
Optimizing Complex Software

Platforms with Cross-Layer

Resource Control and Scheduling

2014년 12월 19일

홍성수

sshong@redwood.snu.ac.kr

서울대학교전기정보공학부교수

가헌과학기술재단석좌교수

차세대융합기술원스마트시스템연구소소장

2

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

3

Hot IT Trends (1): IoT and Cloud

 The Internet-of-Things (IoT) has emerged as one of

the hottest IT trends in recent years

Definition of IoT [ITU-T Recommendation Y.2060, 2012]

 Thing: object of the physical world or of the information world,

which is capable of being identified and integrated into the

communication networks

 IoT and Cloud Computing

Cloud computing is “a key enabler of the IOT”

I. Introduction

 A global infrastructure for the information society, enabling

advanced services by interconnecting (physical and virtual)

things based on, existing and evolving, interoperable

information and communication technologies

www.itu.int/itu-t/gsi/iot

4

Hot IT Trends (2): IoT and Cloud

 A broad set of applications

I. Introduction

Predictive Maintenance

Agriculture

Smart Grid

Smart Transportation and

Cloud-connected Vehicles

Smart City

Smart Home

Smart Surveillance

Defense

Industrial

Automation

Intelligent Buildings

Healthcare

Energy Saving

5

Hot IT Trends (3): IoT and Cloud

 One obvious example: cloud-connected vehicles

I. Introduction

High-precision
Fresh Digital Map Variable Traffic

Signs

Weather
ConditionsTraffic Conditions

Cloud data center
Cloud computing for vehicles’

self-localization

Real-time data processing and

communication for massive

sensory data

Smart driving strategy using

context awareness achieved

from vehicles and external infra.

6

Hot IT Trends (4): Cloud-Connected

Vehicle

Road Painting & Signs

Hazards/Obstacles

Fast Vehicles

Localization

Navigation

Path Generation

Motion GoalDynamic Local Map

RADAR

Vision

LIDAR

Sensors

Environment Perception

Navigation / Motion Planning

Vehicle Control

In hundreds of milliseconds

I. Introduction

Cloud

Computing

In-Vehicle

Processing

Path Tracking

Direction Velocity

Lights Actuators

7

Hot IT Trends (5): Cloud-Connected

Vehicle

 Time granularity and possible services of cloud

Batch processing

• Database update, diagnostics

Second-scale processing

• Navigation, drivability map generation

100ms-scale processing

• Motion planning, path generation

10ms-scale processing

• Vehicle controls

• May be hard to offload from vehicles

10ms-Scale

Processing

Second-Scale

Processing

100ms-Scale

Processing
Batch Processing

I. Introduction

Current

8

 The “common” infrastructure

Core Network
IP/MPLS, Multicast, security

Network services, Quality-of-Services

Mobile packet core

Data Center Cloud
Application hosting, Management,

Service Provisioning

Hot IT Trends (6): Cloud Infrastructure

I. Introduction

Multi-Service Edge
3G/4G/5G/Wi-Fi

Ethernet

Embedded Systems
Smartphones, vehicles, machines

Computers

Consumer Electronics

Data Center

Smart Things

9

Hot IT Trends (7): Cloud Infrastructure

 Huge, complex and thus layered

I. Introduction

More than 12 Million lines
of code!!!
* In case of Android KitKat

? lines of code…
But must be more huge and complex
than those of smartphone

10

Why Layered?

 Separation of concerns

Decomposition of functionality

• Each layer implements separated, independent functionality

of the system

– Each layer can be developed and advanced independently from

other layers as long as the interfaces are not changed

Decomposition of optimization

• Each layer is a solver of a local optimization problem which is

smaller than the global optimization problem

I. Introduction

Layer L1

Layer L2

Global Optimization

Problem

Maximize f(V1, V2)

Local Optimization

Problem 2

Maximize g2(V2)

Local Optimization

Problem 1

Maximize g1(V1)

Control

variables V1

Control

variables V2

f : Objective function

(E.g., end-to-end response time)

11

Limitation of Layered SW Structure

 Optimization of individual layers does not always

generate the global optimal solution

I. Introduction

Global Optimization

Problem

Maximize f(V1, V2)

U1, U2 is a solution

that maximizes f(V1, V2)

Local Optimization

Problem 2

Maximize g2(V)

Local Optimization

Problem 1

Maximize g1(V)

W2 is a solution

that maximizes g2(V)

W1 is a solution

that maximizes g1(V)

f(U1, U2) > f(W1, W2)

12

Cross-Layer Optimization (CLO)

What is it?

