus, MPEG encoder, Pl calculator

Aviary Anti-virus Anti-virus Pl Encoder Encoder Aviary
main main worker main main worker worker
Task Task Task Task Task Task Task

< £ K
< < ¢
v -
Weight: Weight: Weight; Weight: Weight: Weight: Weight:
1024 1024 1024 1024 1024 1024 1024
CPU P, CPU P,

Seoul National Universit

RT‘/Sy Lab

II-E. Experimental Evaluation

Evaluating Interactivity

End-to-end response time of Aviary application

= Reduced by up to 77.36% compared to the legacy system
* Preemption latency is reduced by 80.25%
» Dispatch latency is reduced by 77.35%

4.50

4.00

3.50

3.00

2.50

Time (seconds)

2.00

1.50

1.00

0.50

0.00

4.3602

3.6271

4.2064

mdispatch latency ®mpreemption latency @response time

1.4104
1.2736

1.1040
0.9845 0.9872
0.789 078 o7
LEGACYANDROIDJB PREVIOUS WORK IN[1]: ANDROID W/ FTC ANDROIDW/FTC ANDROIDW/FTC ANDROID W/ FTC
FTC (C: 10)+ VT-CFS (- (SLICE_INST- 10, (SLICE_INST: 20, (SLICE_INST: 20, (SLICE_INST: 20,
10) SLICE_CONT: 20) SLICE_CONT:30) SLICE_CONT: 30) SLICE_CONT: 30)

+VT-CFS(A: 5) +VT-CFS (A: 10)

Seoul National University

B RT@®S 1 2b

50

II-E. Experimental Evalua

Demonstration

Cross-Layer Resource Control and Scheduling
for Improving Interactivity in Android

Sungju Huh, Jonghun Yoo and Seongsoo Hong

Seoul National University
Real-Time Operating Systems Lab.

Seoul National University

RT® 51

Optimizing Complex SW Platic
Agenda

Introduction

Case study: Cross-layer Resource Control for
Smartphone

Conclusion

Seoul National University

B RT@®S 1:2b 52

Summary (1)

Software design continues to become more complex
in today’s computing systems

Increasingly difficult to ensure the desired level of
performance in such systems

Cross-layer optimization is an effective way to
Improve performance in a complex layered SW platform

By escaping from the layered software structure with virtually
strict boundaries between layers

» Allow communication between layers by permitting one layer to
access the data of another layer to exchange information

Seoul National University

B RT@® 53

Summary (2)

Cross-layer resource control and scheduling for
Improving interactivity in Android
Enhancing a user interactivity via task scheduling

« Framework-assisted task characterization (FTC)

— Selectively promote the priorities of user-interactive tasks running
in the background group

 Virtual time-based CFS (VT-CFS)
— Force a task to be preempted at any predefined time tick

— User-interactive tasks identified by the FTC are treated differently
from other preempted tasks

Seoul National University

B RT@® 54

Optimizing Complex SW Platfor

Questions or Comments?

Seoul National University
B RT@®S 1.2b 55