Re-design local optimization problems such that local optima

lead to the global optimum

• To do so, internal states of a layer are selectively transferred

across layer boundaries

– Serves as constant values in the local optimization problem

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

Layer L1

Layer L2

Global Optimization

Problem

Maximize f(V1, V2)

Local Optimization

Problem 2

Maximize g2(V2 , S2, S1)

Local Optimization

Problem 1

Maximize g1(V1 , S1, S2)

Control

Variables V2

Control

Variables V1

Internal

States S2

Internal

States S1

13

In this Talk…

 Present a case study of CLO in Android platform

Objective function: reduce the end-to-end response time of

a given user input

• For more information, please refer to the following paper:

– S. Huh, J. Yoo and S. Hong, “Cross-Layer Resource Control and

Scheduling for Improving Interactivity in Android,” To appear in the

Journal of Software: Practice and Experience, 2014*

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

CLO
Reduce the

response time

Response time

Response time

* http://redwood.snu.ac.kr/?q=publications/international/journals/cross-layer-resource-control-and-scheduling-improving-interactiv

14

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control

for Smartphone
A. Introduction

B. Background: Android Framework and Linux Kernel

C. Problem Description

D. Solution Approach: FTC and VT-CFS

E. Experimental Evaluation

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

15

Android Becomes More Complex

 Ever growing complexity of the Android framework

Desired level of user experience also increases

II-A. Introduction

Source: M. Comet, http://www.bonkersworld.net/robot-evolution/

Lines of Code:

9 Millions

Lines of Code:

12 Millions

16

User Interactivity in Android

 Android often demonstrates poor interactivity when it

runs with various workload concurrently

In terms of responsiveness

II-A. Introduction

17

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

A. Introduction

B. Background: Android Framework and Linux Kernel

C. Problem Description

D. Solution Approach: FTC and VT-CFS

E. Experimental Evaluation

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

18

System Architecture (1)

 Layered system architecture of the Android platform

II-B. Background: Android Framework and Linux Kernel

Linux Kernel

Device
Touch

Screen
CPU RAM LCD

…

Android Runtime

Java Class Libraries

Dalvik Virtual Machine
Media

Codec

Application Framework

…

…Surface

Manager

Native Libraries

Interrupt Handler

…
Soft-IRQ

Daemon

Scheduler (CFS)

…Migration Task

Binder (IPC) driver

…Binder Task

Device Drivers
(Camera, Modem…)

…
Wireless Dongle

Host Driver Task

libc

Input

Reader

Applications

Dalvik VM Instance

Main Task Worker Task Worker Task

Dalvik VM Instance

Main Task Worker Task

Dalvik VM Instance

Main Task
…

Input

Dispatcher

Location

Manager

Surface

Flinger

Audio

Flinger

Application 1 Application 2 Application 3

19

System Architecture (2)

 Task types

System servers

• Responsible for a dedicated system resource administration

– e.g., Surface Flinger is in charge of the frame buffer

Kernel tasks

• Running for core system services

– e.g., Migration task for load balancing, Binder task for IPC

Applications

• Executed on top of a Dalvik VM instance

• In order to access hardware devices, must use a different

interface provided by a dedicated system server

• Can be split to one main (UI) task and several worker tasks

II-B. Background: Android Framework and Linux Kernel

20

Android Runtime Behaviors (1)

 Input event handling

Input Reader retrieves raw input events and processes them

Input Dispatcher determines valid input targets and

dispatches input events to them

II-B. Background: Android Framework and Linux Kernel

Input Reader Input Dispatcher Application main task

wake()

Input Channel

InBoundQueue

Event Hub

/dev/input/event*

getEvent()

Input Listener

epoll_wait() DispatchOnce()

Socket Communication

sendMessage() receiveMessage()

Input Publisher

publishMotionEvent() consume()

Linux Kernel

Framework

Function call Event data

Input Consumer

21

Android Runtime Behaviors (2)

 Rendering

Surface Flinger draws the contents of layers and synthesizes

all the layers into a single image

II-B. Background: Android Framework and Linux Kernel

Surface Flinger

Message Queue

VSYNC timer

onMessageReceived()

Frame Buffer

Application

main task

R
E
F
R
E
S
H

R
E
F
R
E
S
H

or
 I
N
V
A
L
I
D
A
T
E

postFramebuffer()

Layer Base

Layer
onDraw()

draw()

onDraw()

Layer Layer…
onDraw()

Buffer Buffer Buffer…

Buffer

compositeComplete()

Linux Kernel

Framework

Binder IPC

handleRepaint()

Function call Event data Surface data

22

Time

Linux CFS (1)

 CFS (Completely Fair Scheduler)

Primary task scheduler of the mainline Linux kernel

• Symmetric multiprocessor scheduling algorithm which

maintains a dedicated run-queue for each CPU

– Make scheduling decisions independently of each other

• Its primary goal is to provide fair share scheduling by giving

each task CPU time proportional to its weight

II-B. Background: Android Framework and Linux Kernel

CPU0 CPU1

Per-CPU RQ Per-CPU RQ

App1

Weight: 2

App2

Weight: 1

App1 gets x2 longer

CPU time than App2

23

Linux CFS (2)

 Virtual runtime of task τi

τi’s cumulative runtime inversely scaled by its weight at time t

• Perfect fairness is achieved if virtual runtimes are the same

among all the tasks at any given time

– CFS approximates this by dispatching the task with the smallest

virtual runtime at every scheduling decision point

Similarly, virtual runtime of task group gi is defined as:

II-B. Background: Android Framework and Linux Kernel

The weight of nice value 0

𝑉𝑖 𝑡 =
𝜔0

𝑊𝑖

× 𝐶𝑖(𝑡)

The weight of τi

Amount of CPU time that τi has received for t

Ṽ𝑖 𝑡 =
𝜔0

 𝑊𝑖

× 𝐶𝑖(𝑡)

The weight of gi

Amount of CPU time that tasks in gi have received for t

24

Linux CFS (3)

 Time slice of task τi

Time interval for which τi is allowed to run without being

preempted

• The length of a time slice is proportional to a task’s weight

• For determining the preemption of the current running task,

CFS uses the notion of the time slice

II-B. Background: Android Framework and Linux Kernel

Set of runnable tasks in the run-queue

𝑇𝑖 =
𝑊𝑖

 𝜏
𝑗
∈𝑆𝑊𝑗

× 𝑃

The weight of τi

𝑃 =
6 𝑚𝑠 if 𝑛 > 8

0.75 𝑚𝑠 × 𝑛 otherwise

The number of tasks in the run-queue

25

Linux CFS (4)

 Run-time algorithm of CFS

II-B. Background: Android Framework and Linux Kernel

start

Update the virtual runtimes of the currently

running task and task group

nr_running > 1?

For each scheduling tick

Yes

No

No

Yes
Time slice runs out? Set need_resched flag

No

need_resched == 1?

En-queue the

currently

running task

Pick the task group

with the smallest

VR

Yes Pick the task with

the smallest VR

end
Replenish time slice

need_resched = 0

Interrupt Context

26

Linux CFS (5)

 As shown, CFS uses virtual runtimes merely for

keeping the relative order among tasks

CFS adjusts a task’s virtual runtime when it is inserted into

or removed from the run-queue

① De-queuing τi at time t1

– At the time of scheduling, V´(t1) equals to 0 since Vi(t1) = Vmin(t1)

② En-queuing τi at time t2

II-B. Background: Android Framework and Linux Kernel

𝑉′
𝑖 𝑡1 = 𝑉𝑖 𝑡1 − 𝑉𝑚𝑖𝑛 𝑡1

Minimum virtual runtime of

the run-queue at time t1

𝑉𝑖 𝑡2 = 𝑉′
𝑖 𝑡2 + 𝑉𝑚𝑖𝑛 𝑡2

Minimum virtual runtime of

the run-queue at time t2

27

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

A. Introduction

B. Background: Android Framework and Linux Kernel

C. Problem Description

D. Solution Approach: FTC and VT-CFS

E. Experimental Evaluation

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

28

Terminologies (1)

 DEFINITION 1. (USER-INTERACTIVE TASK CHAIN)

A sequence of task executions which begins with a task handling an

input event and ends with a task rendering the outcome of that input

 DEFINITION 2. (USER-INTERACTIVE TASK)

A task which appears in a user-interactive task chain

II-C. Problem Description

time

Input Interrupt handler

Input Reader Task

Binder Task

Surface Flinger Task

t1

Other Tasks

Input Dispatcher Task

Application Main Task

Application Worker Tasks

t2 t3 t4 t5 t6

Input

Reader

Input

Dispatcher

App Main

Task

App Main

Task

App Worker

Task

Binder

Task

Surface

Flinger
User-Interactive

Chain

29

Terminologies (2)

 DEFINITION 3. (FOREGROUND TASK GROUP)

A set of tasks consisting of the main task of foreground application,

system server tasks and kernel tasks

 DEFINITION 4. (BACKGROUND TASK GROUP)

A set of tasks consisting of the worker tasks of foreground

application and all the tasks of background applications

II-C. Problem Description

Foreground group Background group

System

servers

Kernel

tasks

Main

task

Main

task

Main

task

Main

task
Worker

task
Worker

task

30

Problem Statement

 Interactivity can be evaluated by the end-to-end

response time taken to react to a user’s action

In order to reduce the response time, it is critical for user-

interactive tasks to reduce two types of latencies

1) Preemption latency

– The accumulated amount of time during which a user-interactive

task is preempted by other tasks until the completion of its

execution

2) Dispatch latency

– The delay between the time when a user-interactive task is

inserted into a run-queue and the time when it begins to execute

its first instruction

II-C. Problem Description

31

Android’s Efforts (1)

 To shorten the response time, Android ensures

Main task of the application visible on screen can get a

sufficient CPU time regardless of background loads

To do so, Android controls the amount of time during which

tasks in BG interrupt tasks in FG

• FG is assigned about 10 times larger weight for CPU than BG

– Weight of FG: 1024, weight of BG: 110

• From the perspective of task scheduling, CFS allocates CPU

times to task groups proportionally to their weights

– Tasks in FG are guaranteed to use at least 90% of CPU resource

II-C. Problem Description

32

Android’s Efforts (2)

 Execution of the main task of the application

interacting with a user can be prioritized

Example: launching and interacting with Facebook App

II-C. Problem Description

Foreground group

(weight: 1024)

Background group
(weight: 110)

Facebook’s

main task

System

servers

Kernel

tasks

Facebook’s

worker

tasks

App2’s

main

tasks

App2’s

worker

tasks

…

doInBackground()

onCreate()

33

Foreground group Background group

Why Android Fails to

Achieve the Goal? (1)

 Long preemption latency of worker tasks

CFS cannot favor those tasks over other background tasks

during task scheduling

II-C. Problem Description

Time

Worker task is

scheduled

Worker task does not finish its work but it returns to

run-queue since its time slice is expired

Not finished yet, but preempted again
Finally

done

Processing of user input is done 17㎳
later since a user interaction occurs

Worker

task
Weight = 1

BG Task 1
Weight = 1

BG Task 2
Weight = 1

BG Task 3
Weight = 3

BG Task 3
Weight = 2

Needs 3㎳ to complete

the interactive work

UI task
Weight = 1

34

Foreground group

Why Android Fails to

Achieve the Goal? (2)

 Long dispatch latency

CFS schedules runnable tasks in a non-preemptive manner

for their time slices

II-C. Problem Description

UI task
Weight = 1

Task 1
Weight = 1

Task 2
Weight = 1

Audio

decoder
Weight = 6

Task 3
Weight = 2

Time
Interrupt handler wakes up

UI task and en-queues it

Task 1

UI task Task 2

Task 3

Run-queue state

UI task should wait until

expiration of Audio decoder

UI task should wait another

time slice expiration of Task 3

Interrupt issued at the start of

time slice of Audio decoder

35

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

A. Introduction

B. Background: Android Framework and Linux Kernel

C. Problem Description

D. Solution Approach: FTC and VT-CFS

E. Experimental Evaluation

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

36

Solution Overview

 Two interactivity enhancement mechanisms

FTC: to reduce preemption latency of worker tasks

• Identify those tasks and promote their priorities

VT-CFS: to reduce dispatch latency of user-interactive tasks

• Make the identified tasks be inserted at the first node in the run-

queue and make other tasks more preemptive

II-D. Solution Approach: FTC and VT-CFS

37

Framework-assisted Task

Characterization (FTC) (1)

 Key idea of FTC

Selectively promote the priorities of user-interactive tasks

running in the background group: worker tasks

• So that they can get larger time slices under CFS

 Sub-problems of FTC

II-D. Solution Approach: FTC and VT-CFS

Determining the time for restoring priorities of the identified tasks
Sub-problem

3

Identifying the worker tasks in the user-interactive chain
Sub-problem

1

Determining the time for promoting priorities of the identified tasks
Sub-problem

2

How much the identified tasks’ priorities should be promoted?
Sub-problem

2-1

38

User-Interactive Chain

Framework-assisted Task

Characterization (FTC) (2)

 FTC takes advantage of run-time behaviors of the

Android framework (For sub-problem 1, 2, 3)

Input event handling and rendering

II-D. Solution Approach: FTC and VT-CFS

Input

Reader

Input

Dispatcher

Linux Kernel

Dalvik VM

Instance

Main

task

Dalvik VM

Instance

Worker

task Binder
Surface

Flinger

TGID of

Application Main

Promote the

application’s worker

tasks’ priorities

Restore all of the

promoted tasks’

priorities

Using

Input Channel

(Socket)

Promotion Restoration

TGID of

Application Main

39

Framework-assisted Task

Characterization (FTC) (3)

 How much user-interactive tasks’ priorities should be

promoted? (For sub-problem 2-1)

Until user-interactive tasks get time slice larger than the
average execution time of them: target_slice

• The length of target_slice varies depending on:

1) The computational power of the underlying hardware

2) User interaction patterns

– On our target system, the best interactivity was achieved when
target_slice was set to 10 and 20 milliseconds for instant and

continuous interactions

New weight value for user interactive task τi

II-D. Solution Approach: FTC and VT-CFS

𝑊′
𝑖 = target_slice ×

 𝜏
𝑗
∈𝑆𝑊𝑗

𝑃

40

Framework-assisted Task

Characterization (FTC) (4)

 Revisiting the problem

Preemption latency can be effectively reduced by FTC

II-D. Solution Approach: FTC and VT-CFS

Time

Worker task is

scheduled

FTC identifies that the worker task is a user-

interactive one, so it promotes its priority

Worker task can execute for 3㎳
without being preempted

Foreground group Background group

Worker

task
Weight = 1

BG Task 2
Weight = 1

BG Task 3
Weight = 3

BG Task 3
Weight = 2

UI task
Weight = 1

Worker
task
Weight = 3

BG Task 1
Weight = 1

Needs 3㎳ to complete

the interactive work

41

Virtual Time-based CFS (VT-CFS) (1)

 Key ideas of VT-CFS

1. Force a task to be preempted at any predefined time tick

• Tasks in VT-CFS become more pre-emptible than in CFS

2. User-interactive tasks identified by the FTC are treated

differently from other preempted tasks

• The identified tasks are always placed at the first node in the

run-queue

II-D. Solution Approach: FTC and VT-CFS

CFS: Preempt task when running

task runs out its time slice

VT-CFS: Preempt task for every

preemption tick period

Time Time

42

Virtual Time-based CFS (VT-CFS) (2)

 Data structure

Maintain the identical data structure as the CFS

• Use a red-black tree as a run-queue

• Maintain a task’s virtual runtime to provide fair scheduling

Eliminate the notion of a weighted time slice

Newly introduce the preemption tick period

• A constant regardless of given workload

• A tunable parameter capable of controlling a tradeoff between

interactivity and run-time overhead

– A smaller period leads to shorter dispatch latency while incurring a

larger overhead due to frequent context switches

II-D. Solution Approach: FTC and VT-CFS

43

Virtual Time-based CFS (VT-CFS) (3)

More preemptive run-time scheduling algorithm

II-D. Solution Approach: FTC and VT-CFS

Interrupt Context
start

Update the virtual runtimes of

the currently running task

and task group

nr_running > 1?

Set need_resched flag

need_resched = 1?

For each preemption tick

Yes

No

Yes

The VR

of the task is still the

smallest?

No

No

Yes

Rather than relying on a weighted

time slice, we make use of the

virtual runtime for every

preemption period

En-queue the

currently

running task

Pick the task group

with the smallest

VR

Pick the task with

the smallest VR

end
Replenish time slice

need_resched = 0

44

Virtual Time-based CFS (VT-CFS) (4)

 Virtual runtime adjustment

Apply for user-interactive tasks identified by FTC

• When the user-interactive tasks are woken-up

New virtual runtime value for user interactive task τi

• In VT-CFS, a virtual runtime difference of tasks is no lower than

the virtual runtime increment of a task with nice value –20

– Vi′(t) guarantees that τi is placed at the first node and will be

scheduled at the next preemption tick

II-D. Solution Approach: FTC and VT-CFS

𝑉′
𝑖 𝑡 = 𝑉∗

𝑐𝑢𝑟𝑟 𝑡 +
𝜔0

𝜔−20 + 1
× 𝜆

Stored virtual runtime of the

currently running task

Preemption tick period

45

Virtual Time-based CFS (VT-CFS) (5)

 Run-time overhead of VT-CFS

It incurs timer interrupts more frequently than CFS

• Requires additional preemption tick interrupts

It may perform more frequent context switches than CFS

II-D. Solution Approach: FTC and VT-CFS

Maximum # of context switches per one task i:

𝐸𝑖/max(scheduling tick period, 𝑇𝑖)
Maximum # of context switches per one task i:

𝐸𝑖/𝜆

 Trade-off: interactivity vs. run-time overhead
Smaller λ (preemption tick period) leads to shorter dispatch

latency while incurring larger overhead

Execution time of task i Time slice of task i Preemption tick period

𝑇𝑖 𝑇𝑖 𝑇𝑖 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆

Ti can vary from 0.001 to 4438.05 depending on

the number of tasks and their weight distribution
λ is a constant regardless of the number of tasks

and their weight distribution

46

Foreground group

Virtual Time-based CFS (VT-CFS) (6)

 Revisiting the problem

Dispatch latency can be effectively reduced by VT-CFS

II-D. Solution Approach: FTC and VT-CFS

UI task
Weight = 1

Task 1
Weight = 1

Task 2
Weight = 1

Audio

decoder
Weight = 6

Task 3
Weight = 2

Time
Interrupt handler wakes up UI task

and VT-CFS en-queues it into the

first node of run-queue

Audio decoder

executes only for

one preemption

tick period

Task 1

UI task

Task 2Task 3

Run-queue state

Interrupt issued at the start of

time slice of Audio decoder

47

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

A. Introduction

B. Background: Android Framework and Linux Kernel

C. Problem Description

D. Solution Approach: FTC and VT-CFS

E. Experimental Evaluation

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

48

Experimental Setup

 Hardware/software components of the target system

Scheduling event monitoring is done by tools such as:

• trace-cmd, Dalvik Debug Monitor Server (DDMS),

KernelShark, Systrace

II-E. Experimental Evaluation

Hardware

System on Chip Texas Instruments OMAP 4460

CPU 1.2 GHz dual-core ARM Cortex-A9

Main memory 1-GB LP-DDR2

Storage 16 GB NAND Flash

Display 4.65 in diagonal HD Super AMOLED

Software

Kernel Linux kernel version 3.0.31

Android Framework Android 4.1.2 Jelly Bean

Build number JZO54K (485486)

ROM yakju

Google’s Galaxy Nexus

GSM/HSPA+

49

CPU P1 CPU P2

Experiments Scenario

Workloads

FG App: Aviary photo editing application

BG Apps: AVG Antivirus, MPEG encoder, PI calculator

II-E. Experimental Evaluation

Aviary

main

Task

Weight:

1024

Anti-virus

main

Task

Weight:

1024

Anti-virus

worker

Task

Weight:

1024

PI

main

Task

Weight:

1024

Encoder

main

Task

Weight:

1024

Encoder

worker

Task

Weight:

1024

Aviary

worker

Task

Weight:

1024

50

Evaluating Interactivity

 End-to-end response time of Aviary application

Reduced by up to 77.36% compared to the legacy system

• Preemption latency is reduced by 80.25%

• Dispatch latency is reduced by 77.35%

II-E. Experimental Evaluation

Era of Cloud Computing

51

Demonstration

II-E. Experimental Evaluation

Era of Cloud Computing

52

Agenda

I. Introduction

II. Case study: Cross-layer Resource Control for

Smartphone

III. Conclusion

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

53

Summary (1)

 Software design continues to become more complex

in today’s computing systems

Increasingly difficult to ensure the desired level of

performance in such systems

 Cross-layer optimization is an effective way to

improve performance in a complex layered SW platform

By escaping from the layered software structure with virtually

strict boundaries between layers

• Allow communication between layers by permitting one layer to

access the data of another layer to exchange information

III. Conclusion

54

Summary (2)

 Cross-layer resource control and scheduling for

improving interactivity in Android

Enhancing a user interactivity via task scheduling

• Framework-assisted task characterization (FTC)

– Selectively promote the priorities of user-interactive tasks running

in the background group

• Virtual time-based CFS (VT-CFS)

– Force a task to be preempted at any predefined time tick

– User-interactive tasks identified by the FTC are treated differently

from other preempted tasks

III. Conclusion

55

Questions or Comments?

Optimizing Complex SW Platforms /w CL Resource Ctrl. & Sched.

